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Abstract. We analyze the multifractal spectra of daily foreign exchange rates for Japan, Hong-Kong, Korea,
and Thailand with respect to the United States in the period from 1991 until 2005. We find that the return
time series show multifractal spectrum features for all four cases. To observe the effect of the Asian currency
crisis, we also estimate the multifractal spectra of limited series before and after the crisis. We find that the
Korean and Thai foreign exchange markets experienced a significant increase in multifractality compared
to Hong-Kong and Japan. We also show that the multifractality is stronger related to the presence of high
values of returns in the series.

1 Introduction

Economic systems are widely acknowledged as extremely
complex, and have recently become an interesting area
of study for physicists as well as economists [1,2]. Many
previous studies have found that time series of financial
markets exhibit some non-linear properties developed in
statistical physics [3–10]. The prices in financial markets
are created by non-trivial interactions among heterogene-
ity agents and complex events occurring in the external
environment. In other words, both micro and macro vari-
ables with various time scales are involved in the pricing
mechanism.

The properties observed in financial time series in-
clude long-memory in volatility [7–10], a multifractal na-
ture [11–18], and fat tails [3–6] among others; these are
sometimes referred to as the stylized facts. The multi-
fractal concept, which is now well developed in the fields
of statistical physics and nonlinear dynamics, is a well-
known feature of complex systems [15–17,19,20]. Multi-
fractality has been discovered in systems as diverse as
earthquakes [16], turbulence systems, biological time se-
ries [15], as well as financial markets [11–13,20].

Previous studies have found evidence for a relationship
between the complexity of a system and its degree of mul-
tifractality [15]. For example, the degree of multifractality
in data generated by a multiplicative cascading process is
directly related to the long-range correlations of the mag-
nitude time series [21]. Other factors that could affect the
multifractality of time series include time correlations and
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the probability distribution of the data [19,20]. However,
it is still not clear what is the origin of multifractality in
financial markets.

In this paper we study the multifractal properties of
a financial time series: the daily return of four foreign
exchange (FX) markets. We consider Japan (JPY/USD),
Hong-Kong (HKD/USD), Korea (KRW/USD), and Thai-
land (THD/USD) from 1991 to 2005. We employ multi-
fractal detrended fluctuation analysis (MF-DFA) [22] to
measure the nonlinear features of the time series, in par-
ticular their multifractal spectra. To test their significance
we randomly shuffle the series to remove any temporal cor-
relations, and find that these spectra narrow significantly.
In other words, we find that temporal correlation plays an
important role in the multifractality of the data, similar
to Matia et al. [19].

To detect changes in market complexity before and
after the Asian currency crisis, we divide the series into
two periods before and after the crash and calculate their
multifractal spectra separately. We find that for Korean
and Thailand the degree of multifractality increased sig-
nificantly after the Asian currency crisis, while the FX
markets of Hong Kong and Japan did not. We therefore
suggest that both Korea and Thailand have been more
influenced by the Asian currency crisis. We also examine
the effect of return values above a certain threshold in the
FX markets on the market complexity. We find that for all
countries, market complexity is related to higher returns.

In the next section, we describe the financial data and
our methodology. In Section 3, we present our results of
this study. Section 4 concludes the article.
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2 Data and methodology

We investigate the multifractal properties of Asian
FX markets (returns to U.S. Dollars) from 1991 to
2005 for four countries: Japan (JPY/USD), Hong-
Kong (HKD/USD), Korea (KRW/USD), and Thailand
(THB/USD). The data are obtained from the Fed web-
page. In all data sets used in this paper, we remove the
year 1997 to eliminate any abnormalities due to the mar-
ket crash itself. The return time series is calculated by the
log-difference of daily prices: r(t) = lnP (t) − ln P (t − 1),
where P (t) is the foreign exchange rate on day t. We di-
vide the whole series into two sub-periods: DATA A from
1991 to 1996 (before the crisis) and DATA B from 1998
to 2005 (after the crisis). This allows us to study the in-
fluence of the Asian currency crisis on market complexity.
We employ the multifractal detrended fluctuation analysis
(MF-DFA) method to determine the multifractal proper-
ties of the time series. The MF-DFA method was proposed
by Kantelhardt et al. [22], and can be explained by the fol-
lowing three steps.

Step 1. We subtract the average value of the time series
from each point x(i)(≡ r(t)), then accumulate the series:

y(i) =
i∑

k=1

[x(k) − x̄], (1)

where x(i) is the ith point and x̄ is the mean of all {x(k)}.
This step represents the original data as an accumulated
profile, y(i).

Step 2. The profile y(i) is divided into Ns boxes of
length s. In each box v(1 ≤ v ≤ Ns), the trend is esti-
mated by an m-order polynomial using the least-squares
method. The best-fit curve of a given box is expressed as
yv(i). By subtracting yv(i) from y(i), possible trends are
removed [23]. This process is applied to every box, and
the fluctuations in that box are then calculated as

F2(s, v) ≡ 1
s

s∑

i=1

(|y((v − 1)s + i) − yv(i)|)2. (2)

Step 3. We compute the mean q-order moment Fq(s) of
the series by averaging the appropriate function of F2 over
all boxes. In this way we obtain a scaling relation with box
size s:

Fq(s) ≡
{

1
Ns

Ns∑

v=1

F2(s, v)q/2

}1/q

∼ sh(q). (3)

The exponent h(q) depends on q. In general, the multifrac-
tal (MF) scaling exponent τ(q) is related to h(q) through

τ(q) = qh(q) − Df , (4)

where Df is the fractal dimension of a geometric object.
In our case, Df = 1. The MF exponent τ(q) represents
the temporal structure of the time series as a function
of the various moments q. That is, τ reflects the scale-
dependence of smaller fluctuations for negative values of

q, and larger fluctuations for positive values of q. In the
special case that τ(q) = αq is a linear function, the time
series can be regarded as a monofractal and α is the singu-
larity strength or Hölder exponent. If τ(q) increases non-
linear with q, then the series is multifractal. In this case
we can calculate the MF spectrum f(α) by a Legendre
transform of τ(q), as defined by

f(α) ≡ αq − τ(q), α ≡ dτ(q)
dq

, (5)

where f(α) is the dimension of the time series. If the time
series is monofractal, f(α) is a delta function, there is
only one value of α; otherwise, there is a distribution of α
values.

3 Results

We have analyzed the multifractal spectra of Asian FX
markets using the above MF-DFA method. The pricing
mechanisms may well be complex, due to the Asian cur-
rency crisis in late 1997 as well as due to various internal
and external events. The Asian currency crisis had an im-
pact on almost all Asian FX markets [24]. Here, we study
the multifractal properties of four markets and try to iden-
tify how the crisis may have affected their multifractality.

In Figure 1, we show the return time series of
Hong-Kong (a), Japan (b), Korea (c), and Thailand (d).
The Korean and Thai FX markets clearly have higher
volatility after the Asian currency crisis in 1997, but
the Japanese and Hong-Kong markets show no obvious
change.

We now describe the multifractal properties of the four
markets. The results of MF-DFA analysis are presented in
Figure 2. To test how significant is the multifractality, we
also perform the analysis on shuffled time series created
by randomly shuffling the data. Figures 2a and 2b show
the fluctuation spectra Fq(s)q of the original and shuffled
HKD/USD series respectively. These logarithmic plots in-
dicate that in both cases Fq(s)q is a power-law with an
exponents depending on q. Figures 2c and 2d display the
multifractal scaling function τ(q) of the original and shuf-
fled data. We calculated τ(q) from the power-law relation
between Fq(s)q and s in the error bar plot, using scales
in the range 40 < s < smax. We calculate the scaling ex-
ponent varying smax between 400 and 800 days to fix the
robustness of estimated result. This is since below s = 40
there is discreteness effects (original and shuffled). We find
that the two datasets behave similarly almost linear with q
for negative moments, but show significant non-linearities
for positive moments. This means that the larger fluctua-
tions have changed dramatically in the shuffled series.

To explicitly observe the multifractality we can con-
vert q and average τ(q) to α and f(α) by a Legendre
transform. Figure 2e shows the multifractal spectra f(α)
of the original market series. We find that the singular-
ity strengths α of the markets lie within the following
ranges: 0.03 ≤ αHong−Kong ≤ 0.89, 0.35 ≤ αJapan ≤ 0.66,
0.15 ≤ αKorea ≤ 0.88, and 0.25 ≤ αThailand ≤ 0.85.
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Fig. 1. Returns x(i) of four Asian foreign exchange markets: Hong-Kong (a), Japan (b), Korea (c), and Thailand (d).
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Fig. 2. (Color online) Panels (a) and (b) show the scaling function Fq(s)
q for various moments q of the Hong-Kong FX market,

for the original (Fig. 1b) and surrogate (shuffled) time series respectively. Panels (c) and (d) show the multifractal scaling
functions τ (q) of the return and surrogate time series for all four foreign exchange markets. Panels (e) and (f) show the fractal
dimension f(α) obtained by a Legendre transformation of (c) and (d) respectively. Red circles refer to Hong Kong (HKD), green
diamonds to Japan (JPY), blue squares to Korea (KRW), and black triangles to Thailand (THB).
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Fig. 3. The multifractality spectrum f(α), before (circles) and after (squares) the Asian currency crisis. The four panels refer
to Hong Kong (a), Japan (b), Korea (c), and Thailand (d). Panel (e) and (f) plots the difference in the range of multifractality
∆α for the original and surrogate data.

Figure 2f presents the same information for the shuffled
time series: 0.28 ≤ αHong−Kong(shuffle) ≤ 0.67, 0.45 ≤
αJapan(shuffle) ≤ 0.61, 0.44 ≤ αKorea(shuffle) ≤ 0.61, and
0.38 ≤ αThailand(shuffle) ≤ 0.70. Figures 2e and 2f show
that the multifractal spectra f(α) are narrower for the
surrogate time series, from which all temporal correlations
have been removed. Our results indicate that the tempo-
ral fluctuations in Asian FX markets show signature of
multifractality.

The Asian currency crisis had an influence on almost
all the Asian FX markets, so it is reasonable to assume
that their status may have changed significantly. An inter-
esting question is how the Asian currency crisis has influ-
enced the market complexity. We divided each time series
into two sub-periods: (DATA A) and (DATA B) before
and after the crisis respectively. Figure 3 shows the mul-
tifractal spectra f(α) of the original and surrogate time
series, which remove the nonlinearity from the original
data [25], of both periods for all four FX markets. We
find that the multifractal spectra of all the surrogate data
set is reduced significantly than those of the original data.
The Hong Kong and Japanese FX markets show a similar
degree of multifractality before and after the crisis, while
the Korean and Thai markets change significantly and
the multifractal spectra become broader. In other words,
the complexity of the Korean and Thai FX markets has
been increased after the Asian currency crisis. Figure 3e
and 3f shows the change in the degree of multifractality
∆α of both the original and surrogate data for each mar-
ket. We conjecture that since the Japanese FX market is
the most mature, it was also the least influenced by the
Asian currency crisis. The emerging markets of Korea and

Table 1. The degree of multifractality ∆α of all the countries.

Country Original Shuffled Before After
(∆α) (∆α) (∆α) (∆α)

HongKong 1.14 0.55 0.98 1.09
Japan 0.29 0.15 0.32 0.34
Korea 0.55 0.20 0.27 0.73

Thailand 0.83 0.28 0.32 0.63

Thailand, on the other hand, were greatly influenced by
the change of exchange rate policy that changed its sys-
tem from pegged to floated one due to the Asian currency
crisis by the crash.

As for the Hong Kong FX market, since Hong Kong
chose to have a fixed exchange rate with the U.S. dollar
(called the Peg system) both periods have similar broad
spectra. The Asian currency crisis thus increased the com-
plexity of the Korean and Thai FX markets, perhaps be-
cause its aftermath spurred the development of new gov-
ernment policies in those countries.

Table 1 shows the degree of multifractality ∆α of the
original, shuffled data and before and after the crisis for
all countries used in this paper. This quantity shows that
for the original data the multifractal spectra have more
broader than those of shuffled data and the degree of mul-
tifractality both the Korean and Thailand FX markets
increases significantly after the crisis.

We have observed that temporal correlations are not
linear but posses multifractality in the time series. It is in-
teresting to note that the shuffled time series removed the
time correlation still show some multifractality. It is widely
accepted that the distribution of returns in a financial
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Fig. 4. (Color online) The relationship between the degree
of multifractality and the tail exponent of power law dis-
tribution. We generate 100 multifractal noise data sets with
217 data points with respect to µ = {−0.6 × ln 2,−0.7 ×
ln 2,−0.8 × ln 2,−0.9 × ln 2,−1 × ln 2} and various σ val-
ues in the ranges from 0.2 to 0.4 and calculate the expo-
nent of power-law distribution function. The circles (red),
sqaures (green), diamons (blue), triangles (pink), and stars
(black) correspond to the multifractal noise data created with
µ = {−0.6× ln 2,−0.7× ln 2,−0.8× ln 2,−0.9× ln 2, −1× ln 2},
respectively.

market follows a power law, with an exponent close to
3 [3–6]. In other words, there are many higher values that
cannot be predicted by the pricing mechanism of the effi-
ciency market hypothesis (EMH) [26], which is also widely
used in the financial literature. We will now investigate
the influence of high returns on the multifractality. To do
this, we generate a multifractal noise data set using the
wavelet-cascade model introduced by Arneodo et al. [27].
We employ the log-normal random variable w to gener-
ate the multifractal noise data. In this case, the degree of
multifractality of the created data is determined by the
parameters such as the mean, µ, and the standard devia-
tion, σ, of ln(w) and it is positively related to the σ value.
Where lnw is a coefficient of the normal distribution with
µ and σ. We can create the artificial data that have the
different degree of multifractality with respective to the
mean, µ, and the standard deviation, σ. The multifractal
spectrum is given by f(α) = −(α+µ/ ln 2)

2σ2 ln 2 + 1 and the
multifractal spectrum width as the degree of multifractal-
ity is 2

√
2σ√

ln 2
.

To verify the relationship between the degree of mul-
tifractality and the extreme values, we create 100 data
sets with 217 data points and calculate the tail exponent,
γ, of power law distribution, p(x) ∼ xγ using method
proposed by Clauset et al. [28]. Figure 4 shows the re-
lationship between the degree of multifractality and the
power-law exponents using the multifractal noise data
sets created with µ = {−0.6 × ln 2, −0.7 × ln 2, −0.8 ×
ln 2, −0.9 × ln 2, −1 × ln 2} and various σ values in the
ranges from 0.2 to 0.4. The circles (red), sqaures (green),
diamons (blue), triangles (pink), and stars (black) cor-
respond to the multifractal noise data created with µ =
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Fig. 5. The multifractality of time series from which returns
above a threshold Tσ have been deleted and interpolated. The
panels refer to Hong-Kong (a), Japan (b), Korea (c), and Thai-
land (d). The open and fill circles indicate the original and
surrogate time series.

{−0.6×ln 2, −0.7×ln 2, −0.8×ln 2, −0.9×ln 2, −1×ln 2},
respectively. In Figure 4, we observe that regardless of µ,
the exponent, γ increases as the degree of multifractality
increases. In other words, the degree of multifractality has
strongly relation to the existing of the extreme values in
the multifractal noise data.

To verify the result observed in Figure 4 to the for-
eign exchange markets, we create a new version of each
time series by eliminating values above a certain thresh-
old, T in units of the standard deviation of the time series.
The eliminated data points are replaced by linear interpo-
lation. As the threshold T increases, the time series will
retain higher values.

Figures 5a–5d display the dependence of the degree
of multifractality ∆α, defined by the range of singularity
strengths α, on the threshold T for original and surrogate
data. The open and filled circles indicate the original and
surrogate data, respectively. We find that in all four coun-
tries, FX market complexity is related to the presence of
very high return values. However, for the surrogate data
removed the nonlinearity from the original data is an inde-
pendent from the threshold T . Market values are created
by non-trivial interactions between heterogeneity agents
and the influence of internal and external events. The re-
sults of Figure 5 seem to indicate that more complex mar-
kets are more likely to produce high returns.

4 Conclusions

We investigated the properties of time series from four
Asian foreign exchange markets, and found two factors
affecting their multifractality as measured by the MF-
DFA method. First, we found that temporal correlations
in the data contribute to the multifractality of all four FX
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markets. Second, we find that market complexity and mul-
tifractality are positively related to the presence of high
return values in the series. Further studies will examine
both aspects of FX markets more extensively.

To observe how the Asian currency crisis influenced
these FX markets, we estimated their multifractal proper-
ties both before and after the crisis. We found that in both
Korea and Thailand, the degree of multifractality in the
FX market significantly increased after the Asian currency
crisis. Japan and Hong Kong, however, were almost unaf-
fected. We argue that the market crash affected Korea and
Thailand more strongly because they are typical emerging
markets; these countries probably introduced new policies
(and thus additional complexities) to help control the af-
termath. Japan’s mature market was little changed by the
crisis, however, and Hong Kong uses a fixed exchange rate.

This study was supported by a research fund from Chosun
University, 2011.
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