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ONSET OF HELICAL ORDER
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Renormalization group techniques are used
to treat the onset of helical order at
higher order critical points for a large
class of helical states First order pertur-
bation results are given for all the
critical point. exponents for critical points of
order & and arbitrary anisotropic propa-
gators. The critical point exponent n is
calculated to second order for arbitrary
isotropic propagators.

Recently several authors have used
renormalization group techniques to
discuss the onset of helical order in
magnetic systems.'® In particular, the
existence of new types of critical behavior
has been postulated for the "Lifshitz" point
where the transition from a uniformly
ordered to helically ordered state occurs®.

Here we consider a class of systems
which can exhibit phases of very general
helical character, and report the renormali-
zation group calculation of critical expon-
ents for such systems. These critical points
will be termed '"generalized Lifshitz points™.
These systems are characterized by critical
or fixed point propagators which differ
from the usual k? dependence.*

By "helical" phases we mean magnetic-
‘ally ordered states with a periodic spatial
structure whose periodicity need not be
related to that of the lattice. Included
thereby are spiral structures of various
types, as well as states in which the magnetic
moments are aligned uniformly in direction,
but with sinusoidally varying magnitudes.
The presence of these (and even more
complicated phases) is well established,
largely through neutron diffraction

studies. Typical examples include the screw
spiral structure of Mn03, cone-spiral order
in spinel-type compounds such as MnCr;04, and
sinusoidal phases in certain rare earth metals
(Er, Nd and others).

We use continuum spin Wilson models with
explicit wave-vector dependent terms in the
Hamiltonian density which are coupled to the
thermodynamic fields®, For motivational
purposes we consider a free energy functional
F of an isotropic single component magnetiza-
tion M(x):

F=rad {a,(WMX)? + a,(VM())? +....
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Here the coefficients aj and A; are functions of
the thermodynamic fields (temperature, pressure,
magnetic field,...). At an ordinary critical
point we have A1=0, with A2>0 and a1>0; variations

in the field variables which preserve these
conditions sweep out a surface of second order (0%2),
critical points. Similarly, A1=A2=0, Az>0, a;>0
characterizes a points of three phase criticality
(6=3). For Aj=Aj=...=Agr1=0, Ag>0, we have a
critical point of order G

For a;>0, all of the competing phases are
spatially wmiform. However, if ay<0, the free
energy F will be minimized for some particular
non-uniform phase. This is most easily seen
by considering the Fourier transform
representation of (1), where we include deriva-
tive terms up to order 2L and magnetization
terms up to order 20%
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The minimum of F is obtained for a sinusoidally
varying magnetization M(K), where K is determined
by minimizing the k-dependent parts of (2). For
L=2 and a;>0, the system displays ordinary
criticality between spatially uniform phases; for
a7<0 criticality is achieved between helical states
o% equal and opposite k. As the Lifshitz point
{a3=0)} is approached, X approaches zero as kv
(-ap)* (B=1/2 in mean field theory). If both
aj and ap vanish, it is necessary to include in
(%) the k® term. In mean field theory, the
conditions Aj=...=Ag.1=0, Ag>0, and
aj=az=...=ay-1=0 specify a critical point with
order & and "Lifshitz character L". In the
vicinity of such

a point, there are L different values of the
helicity wave-vector, each of which is

associated with & different values of M(K) .
At the generalized Lifshitz point, all of these

phases are simultaneously critical.

We will use as a model Hamiltonian fox our
renormalization group calculations H=F({s(k)}),
where s(K) is the spin fluctuation variable.
The critical propagator ( the term in H
proportional to s?(k)}has leading dependence
k2L, It is also possible to have non-integral
propagator exponents. By the introduction of
a long range force yith interaction strength
decaying like r~(d*0 3 We can add a term
proportional to |k|%s?(K) to H. If both
terms are present in the critical region, then
only & £ min (o0,2L) is important;_the critical
propagator is proportional to |k|9.

The first order results in a perturba-
tion expansion can be obtained (both in the
isotropic propagator considered here and for
the anisotropic case considered below) by
utilizing the techniques developed for the
simple L=1 case °"''. For a critical point
of order & of an isotropically interacting n-
component spin system, the borderline dimension
(above which mean field behavior holds) is
given by dp= & ©7/(0-1). Below this dimension,
we obtain a correct%on to the pth eigenvalue
(corresponding to s¢P) in temms of the un-
perturbed or Gaussian eigenvalues {Aj} :

Ny = Ay "D O3B P/ <0,0105 (32)
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where"

n
672 int o - :
ey = 2 -1) [/2p-2
<9,/pap>n=j§0 (pJ)(P j ) (ga_zg) (3b)

For isotropic propagators, A,=d+p(&-d). The
expansion parameter ee(B)E Ao,is thus
29(8)=d+016—d) = (041)(db-d). )

Thus, for the Ising model(n=1), we have

' N o !
A = d+p(o-d)-2€G,(c)( ép)/(é@’ (5a)

while. for n=oo
(@ ([1/12)(941)])

O—
é/ 2(6+1)] ) (5b)

A= dp(s-d)-
P

This defines all the eigenvalues to first order.
We now define the critical point exponent n by the
shift in the exponent of the critical two-

point correlation function

r,() « %90 (6

For n, we find that if §#2L, there is no shift,i.e.
that n=0 to 0(50(8)2). For §=2L we find:®

ne(ZL)"(-I%;ﬂ sgen) orr(®)c

(g ’ I‘(%(db-ZL))r(%-(dbﬂL))
(7a)
2 9L
with . _ | <680 >y 0;1 2+
GyF <Oﬁ0§cr>n= j=1 J+1 (76)

Equation (7) agrees with the result of
Ref. 1 for the special case 05L=2 and has also
been verified for 052 and all L by a differential
renormalization group method!®. Note that the
combinatorial factor Cn=1 for n=1, and that for
large n

Cn-rn'l(zg) 3/ %)3 + O(n_z), @even, (8a)

5 (5)/ {(@'«»1)(1,2{941])}3 + o,
®odd. (8b)

Other wave-vector associated exponents also have
second order corrections; e.g., By =
1/(2(L-1)) + 0(e?(2L)).1®

Anisotropic Propagators

In the above we used a propagator
isotropic in K-space. However, the lattice
structure of a real material can induce a preferred
direction for the periodic behavior. Moreover,
since catastrophic infrared divergences!® 1! set
in at dimensions less than dpjp=2L, the theory as
developed above is unlikely to produce realistic
predictions at d=3 if L” 2. These infrared
divergences are, of course, intimately related to
the appearance of infinitely many relevant Gaussian
eigenvalues below dpin. For these
reasons, we now consider anisotropic propagators.

383
We Write the wave vector i as
E a
i=i1+ k2+...+fJ (9)

where each k; is a d;-dimensional vector,
so that ;=d. We consider a critical
propagator G-! of the form
¢l -
i

(L o )

1

with 0 < 0 <.... <0, = o, . For such
system$, d2 for a dritidal point of
order is determined by

g di/oi = &/ (641) (11a)
i=1
and dp;, by the condition
J
iil di/°i=1' (11b)

The introduction of anisctropy in the
propagator lowers both 4, and dpjp, For
example, if only one component of k enltiers
G-1 as k2L and the remaining components have
dependence, then (11) gives dp=(30%1)/(641) -1/L and
dpin=3-1/L. Thus, we have dp> 3 > dpin for all
6<2L+1.

For anisotropic systems, the critical point
exponents {ni } are defined by examing the
behavior of the two-point function for a wave-
vector lying entirely in one of the dy dimensional
subspaces:

-> > s =N
NN (12)
There will tlso be difference values of the
correlation length exponent vj in each of the
subspaces. The following relationships between
the exponents hold generally:
J
2-a = L
i=1

o)

dy vy 5 v=(og- nydvy
J J

6 = {Edi/(c.-n.) + 1} {Zdi /(Ui' ni)'l}- (13)
O i=1

The results §1§] can be derived by constructing an exact
differential renormalization group equation
suitable for the propagator (10). A similar approximate
generator for a Hamiltonian H(Z,R) is!'?
J 1 J > >
oH/ 31 ;E?i o>/oi}H s (o>££$i 0>/Ui) s.VH (14)

- -+
+ V2H-V H.V H

where & is the renormalization parameter''. The
first order eigenvalue corrections are again given
by (3); only the value of the umperturbed eigenvalues
are changed. From (14), we see that the Gaussian
eigenvalues are now:

J J
Ap=\i£§ic>/oi + p(0>;£1 dio>/oi) (15)
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The expansion parameter for d<dy, is again
enld.,0.)=A,. Thus, the corrected eigenvalues for the

b % .
géneral anisotropic case are

‘-—

A
p

J
%d; o, /o. + p(o,-I d.0 /o.)
i=1” 3 =1 27t

—Zeegdi,oi) <efp;p>n/<egeqe$n (16)
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ORDER-DISORDER AND a~y TRANSITIONS IN FeCo*

P. Silinsky and M, S. Seehra*,
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Electrical resistivity {(p) measurements in an
annealed FeCo alloy (with 46.29 at.% Co) in the temper-
ature range of 500-13500 K are reported. Special
attention is given to the temperature regions of 900-
1100° K and 1160-1300°2 K. A change in the slope of p
vs T curve, associated with the order-disorder (0OD)
transition, yields a A-type anomaly in the computed
3p/3T with maximum at T.=1006° K. -To our krcuvledge
this is the first observation of the 0D transition in
FeCo using temperature-dependent electri@lresistivity
measurements. Similar to the observations in B brass
[1], 3p/9T in the critical region is found to be pro-
portional to the specific heat associated with the 0D
transition [2]. Near 12350 K, a discontinuous change
in p of about 20% with hysteresis of about 120 K, is
observed. This first order transition is associated
with the a-y (bcc-fce) transition. However, the nature
of the anomaly (a jump in p with increasing T) in FeCo
is quite opposite to that observed in Fe. A datailed
account of this work will be published elsewhere.
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