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Renormalization group techniques are used 
to  t r e a t  the onset o f  h e l i c a l  order  a t  
higher  order  c r i t i c a l  points  fo r  a large  
c lass  o f  h e l i c a l  s t a t e s  F i r s t  order  pe r tu r -  
ba t ion r e su l t s  are given for  a l l  the 
c r i t i c a l  point, exponents for  c r i t i c a l  points  o f  
order ~ and a r b i t r a r y  an i so t rop lc  propa- 
ga tors .  The c r i t i c a l  point  exponent n is  
ca lcu la ted  to  second order  fo r  a r b i t r a r y  
i s o t r o p i c  propagators .  

Recently several  authors have used 
renormal izat ion group techniques to 
discuss the onset o f  h e l i c a l  order  in 
magnetic systems. 1-3 In p a r t i c u l a r ,  the 
exis tence o f  new types o f  c r i t i c a l  behavior 
has been pos tu la ted  fo r  the " L i f s h i t z "  point  
where the t r a n s i t i o n  from a uniformly 
ordered to  h e l i c a l l y  ordered s t a t e  occurs I . 

Here we consider a class of systems 
~,hich can exhibit phases of very general 
h e l i c a l  charac te r ,  and repor t  the renormali-  
za t ion group ca l cu la t ion  o f  c r i t i c a l  expon- 
ents  fo r  such systems. These c r i t i c a l  points  
w i l l  be termed "genera l ized L i f sh i t z  po in t s" .  
These systems are charac te r i zed  by c r i t i c a l  
or  f ixed poin t  propagators which d i f f e r  
from the usual k 2 dependence. ~ 

By "he l i c a l "  phases we mean magnetic- 
�9 a l l y  ordered s t a tes  with a per iod ic  spa t i a l  
s t ruc tu re  whose p e r i o d i c i t y  need not be 
r e l a t ed  to  tha t  o f  the l a t t i c e .  Included 
thereby are sp i r a l  s t ruc tu res  o f  various 
types ,  as well  as s t a t e s  in which the magnetic 
moments are  al igned uniformly in d i r ec t ion ,  
but with s inuso ida l ly  varying magnitudes. 
The presence o f  these (and even more 
complicated phases) is  well  es tabl i shed,  
l a rge ly  through neutron d i f f r a c t i o n  
s tudies .  Typical examples include the screw 
sp i r a l  s t ruc tu re  o f  Mn02, cone-sp i ra l  order  
in sp ine l - type  compounds such as MnCr204, and 
s inusoidal  phases in c e r t a i n  rare  ear th  metals 
(Er, Nd and o thers ) .  

We use continu~n spin Wilson models with 
e x p l i c i t  wave-vector dependent terms in the 
Hamiltonian densi ty  which are coupled to  the 
thermodynamic fiel.ds 6. For mot ivat ional  
purposes we consider  a f ree  energy func t iona l  
F o f  an i so t rop i c  s ingle  component magnetiza- 
t ion  M(x): 

V=fd~ {aiCYM(~)) 2 + a2CV2M(~)) 2 + . . . .  
(1) 

+AIH2 (~)+A2M~(~) G + . .  . + A3M (x) +. .} 

Here the coefficients a i and A i are functions of 
the thermodynamic fields (temperature, pressure, 
magnetic field,...). At an ordinary critical 
point we have AI=0 , with A2>0 and a]>0; variations 

in the field variables Mlich preserve these 
conditions sweep out a surface of second order (@'=2). 
critical points. Similarly, AI=A2=0, A3>0 , al>0 
characterizes a points of three phase criticality 
(if=-3). For AI=A2=...=Aff-I=0, A~>0, we have a 
critical point of order 

For al>O, a l l  of  the competing phases are 
s p a t i a l l y  uniform. However, i f  ai<O, the f ree  
energy F wi l l  be minimized fo r  some p a r t i c u l a r  
non-uniformphase .  This is  most e a s i l y  seen 
by considering the Fourier transform 
representation of (I), where we include deriva- 
tive terms up to order 2L and magnetization 
terms up to order  20"." 

F({M(~)})=fddk(~ a. k 2j) M 2 (~) + 
2i j=l 3 § 2i 

i=~i (N fd~mM(km))~(X k ) .  
m=l =1 

(2) 

The minimun of F is obtained for a sinusoidally 
varying magnetization M(~), where ~ is determined 
by minimizing the k-dependent parts of (2). For 
L=2 and al>0 , the system displays ordinary 
criticality between spatially uniform phases; for 
al<0 criticality is achieved between helical states 
of equal and opposite k. As the Lifshitz point 
(al=0~ 1 is approached, ~ approaches zero as k~ 
( - a l ) ~  (Bk=l/2 in mean f i e l d  theory) .  I f  both 
a 1 and a 2 vanish,  i t  is  necessary to include in 
(2) the k 6 term. In mean f i e l d  theory ,  the 
condit ions AI=...=A@_I=O , A@>0, and 
al=a2=...=aL_l=O spec i fy  a c r i t i c a l  po in t  with 
order @~m~d "Lifshitz character L". In the 
vicinity of such 
a point, there are L different values of the 
helicity wave-vector, each of which is 
associated with @'different values of M(k). 
At the generalized Lifshitz point, all of these 
#mses are simultaneously critical. 

We will use as a model Hamiltonian fo~ our 
renormalization group calculations H=F({s(k) }), 
where s(~) is the spin fluctuation variable. 
The critical propagator ( the term in H 
proportional to s2(k)~has leading dependence 
k 2L. It is also possible to have non-integral 
propagator exponents. By the introduction of 
a long range force 7 with interaction strength 
decaying like r -(d+~) . we can add a term 
proportional to Ikl~ to H. If both 
terms are present in the critical region, then 
only ~ ~ min (%2L) is in~ortant;~the critical 
propagator is proportional to Ikl ~ 

The first order results in a perturba- 
tion expansion can be obtained (both in the 
isotropic propagator considered here and for 
the anisotropic case considered below) by 
utilizing the techniques developed for the 
simple L=I case 8-~i . For a critical point 
of order O'of an isotropically interacting n- 
component spin system, the border]ine dimension 
(above which mean field behavior holds) is 
given by db= ~ @7(@~i). Below this dimension, 
we obtain a correction to the pth eigenvalue 
(corresponding to sZP) in terms of the un- 
perturbed or Gaussian eigenvalues {Xj} : 

f= Xp Xp -2X~ <ff, lp; l~n / <O~O~ n (3a) 
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<~,u;~> -- Z 
r ~ n j =  0 

For isotropic  propagators, ~p=d+p (~-d). The 
expansion parameter ~O(~)- Xo~iS thus 

~ ) : d + f f ( a - d )  : (O4-1) (db-d). (4) 

2]~us, for the Ising model (n=l), we have 

A' : d+p(~-d)-2~d~ ) / 2 p / / / / 2 0  " ]  
p ~ i 

while for n=oo 

, / 2  (O~l 
X = d+p(~-d)- - 

p 
~i/2 (if+l)]) (5b) 

n 

2 " - 1 )  ~ p - 2 j  

This defines all the eigenvalues to first order. 
We now define the critical point exponent q by the 
shift in the exponent of the critical two- 
point correlation function 

r2(~) ~ I~I ~-n (6) 

For n, we find that i f  ~f2L, there is no shift, i .e. 
that q=O to 0(e4~)2 ). For ~=2L we fLnd: 9 

. . . .  ( 1 )  ''+l 
qO(zL) = 20 ~ 

(Ta) 

with. Cn_ [<~'@;ff >n=] ~i zj+n 
L<O',O';O" >n j=l  2j+l (To) 

Equation (7) agrees with the resu l t  of  
Ref. 1 for the special case C~-L=2 and has also 
been ver i f i ed  for  0"=2 and a l l  L by a d i f f e r e n t i a l  
renormalization group method 10. Note that  the 
combinatorial factor  Cn=l for  n=l, and that  for  
large n 

/ ~ 2  @/even, (8a) O(n -2) Ci1._,.n" 1 (28~) :3 82) 3 + , 

(/odd. (8b) 

Other wave-vector associated exponents also have 
second order corrections ; e .g . ,  8k = 
1/(2(L-I))  + O(e~(2L)).z~ 

Anisotropic Propagators 

In the above we used a propagator 
isotropic  in ]~-space. However, the l a t t i c e  
s t ructure  of a real  material can induce a preferred  
direct ion for the periodic behavior. Moreover, 
since catastrophic infrared divergences 10-1 ~ set  
in at  dimensions less than dmin=2L, the theory as 
developed above is unlikely to produce r e a l i s t i c  
predictions at d=3 i f  L > 2. These infrared 
divergences are, of cou?se, intimately re la ted  to 
the appearance of i n f i n i t e l y  many relevant  Gaussian 
eigenvalues below dmin. For these 
reasons, we now consider anisotro~ic propagators. 

3 8 3  

We write the wave vector ~ as 

~=~i + ~2+...+~j (9) 
where each ~ is a d i -d imensional  vector ,  
so that ~ a~=d. We consider a critical 
propagator G- of the form 

G-i J oi (i0) 
= z  l~ i l  

i = l  

with a < a < .... <o.  E ~> . For such 
system~, d~-fora 6ritical point of 
order is determined by 

J 
F, di/(~ i = r (ila) 

i=l 

and dminbY the condition 

J 
di/oi=l. (lib) 

i=l 

The introduction of anisctropy in the 
propagator lowers both d~ and dmin. For 
example, if only one component of k enters 
G -I as k 2L and the remaining co~)onents have k 2 
dependence, then (Ii) gives db=(3@~-l)/(@Z-l)-i/L and 
dmin--3-1/L. Thus, we have db~3 > dminfor all 
~<2L+I. 

For anisotropic systems, the critical point 
exponents {~i } are defined by examing the 
behavior of the two-point function for a wave- 
vector lying entirely in one of the d i dimensional 
subspaces: 

r(~). ~ Ik i ] ~  (i2) 

There will also be difference values o~ the 
correlation length exponent ~i in each of the 
subspaces. The following relationships between 
the exponents hold generally: 

J 
2-a = Z d i v i ; Y=(O i" ni)vi ; 

i=l 

J /J 
i}/{Zdi / (~ i -  ni)-i)" 03) a = {Zdi/(oi-n i) + 

i=l / i=l 

The results (13) can be derived by constructing an exact 
differential Ip'Iz renormalization group equation 
suitable for the propagator (iO):, A similar approximate 
generator for a Hamiltonian H(s,z) is 13 

J +, J § § 
BH/ Bs =Zd i o>/oi)H ~ (o~-Zdi ~>/o i) S.VH (14) 

i=l -i=l 

+ V2H-V H.V H 

where s is the renormalization parameter li . The 
first order eigenvalue corrections are again given 
by (3); only the value of the unperturbed eigenvalues 
are changed. From (14), we see that the Gaussian 
eigenvalues are now: 

J J 
Ap= Zdio_/o. + - 

,i= 1 ; x P(~ 1 di~ 
(is) 
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The expansion parameter for d<d b is again 
~di,oi)-~ ~. Thus, the corrected eigenvalues for the 
g6neral anigotropic case are 

J J 

I': Zd i o> /~i + P(~ 
P i--I = 

-2eB.(di,oi) <~,P;P>n/<e,e;,@~ n , (16) 
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ORDER-DISORDER AND a-y TRANSITIONS IN FeCo* 

P. Si l insky and M. S. Seehra +, 
Physics Department, West Virg in ia Universi ty,  

Morgantown, WV 26506. 

Electrical resist ivity (p) measurements in an 
annealed FeCo alloy (with 46.29 at.% Co) in the temper- 
ature range of 500-13500 K are reported. Special 
attention is given to the temperature regions of 900- 
llO0 ~ K and I160-1300 ~ K. A change in the slope of p 
vs T curve, associated with the order-disorder (0D) 
transition, yields a L-type anomaly in the computed 
Bp/aT with maximum at Tc=1006~ K..To our knc:.,,ledge 
this is the f i rs t  observation of the 0D transition in 
FeCo using temperature-dependent electrical resisti vi ty 
measuren~nts. Similar to the observations in 8 brass 
[1], Bp/aT in the crit ical region is found to be pro- 
portional to the specific heat associated with the 0D 
transition [2]. Near 1235 ~ K, a discontinuous change 
in p of about 20% with hysteresis of about 12 ~ K, is 
observed. This f i rs t  order transition is associated 
with the a-y (bcc-fcc) transition. However, the nature 
of the ano~ly (a jump in p with increasing T) in FeCo 
is quite opposite to that observed in Fe. A detailed 
account of this work wil l  be published elsewhere. 
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