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Viscous fingering at a nonzero viscosity ratio on percolating clusters is considered to study mor-
phological changes of patterns formed by the injected fluid in porous media. A fraction P of bonds
is filled by the displaced fluid, while the others (1— P) are blocked, where P is the usual percolation
probability. Fluid with a low viscosity is injected into the percolating cluster filled by the displaced
fluid with high viscosity. Morphological changes of patterns of the injected fluid are described in
terms of crossover phenomena by making use of a four-parameter position-space renormalization-
group method. It is found that when u;/up <<(P —P,_) << 1 the double crossover occurs from the
diffusion-limited aggregation (DLA) on an incipient percolation cluster through the DLA on the
perfect lattice to the dense structure, and when 1>>u,/up >>(P —P,) the other double crossover
appears from the DLA on an incipient percolation cluster through the invasion percolation to the
dense structure, where p; /pup is the viscosity ratio and P, the critical percolation probability.

I. INTRODUCTION

Fractal growth phenomena in pattern formation have
recently attracted considerable attention.!™!! Viscous
fingering serves as one paradigm of fractal pattern forma-
tion. In its simplest form, one injects a fluid of low
viscosity into a fluid of higher viscosity, using a Hele-
Shaw cell.!! In the limiting case of zero interfacial ten-
sion and zero viscosity ratio, one finds patterns that are
isomorphic to the diffusion-limited aggregation (DLA).
Various experiments for viscous fingering have been per-
formed to find the fractal structure of pattern. Frequent-
ly, experiments for viscous fingering have been performed
by using fluids with a nonzero viscosity ratio into porous
media. In real experimental situations, various factors
affect the pattern formation. Morphological changes of
viscous fingers have been observed under distinct experi-
mental conditions. For example, at a nonzero viscosity
ratio the asymptotic behavior of viscous fingers must
eventually cross over from the DLA fractal to the dense
pattern. " 15 Lenormand!® found that by tuning the flow
rate in porous media made of interconnected channels,
the pattern of the injected fluid evolves continuously
from invasion percolation to the DLA fractal. The cross-
over at the nonzero viscosity ratio has been recently ana-
lyzed by using the two-parameter real-space
renormalization-group method.!? To mimic the viscous
fingering into porous media, the DLA model near the
percolation threshold has been investigated by computa-
tional and analytical methods.!’”2° The crossover has
been found from the DLA on an incipient percolation
cluster (with fractal dimension 1.3) to the DLA on the
perfect lattice (with fractal dimension 1.7). However, the
crossover between invasion percolation and the DLA
fractal has not been found.

In this paper, we consider viscous fingering at a
nonzero viscosity ratio on percolating clusters to study
morphological changes of patterns formed by the injected
fluid in porous media. We investigate the following
viscous fingering model: a fraction P of bonds is filled by
the displaced fluid, while the others (1-P) are blocked,
and fluid of a low viscosity is injected into the percolating
cluster filled by the displaced fluid of high viscosity,
where P is the usual percolation probability. We show
that very interesting crossover phenomena occur by in-
troducing a nonzero viscosity ratio into the DLA model
on percolating clusters. We develop the four-parameter
position-space renormalization-group method!>2!72* to
describe the morphological changes of the patterns.
Above the percolation threshold, there are two charac-
teristic lengths: the correlation length £, of the percola-
tion and the crossover length r, from the DLA fractal to
the dense cluster. They scale as follows:

Ep=(P—P)"", (1)
re~(pu /pup)" ", @)

where v is the correlation length exponent of the percola-
tion, P, the percolation threshold, u; and uj the viscosi-
ties of the injected fluid and the displaced fluid, and ¢ the
crossover exponent of the viscous fingering at a nonzero
viscosity ratio. If £p >>r,. >>1, the double-crossover phe-
nomena will occur from the DLA on the incipient per-
colation cluster through the invasion percolation to the
dense structure. If r,>>&p >>1, the other double cross-
over will appear from the DLA on the incipient percola-
tion cluster through the DLA on the perfect lattice to the
dense structure.

Murat and Aharony,!” Oxaal et al.,'® and Meakin
et al.’® proposed a model for viscous fingering in porous
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media. The model was described as the DLA on the per-
colating clusters. By using the computer simulation, they
found the fractal dimension of the DLA on an incipient
percolation cluster and the crossover from the DLA on
an incipient percolation cluster to the DLA on the per-
fect lattice. However, they did not consider the effect of
the nonzero viscosity ratio on the pattern. The double-
crossover phenomena were not found.

The organization of the paper is as follows. In Sec. IT
we apply the four-parameter position-space renormali-
zation-group method to the pattern formation in the
viscous fingering. We describe the renormalization pro-
cedure. In Sec. III we analyze the crossover phenomena
between the DLA on the incipient percolation cluster,
the DLA on the perfect lattice, the invasion percolation,
and the dense cluster. In Sec. IV we present the sum-
mary.

II. RENORMALIZATION-GROUP APPROACH

We describe the porous medium as the percolating
cluster. The viscous fingering in porous media is mim-
icked by that on the percolating cluster. We consider the
bond percolation.?* A bond is occupied by a fluid of high
viscosity with the probability P and blocked with the
probability 1—P. The occupation of the bonds is ran-
dom, independent of the occupation status. P is the usual
percolation probability. One injects a fluid of low viscosi-
ty into the disordered network. If the occupation proba-
bility P is below the percolation threshold P,, the fluid of
low viscosity is not spreading into the fluid of high
viscosity. On the other hand, if P> P_, the fluid of low
viscosity is spreading by replacing the fluid of high
viscosity. In the limiting case of the infinite viscosity ra-
tio, the viscous fingering is isomorphic to the DLA. We
use an electrostatic analogy to transform the viscous
fingering problem into a specific type of the resistor net-
work. We describe the viscous fingering problem in
terms of the dielectric breakdown language.?!”2* For
simplicity, we consider the problem on the diamond
hierarchical lattice. The position-space renormalization-
group method applied to the pattern formation on the
hierarchical lattice is not exact but comparatively accu-
rate to derive the critical behavior of the system. This
type of lattice is not realistic for describing a real porous
medium but gives a likely morphological evolution. The
crossover behavior is not affected by the lattice type qual-
itatively but the fractal dimension and the crossover ex-
ponent change with the use of different lattices. The dia-
mond hierarchical lattice is constructed by an iterative
generation of the base set. Each bond is occupied by the
resistor of unit conductance with probability P and ab-
sent with probability 1 —P. A constant voltage is applied
between the bottom and the top on the disordered dia-
mond lattice. A growth probability proportional to the
current is then assigned to the perimeter bond. The
breakdown proceeds toward the top according to the
growth probability. The breakdown occurs one by one.
The breakdown bond has a high conductivity o, (>1).
Without a generality, one can set the bond conductance
as 0p=1. The conductance ratio o,/0, corresponds to
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the viscosity ratio u; /up.

We consider the renormalization procedure for deriv-
ing the four-parameter position-space renormalization-
group equations. We derive the renormalization trans-
formations for the occupation probability P, the percola-
tion conductance o, the surface conductance o, and the
conductance o, of the breakdown bond. Physically the
surface conductance corresponds to an effective conduc-
tance of an active zone of a DLA cluster. We shall show
that the four-parameter renormalization-group equations
are given by

P'=Rp(P), (3)
o0o=Ry(P,0y) , (4)
0.=R,(P,0y,0,,0,), (5)
0,=R,(P,0y0,,0,) . (6)

We distinguish between four types of bonds on the lattice
for renormalization: (a) breakdown bonds, (b) growth
bonds which are on the surface of the breakdown pattern,
(c) unbroken bonds with unit conductance, and (d) empty
bonds on which no current flows. The breakdown,
growth, unbroken, and empty bonds are indicated by the
thick, wavy, thin, and dotted lines, respectively, in the
figures. See Ref. 21-24 for the details. We partition all
the space into cells of size b=2 (b is the scale factor),
each containing a single generator. After a renormaliza-
tion transformation, these cells play the role of renormal-
ized bonds. If the cell is spanned with the breakdown
bonds, the cell is then renormalized to the breakdown
bond. If the cell is not spanned with the breakdown bond
and is nearest neighbor to the breakdown pattern, then
the cell is renormalized as the growth bond. If the cell is
constructed by the unbroken and the empty bonds,
spanned with the unbroken bonds, and not nearest neigh-
bor with the breakdown pattern, then the cell is renor-
malized as the unbroken bond. If the cell is spanned with
the empty bonds, the cell is renormalized as the empty
bond. The conductances of the renormalized bonds are
transformed to different values after renormalization.
We call the conductance of the growth bond the surface
conductance. Also, we call the conductance of the un-
broken bond the percolation conductance since it is con-
sistent with the conductance of the percolating cell. We
assume that the breakdown process occurs stepwise: the
breakdown proceeds one by one, and more bonds than
one never break down simultaneously.

We derive the renormalization transformations for the
occupation probability P, the percolation conductance
0, the surface conductance o, and the conductance o,
of the breakdown bond. All the configurations of the cell
for which it is possible to renormalize as the unbroken
bond are consistent with all the spanning clusters that
arise in the position-space renormalization group for
bond percolation. The distinct configurations are labeled
by a (a=a,b,c) in Fig. 1. The configurational probabili-
ty C, , with which a particular configuration a appears is
given by

Cc,,=P* C,,=4P3(1—P), C

— 2
na 5, e =2P*(1—P)? . (7)
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(a) (b) (c)

FIG. 1. All distinct configurations of the cell that it is possi-
ble to renormalize as the unbroken bond. They are consistent
with all the spanning clusters arising in the bond percolation.
The distinct configurations are labeled (a), (b), and (¢). The un-
broken and empty bonds are indicated by the thin and dotted
lines, respectively.

The renormalized occupation probability P’ is given by

P'=Rp(P)=3 C,,=2P>—P*, (8)
a

where Rp(P) is the probability that a cell of size b =2 is
connected between the entrance and the exit.?® This has
two trivial fixed points P=0,1 and one nontrivial fixed
point P,=(v'5—1)/2. The conductance 00, o of the cell
with the configuration « is renormalized as follows:

00,0=00 04p=00/2, 00,=00/2 . 9)

The renormalized conductance o, of the unbroken bond
will be assumed to be given by the mean value

06:R0(P700):Cp,000,a +Cp,b00,b +Cp’60'0yc . (10)

Below the percolation threshold, the conductance of the
unbroken bond approaches eventually to zero. Above the
percolation threshold, the conductance of the unbroken
bond approaches eventually to a finite value dependent
upon the occupation probability P. In previous pa-
pers,?!72* we used the most probable value instead of the
mean value. In such a case as the percolation, the most
probable value does not give a likely behavior for the re-
normalized conductance. The most probable value does
not approach eventually to zero below the percolation
threshold. We here used the mean value for the renor-
malized conductance to approach eventually to zero
below the percolation threshold.

Figure 2 shows all the configurations of the cell for
which it is possible to renormalize as the growth bond.
The distinct configurations are labeled by (a,B)
(a,B=a,b,c). Consider the configurational probability
C, s with which a particular configuration (a, ) appears.
The configuration (a,b) is constructed by adding a break-
down bond to the configuration (a,a). In addition, by
adding a breakdown bond to the configuration (a,b), the
configuration (a,c) occurs. The configurational probabil-
ities C, , and C, . are given by

Ca,b =Ca,a(Pa,a,1+Pa,a,2) ’
Ca,c =Ca,bPa,b,2 .

(amn

The summation of the configurational probabilities C, ,,
C.s> and C, . equals the configurational probability C, ,

,C
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FIG. 2. All distinct configurations of the cell that it is possi-
ble to renormalize as the growth bond. The distinct
configurations are labeled (a,a), (a,b), (a,c), (b,a), (b,b), (c,a),
and (¢,b). The breakdown, growth, unbroken, and empty bonds
are indicated by the thick, wavy, thin, and dotted lines, respec-
tively.

of the spanning cluster in Fig. 1(a). The configurational
probability C, , is given by

Ca,a+Ca,b+Ca,c=Cp,a . (12)

Similarly, the configuration (b,b) is constructed by add-
ing a breakdown bond to the configuration (b,a). The
configurational probability C, , is given by

Co6 =Cpq - (13)

The sum of the configurational probabilities C, , and C, ,
equals the configurational probability C,, of the span-
ning cluster in Fig. 1(b)

CooatCop=Cpp - (14)

Similarly, the configurational probabilities C,, and C,_,
are given by

Cc,bzcc,a ’ (15)
C.atCep=6C, . (16)
Here C, ,, C, ;, and C, . are given by (7).

The growth probability p, z; on the growth bond i
within the cell (a,) is proportional to the current on the
growth bond. Consider the resistor network problem for
cells which can be renormalized as the growth bond. In
the configuration labeled by (a,3) (see Fig. 2), the growth
probabilities p, g ; of the growth bond i are given by
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= =1
Pa,a,l pa,a,2 7

pa,b,lzga(00+os)/[Ua(00+as )+00(0a +Us )] ’

Pap2=1"Pa b1 >
pa,c,lzpa,c,2=% ’
(17)
Pb,azl )
Pep=1,
pc,a=1 )
pc,b:1 .

The conductance o, g of the cell with the configuration
(a,B) is renormalized as follows:

Oraa=2000,/(0pyt0,),

s,a,a
O54p=0,0;/(0,+0o,)+o40,/(0pt0;),

O 4c=20,0,/l0,+0,),
U;,b,a :a;,c,a =0-00'3 /(UO+0s) ’
Ug,b,bza.,v,c,b:oaas/(oa+Us) . (18)

The renormalized conductance o; of the growth bond
will be assumed to be given by the mean value
o';zca,aa' +Ca,b0;,a,b+ca,co-l

s,a,a s,a,¢

F(Cha+Cra)ogpat(Cop+Cep)ogpy - (19)

The relationships (18) and (19) present the
renormalization-group equation for the surface conduc-
tance 0; =R (P,04,0,,0,).

We consider the renormalization of the conductance
o, of the breakdown bond. Figure 3 shows all the span-
ning clusters to be renormalized as the breakdown bond.
Configurations (1)—(5) of the spanning cluster on the bot-
tom side are constructed from the configurations of the
growth cell on the top side. Configuration (1) is con-
structed by adding the breakdown bond onto the growth
bond 1 in configuration (a,b) in Fig. 2. Configuration (2)
is constructed from configurations (a,c) or (1).
Configuration (3) appears from configuration (2). The
configurational probabilities C, ;, C, », and C, ; are given
by

Co,1=Co,0P0,5,1Ca,b » ’
Ca,2: a,OCa,c + Ca,l ’ (20)
Ca, 3= Ca,2 ’

C, 1+ CotC,3=C,

va °

Configurations (4) and (5) are constructed from
configurations (b,b) and (c,b), respectively, in Fig. 2.
They are given by

Ca,4 = Cp,b ’

C,s=Cp, -

(21

The conductances o, ; —07 5 of the cells in configurations
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v
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FIG. 3. All distinct configurations of the cell that it is possi-
ble to renormalize as the breakdown bond. The distinct
configurations are labeled (1), (2), (3), 4), and (5). The
configurations are constructed from the configurations of the
growth bonds shown on the top side.

(1)—(5) are given by
0,1=0,/2+040,/(oytoy),

0';,2=0'a/2+0,10'3/(0'a+0's) ’

P (22)
043704
0p4=0,5=0,/2.

The renormalized conductance o, of the breakdown
bond will be assumed to be given by the mean value

0,=Cy10,1+C,20,,1Cy30,3
H(Ca+Clg)ohs (23)

The relationships (22) and (23) present the
renormalization-group equation for the conductance of
the breakdown bond o,=R,(P,0y,0,,0,). Equations
(7)-(23) are simultaneously solved. The renormalization
equations have four nontrivial fixed points
(P,00,6:050, ), (L,L,opra, ©), (Pg,00,.,04.,1), and
(1,1,1,1) in four-parameter space (P,0,,0,,0,), where
0y, is the conductance of the incipient percolation clus-
ter, o, the surface conductance at the percolation
threshold when the conductance of the breakdown bond
is infinite, oy the surface conductance on the perfect
lattice. The fixed point (P,,0¢.,0; ., ® ) gives the DLA
fractal at the incipient percolation cluster (IPC). It is
called the DLA-IPC point. The fixed point (1,1,0p1 4, )
gives the DLA fractal on the perfect lattice. It is called
the DLA point. The fixed point (P,,0¢.,0.,1) gives
the percolating cluster of the invasion percolation. It is
called the IP point. The fixed point (1,1,1,1) gives the
Eden cluster on the perfect lattice. It is called the Eden
point. One may expect the crossovers between the DLA
fractal on incipient percolation cluster, the DLA fractal
on the perfect lattice, the invasion percolation, and the
Eden cluster.
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III. CROSSOVER PHENOMENA

We shall find the global flow diagram in the two-
parameter space (P,0,/0,) in place of that in the four-
parameter space for taking into account the experiment.
In the experiment the physical problem could be defined
by only two parameters: u;/u; and P. The conductance
ratio 0y/0, in the dielectric breakdown model corre-
sponds to the viscosity ratio u;/up in the viscous finger-
ing. The DLA-IPC point, the DLA point, the IP point,
and the Eden point in the four-parameter space are pro-
jected to (P.1), (1,0), (P,1), and (1,1) in the two-
parameter space (P,0,/0,). We set the initial values of
the percolation conductance and the surface conductance
as one. To find the global flow diagram in the two-
parameter space, we choose a point in the parameter
space, and calculate the renormalized occupation proba-
bility P’, the percolation conductance o, the surface
conductance oy, and the conductance o, of the break-
down bond by using Egs. (3)-(6), to find a new point
(P',00,05,0,). We repeat this process to find the next
point, and continue until we approach a stable fixed
point. Figure 4 shows the renormalization flows. We can
determine the stabilities of the four fixed points: the
DLA-IPC point, the DLA point, the IP point, and the
Eden point. The percolation transition occurs at the
threshold P,. Only above the percolation threshold does
the growth process appear. The DLA-IPC point, the
DLA point, and the IP point are unstable fixed points.
Only the Eden point is stable in every direction. All the
renormalization flows are eventually sucked into the
Eden point. It is found from the flow diagram that the
crossover phenomena occur from the DLA fractal on the
incipient percolation cluster to the Eden cluster. The
crossovers occur at two stages. If 1 >>0,/0,>>(P —P,),
the double crossover appears from the DLA fractal on

= P Ede/
o, -
- A
o
05— /
DLA-IPC
DLA
0. L | « LN
0.5 1
P 4

FIG. 4. Global flow diagram in the two-parameter space
(P,0g/0,). There are four nontrivial fixed points: the DLA-
IPC point, the DLA point, the IP point, and the Eden point.
All the renormalizaion flows are eventually sucked into the
Eden point. The two kinds of the double-crossover phenomena
appear: the first double crossover from the DLA-IPC point
through the IP point to the Eden point, and the second double
crossover from the DLA-IPC point through the DLA point to
the Eden point.
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the incipient percolation cluster through the invasion
percolation cluster finally to the Eden cluster. The inner
structure of the viscous finger shows the DLA fractal on
the incipient percolation cluster on smaller length scales,
the invasion percolation cluster on intermediate length
scales, and the dense cluster on larger length scales. If
0y/0,<<(P—P,)<<1, the other double -crossover
occurs from the DLA fractal on the incipient percolation
cluster through the DLA fractal on the perfect lattice
finally to the Eden cluster. The inner structure of the
viscous finger shows the DLA fractal on the incipient
percolation cluster on smaller length scales, the DLA
fractal on intermediate length scales, and the dense clus-
ter on larger length scales. We propose the scaling ansatz
along the crossover line from the DLA-IPC point
through the IP point to the Eden point,

M(r,P,0,/0, )Zrdf"’Fl((Uo/a,, )r¢1)

XF,((P—P)r#?), (24)
with
1 if x <1 25)
F ~ —
1(x) X DTUD M e s
F,(x) Pifx <<l (26)
X))~ —
2 xR e x5 ,

where dj ,(=1.0) is the fractal dimension of the DLA
fractal on the incipient percolation cluster, d, the fractal
dimension of the incipient percolation cluster, d the
embedding dimension, and F;(x) and F,(x) the scaling
functions for the first and second crossovers. The first
crossover radius, from the DLA fractal on the incipient
percolation cluster to the invasion percolation cluster,
scales as

rcylz(ao/oa)_l/d’l , 27
where the first crossover exponent ¢; is given by the
value ¢;=1.0 of the viscous fingering at a finite viscosity
ratio on the perfect lattice.?* The second crossover ra-
dius, from the invasion percolation cluster to the dense
cluster, scales as

rea~(P—P) (28)

where the second crossover exponent ¢, is given by the
value ¢,=1/v (v=1.63) of the inverse of the correlation
length exponent of percolation.?’ On the other hand, we
propose the scaling ansatz along the crossover line from
the DLA-IPC point through the DLA point to the Eden
point,

M (r,P,00/0,)=r""2F,(P—P,)r*F,((0o/a, ") ,
(29)

with
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F,(x) Pirx <l (30)
X )~ —_
‘ x TR e x st
() 1 if x 1 31)
F(x)= _
b A T I INS ,

where d (=1.40) is the fractal dimension of the DLA
fractal on the perfect lattice, and F,(x) and F,(x) the
scaling functions for the first and second crossovers. The
value d;=1.40 on the diamond hierarchical lattice is
very approximate for comparing with d,=1.71 of the
DLA fractal on the perfect lattice. The first crossover ra-
dius, from the DLA fractal on the incipient percolation
cluster to the DLA fractal on the perfect lattice, scales as

rc,az(P —P,) 14 , (32)
where the first crossover exponent ¢, is given by the
value ¢, =1/v (v=1.63) of the inverse of the correlation
length exponent of percolation. The second crossover ra-
dius, from the DLA fractal on the perfect lattice to the
dense cluster, scales as

rep=(00/0,) Ve (33)
where the second crossover exponent ¢, is given by the
value ¢, =1.0 of the viscous fingering at a finite viscosity
ratio on the perfect lattice. The above scaling relations
proposed for the crossover radii remain speculative and
have not been verified with the simulations.

The two kinds of double-crossover phenomena are not
found in the computer simulation. In real experiments,
the two-stage crossover phenomena appear frequent-
ly.?"2® Our model shall give a prototype of the double
Crossover.

Here we give a comment for the result that a physical
problem is defined by only two parameters: u;/up and
P. It may be difficult to relate the model parameter o to
the physical parameter. The parameter o; without a
physical counterpart could be considered as a mathemati-
cal intermediate. Then the four-parameter renormali-
zation-group equations (3)—(6) can possibly be written as
the renormalization-group equations with only two pa-
rameters: o,/0, and P. The two-parameter
renormalization-group equations can be obtained by di-
viding Eq. (6) by Eq. (4) and considering implicitly Eq. (5)
as a mathematical intermediate. The result obtained
from the two-parameter renormalization group is con-
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sistent with that of the global flow diagram in the two-
parameter space (P,o,/0,). In conclusion, the four-
parameter renormalization-group method includes the
two-parameter renormalization-group method.

IV. SUMMARY

We consider viscous fingering at a finite viscosity ratio
on percolating clusters to study morphological changes of
patterns of viscous fingers in porous media. We apply the
four-parameter position-space renormalization-group
method to the crossover phenomena. We find the two
kinds of the double-crossover phenomena between the

- DLA fractal on the incipient percolation cluster, the

DLA fractal on the perfect lattice, the invasion percola-
tion cluster, and the [Eden cluster. When
(P—P,)<<u;/pp <<1, the double crossover occurs from
the DLA fractal on the incipient percolation cluster
through the invasion percolation cluster finally to the
Eden cluster, where u; /up (=0,/0,) is the viscosity ra-
tio. On the other hand, when u;/u, <<(P —P,)<<1,
the other double crossover appears from the DLA fractal
on the incipient percolation cluster through the DLA
fractal on the perfect lattice finally to the Eden cluster.
We shall give a few comments on the assumptions made
in this approach and a comparison with the real experi-
ments. The percolation probability P corresponds to the
porosity in the porous media. The channels flowing fluid
through porous media are not completely random but are
correlated. The site-bond-correlated percolation model
will be more suited to the real porous media. Also, the
capillary pressure prevents the injected fluid from enter-
ing a pore. The capillary force has an important effect on
the pattern formation. The capillary effect will be neces-
sary to include in the theoretical approach. The two
kinds of double-crossover phenomena have not been
found in the computer simulation. The scaling Ansitze
have not been verified with the simulations. The comput-
er simulations will be necessary to include at least the two
parameters: viscosity ratio and percolation probability.
The large-cell renormalization-group approach will be
necessary to obtain accurate fractal dimensions and accu-
rate crossover exponents.
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