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J. Phys. A :  Math. Gen. 14 (1981) 693-720. Printed in Great Britain 

Scaling studies of percolation phenomena in systems of 
dimensionality two to seven: 11. Equation of state 

Hisao Nakanishit and H Eugene Stanley 
Center for Polymer Studies$ and Department of Physics, Boston University, Boston, 
Massachusetts 02215. USA 

Received 13  August 1980 

Abstract. Cluster statistics obtained by the Monte Carlo method for percolation processes 
in systems of dimensionality two to seven are analysed for the percolation analogue of the 
thermodynamic equation of state, thus complementing the work of paper I on cluster 
numbers. In particular, we calculate the scaling functions for the analogues of the 
thermodynamic potentials and their derivatives, and investigate their dependence on 
dimension d. We are guided by the two exactly soluble limits of d = 1 and the Bethe lattice 
(d  =a). The scaling region, where a good degree of data collapsing can be observed, is 
investigated in terms of the two ‘thermodynamic’ variables, one of which is analogous to the 
temperature and the other to the magnetic field. This region is found to be comparatively 
large and symmetrical in two dimensions, but considerably smaller in higher dimensions. In 
addition, we find that the characteristic forms of the scaling functions are closely related to 
the ‘thermodynamic’ stability conditions. Finally, we analyse the logarithmic corrections to 
the scaled equation of state at the upper marginal dimension, d, = 6 ,  and a numerical 
demonstration of the significance of the logarithmic corrections is presented in terms of data 
collapsing. 

1. Introduction 

The utility of the percolation problem in the framework of critical phenomena has been 
discussed by many authors (see, for example, the rcviews by Stauffer (1979) or Essam 
(1980)). For example, its possible application to the formation of polymer gels has been 
treated using various approaches (de Gennes 1979, Coniglio et a1 1979 and references 
therein). Another example is the possibility of understanding the peculiar properties of 
liquid water in terms of correlated percolation (Stanley 1979, Stanley and Teixeira 
1980). 

Aside from these applications, however, the percolation transition has also been 
studied for its own sake since its simplicity enables one to probe deeper fundamental 
features of phase transitions in general. In particular, various scaling hypotheses have 
been studied (Stauffer 1979 and references therein). While much work has dealt with 
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the scaling of cluster numbers (Stauffer 1975; see also Stoll and Domb 1978, Leath and 
Reich 1978, Hoshen et a1 1979), some discussed the percolation analogue of the 
thermodynamic equation of state (Essam and Gwilym 1971). The equation of state was 
first calculated as an expansion in the parameter (6-d) (Stephen 1977; see also Aharony 
1980). The first explicit calculations of the equation of state were for the square lattice 
(Nakanishi and Stanley 1978). This paper extends this work to include higher dimen- 
sions, drawing from the same Monte Carlo data as our more recent paper on cluster 
numbers (Nakanishi and Stanley 1980). We also present qualitative studies of the 
functional forms of the scaling functions. 

This paper is organised as follows. In the remainder of this section, the models of 
bond and site percolation are introduced and notation is defined. Section 2 considers 
the relationship between fundamental ‘thermodynamic’ requirements and the 
functional dependence of the scaling functions on the scaling variables, following the 
work of Griffiths (1967) for fluids and ferromagnets. In Q 3, we discuss the exactly 
soluble cases of one dimension and the Bethe lattice, as well as the mean-field solution 
(Mittag and Stephen 1974) obtained using the analogy to the Potts model (Kasteleyn 
and Fortuin 1969). In Q 4 we present the scaling functions for the square bond problem 
(d  = 2), simple cubic bond problem (d  = 3), and hypercubic site problems for d = 4-7. 
Their dimensional dependence is explored with the approach to the mean-field theory 
in mind. Although both Monte Carlo (Kirkpatrick 1976) and series (Gaunt et a1 1976) 
works exist which show some aspects of this trend numerically, neither has considered 
this problem from the viewpoint of the scaling functions. Section 5 deals with 
corrections to scaling, while Q 6 gives a brief summary. 

In bond (site) percolation on a given lattice, each bond (site) is independently 
occupied with probability p and vacant with probability q = 1 - p  while all sites (bonds) 
are considered occupied. Thus, each realisation of the lattice consists of isolated 
clusters, each of which is a connected network of sites and bonds. It is this connectivity 
that exhibits critical behaviour in the vicinity of the critical probability pc.  Therefore 
quantities of interest include the mean number of clusters, G, the probability that a site 
belongs to an infinitely extending cluster, P, and the mean size of finite clusters. 

For the bond problem, Kasteleyn and Fortuin (1969) showed the correspondence to 
the Q-state Potts model in the limit Q + 1. In this correspondence, the bond prob- 
ability p and the ‘ghost field’ h are related to the dimensionless parameters J (exchange 
integral) and H (external magnetic field) by 1 - p  = exp(-J) and 1 - h = exp(-H). The 
ghost field has an interpretation as the probability that a site is connected to the ‘ghost 
site’ via the occupation of a ‘ghost bond’. Thus, the introduction of the ghost field serves 
to make closer the analogy to thermal critical phenomena. The site problem cor- 
responds to a similar but more complicated spin Hamiltonian involving multi-spin 
interactions (Giri et a1 1977, Kunz and Wu 1978). In both cases, the percolation 
analogue of the Gibbs potential of the corresponding spin model is given by the mean 
number of finite clusters per occupied site, 

S 

Here E = ( p c - p ) / p c ,  p s  = 1 (for the bond problem) or p (for the site problem), and n,(E) 

is the mean number of s-site clusters per (lattice) site in the absence of the ghost bonds. 
Only the finite clusters contribute to the sum. Note that, since we use site counting for 
both bond and site problems, the ghost bonds are coupled to the sites in both cases 
(Reynolds et a1 1977). The analogue of the spontaneous magnetisation, the probability 
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that an occupied site belongs to the infinite cluster?, is given by 

P ( E ,  h )  = 1 - ( l /ps )  C' sns(E)(l - h ) s  
S 

while the analogue of the isothermal susceptibility, the second moment of n, (which 
becomes a mean number of sites contained in a finite cluster upon normalisation by 
(1 - P)) is given by 

The 'thermodynamic' scaling relation tested in our previous work (Nakanishi and 
Stanley 1978) is stated as follows (Essam and Gwilym 1971): G(E, h )  contains a singular 
part Gsing that is asymptotically a generalised homogeneous function (Hankey and 
Stanley 1972) in E and h near the critical point E = h = 0. That is, there exist two 
numbers a, and ah such that for all A > 0, 

Gsing(A A "'h) = AGsing(€, h) .  (1.4) 

An additional assumption was made, 

where G'"' indicates the nth partial derivative of G with respect to h. This leads to the 
following identification of the regular and singular parts of the generating function 
G(E, h): 

Greg= -h + W ( E )  ( 1 . 6 ~ )  

Gsing G + h - w (E) (1.6b) 

where w(E) ,  a regular function of E only, is approximated by a linear function 
w ( E )  = a. + a le  for the bond problem on the square lattice. The functional forms 

( 1 . 7 ~ )  

(1.7b) 

(where the upper (lower) sign indicates below (above) p , )  were then tested numerically 
for the square bond problem by Monte Carlo simulation. 

The resulting scaling functions are shown schematically in figure 1. The two 
branches of f2, f l  and fo approach the same limiting functions as h / l ~ l ' ~  + 00, and these 
limits appear to be power-law functions. g2  shows a rounded maximum near c/hl / ' s  = 
1 corresponding to p < p , ,  gl is a monotone decreasing function approaching zero as 
E/hl 'ps +CO with the point of inflection at some positive value of the same variable 
corresponding to p < p , ,  and go has a slightly asymmetrical trough with the minimum 
corresponding to p < pc.  A discussion of these points is presented in the next section. 

t The uniqueness of the infinite cluster has been proved rigorously only for a special class of lattices (Erdos 
and Renyi 1960) although intuitive arguments exist (Kikuchi 1970). Our  Monte Carlo data support the 
uniqueness for all d considered (2 s d < 7). 
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Figure 1. Schematic diagrams of the scaling functions for the d = 2 percolation problem. 
Part ( a )  plots f o ,  fl andfZ, each with two branches indicated by + and -, while ( b )  gives go, gl 
and gz. 

2. 'Thermodynamics of percolation' 

2.1. Percolation-thermodynamics analogies 

A close relationship between percolation and the Ising model was already apparent 
when Sykes and Essam (1963) applied the star-triangle transformation to percolation. 
This relationship was later made more precise by the exact correspondence to the Q + 1 
limit of the Q-state Potts model (Kasteleyn and Fortuin 1969). In this section, we 
further the analogy by presenting a 'thermodynamic' treatment of percolation follow- 
ing Griffiths (1967). Various percolation quantities are interpreted as analogues of 
thermodynamic ones, and the thermodynamic requirements for fluids and ferro- 
magnets are translated into the percolation language. This, in turn, leads to some 
requirements in the forms of the percolation scaling functions. 

In a typical Ising ferromagnet near the critical point, the spontaneous magnetisation 
in zero external magnetic field is shown schematically in figure 2(a) .  Above the curve, 
the magnet is homogeneous while below it is inhomogeneous, with ordered 'up' and 
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Figure 2. Schematic phase diagrams ( a )  for a usual Ising ferromagnet where M indicates the 
normalised spontaneous magnetisation and ( b )  for the percolation problem with P denoting 
the percolation probability. 

'down' states coexisting. The analogous behaviour of P ( p )  for the percolation problem 
is presented in figure 2(b) .  

One important difference is that the order parameter P does not take on negative 
values, and that the only physical region is the one-phase (or homogeneous) region. 
Since there is only one kind of ordered state, unlike for an Ising ferromagnet, it is clearly 
impossible to achieve values of (4,  P )  falling under the curve in figure 2(b) .  Any point in 
the one-phase region can be reached by adjusting the value of the ghost field h = 
1 -exp(-H) as in equation (1.2). This situation is illustrated in figure 3. 

9 z l - p  

Figure 3. P(q ,  h )  for h = 0,0.2,0.4, . . , ,0.8 is plotted for the Bethe lattice of coordination 
number z = 3. The general features remain the same even for the usual lattices. 

2.2. Analogues of the thermodynamic potentials 

For a simple ferromagnet, the first derivatives with respect to H and T of the Gibbs 
potential are the magnetisation and entropy. We have already stated that equation 



698 H Nakanishi and H E  Stanley 

(1.1) gives the percolation analogue of the Gibbs potential. To make the cor- 
respondence more direct, however, we define a modified Gibbs potential d ( q ,  H )  by 

d(q, H )  = ( l /ps)  1’ n,(E) eCHS + H  
S 

and its Legendre transform with respect to H is given by 

A(q, P )  = G(q, H )  - HP (2.2) 

where P = (a/aH)d.  We note that the second term in equation (2.1) does not change 
either the analyticity or convexity of G in any way. Clearly we have 

H = -(a/aP),A ( 2 . 3 ~ )  

s = ( W W P A ,  (2.3b) 

where S is the percolation analogue of entropy. We shall call A(q, P )  the ‘Helmholtz 
potential’ for percolation since equation (2.3) holds for the Helmholtz potential in the 
magnetic caset. 

2.3. The GrifJiths hypotheses 

The six thermodynamic hypotheses of Griffiths (1967) can now be translated into their 
percolation analogues. 

P1: A, H, and S exist and are continuous functions of P and q everywhere in the 

P2: On the phase boundary, H = 0. 
P3: For fixed q, (a/aP)’A(q, P )  S O ,  that is, H is a monotone non-decreasing 

P4: For fixed P, (qa/dq)’A(q, P ) s O ,  that is, S is a monotone non-decreasing 

P5: The phase boundary or the percolation curve q ( P )  is concave near the critical 

P6: A(q, P )  is an analytic function of both arguments taken together in the vicinity 

Postulates P1 and P2 are always assumed in the analysis of a second-order phase 
transition, and they are assumed to hold for percolation also. P3 and P4 correspond, 
respectively, to the positivity of the mean cluster size (the analogue of the isothermal 
susceptibility) and the analogue of the specific heat at constant magnetisation. P3 is 
thus clearly valid, and P4 will be discussed below. P5 and P6t are those additional 
assumptions that do not follow from microscopic thermodynamic principles but are 
included for aesthetic and empirical reasons. 

vicinity of the critical point, P = 0, q = qc. 

function of P at fixed q. 

function of q at fixed P. 

point, and an analytic function of P, except perhaps at P = 0. 

of the critical point except on the phase boundary. 

Let us now discuss the postulate P4. We have an ‘entropy’ 

S = ( q J / J q ) A  = (qa/aq)Hd = ( q J / J q ) H G  (2.4) 

where G is the unmodified Gibbs potential of (1.1). From Kasteleyn and Fortuin 

t The change in sign in these equations is caused by a negative factor introduced in associating equation (2.1) 
with the thermal Gibbs potential. This is also responsible for the reversal in some of the convexity properties 
from the thermal case. The derivative -8,’d.T (with dimensionless J )  is the thermal analogue of ( q d / a q )  in 
percolation. 
f If In n, - --s for all p below p c  (Klein and Stauffer 1980), P6 is valid on the isochore h = 0, q > q,. 
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(1969), we may interpret S for bond percolation (thus set p s  = 1) as 

s = ( q a / a q ) H ~  = ( & ) ( T B ) H  (2.5) 

where z is the coordination number of the lattice, and qB is 0 if the two terminals of an 
arbitrarily chosen bond B are connected through occupied bonds, and 1 if not. 

For the specific heat, we have 

where N is the number of lattice sites and Nee, is the number of bonds that would 
connect two neighbouring clusters c and c' were they occupied. Kasteleyn and Fortuin 
(1969) had considered the case where both the lattice and ghost bonds are occupied 
with the same probability in order to obtain the percolation analogue of Rushbrooke's 
inequality, while Kirkpatrick (1976) only considered the case H = 0; however, it is 
clearly applicable with H as a fixed, independent parameter as in equation (2.6). 

Note that since qB never takes on a negative value, the entropy S is non-negative 
and G is non-decreasing in q. In fact, S = 0 if and only if either q = 0 or h = 1 (or 
H = a), corresponding to the Ising ferromagnet for T = 0 or H = 03 respectively. It is 
clear that the specific heat at constant external field CH is non-negative. We can also 
calculate (a/aq)'G (with no extra factors of q )  using the same method, and show that G 
is convex at fixed H (see figure 4). Clearly, we have CH = 0 for q = 0 and for h = 1, as 
well as CH = i z  for q = 1 and h = 0. Figure 5 shows S ( q ,  Ho) and CH(q, Ho) for various 
values of Ho. We note the disappearance of the broad maximum and the onset of 
monotonicity of CH as a function of q with the increase in H. We might summarise this 
by saying that S gives the degree of non-connectivity of the two nearest-neighbour sites, 
while CH is the measure of articulation between pairs of neighbouring clusters. 

Postulate P4, however, is the condition of the positivity of the specific heat at 
constant percolation probability C,. Consideration of the nature of the ghost-field 

q = l  - p  

Figure 4. G(q, k) for h = 0,0.2,0.4,  . . . , 0 .8  is plotted for the Bethe lattice of z = 3. The 
general features remain the same for the usual lattices. 
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q . 1 - p  

Figure 5. ( a )  Entropy S and ( b )  specific heat CH for the Bethe lattice of z = 3. Note the 
disappearance of the broad maximum for CH as h increases. 

connectivity reveals that P = O w  H = 0 for E 2 0, and therefore 

A(q, P = 0) = 6 ( q ,  H = 0) (for E 2 0) ( 2 . 7 ~ )  

which gives 

c p = o  = CH=O (for E 3 0). (2.7b) 

Since we have Cp G CH in general, equation (2.6) is not sufficient to show P4 by itself. 
However, it does suffice to show that Cp does not diverge to -03, a catastrophe that 
could not be rectified by merely adjusting the regular part of the potential. 

2.4. Scaling functions 

We will now discuss the consequences of these postulates. Following Griffiths (1967), 
we make a scaling ansatz, 

H(q,  P )  = P'~(EP-"' ) .  (2.8) 

Then, most of the consequences of Pl-P6 are directly analogous to the fluid or 
ferromagnetic case. As a result of the additional assumption (2.8) (within a finite region 
of ( E ,  P)) and the discussion presented in appendix 1, we have 

(h l )  &(x) is positive, analytic, and i ( - x o )  = 0; 

(h3) @ R ( x )  2 x h ' ( x ) ;  
(h4) &"(x) 3 O t .  
This leads to a monotone increasing function which is convex and which approaches 

x asymptotically for large x .  For the d = 3 simple cubic bond problem, i ( x )  indeed fits 
this description including (h4) (figure 6(a)),  and (h2) is surprisingly well obeyed (figure 
6(b)). In fact, an analogous plot for the d = 2 square bond case (not shown) yields a 
large region fitting x y  (with y = 2.43) very well. 

Since the scaling functions introduced in 9 1 are those derived from 6 ( q ,  H )  rather 
than A(q, P ) ,  we now turn to investigate the relationship between these and i ( x ) .  Now, 

convergent for x > R with K ( x )  - x y  as x +.CO; 
(h2) i ( x )  = X:=Lanx ' ( 8 - n )  

t Not a necessary condition. 
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i 

x 

Figure 6. Monte Carlo data collapsing for ( a )  the d = 3 scaling function L ( x )  and ( b )  the 
log-log plot of the same. 

( 2 . 9 ~ )  

(2.9b) 

where = ff, and p’ = g l .  Following the discussion in appendix 2, we conclude that: 
(p l )  p’(-Co) = +CO, @(CO) = 0; 
(p2) p”‘s0;  
(p3) E‘’ 3 0 for x >> 1. 

For the d = 3 simple cubic bond problem, F ( x )  = g l ( x )  indeed fits this description (figure 
7). This gives a partial explanation of the functional forms of the scaling functions 
promised in 5 1. The above discussion represents only a minor deviation from the usual 

3 21 1 1 I I I I 

I 
t 

2 L  1 

~ l h ” q 6  

Figure 7. Monte Carlo data collapsing for the d = 3 scaling function i ( x ) .  
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thermal case, and thus we are not surprised to find that the scaling function p’(x) is very 
similar in form to its analogue for the simple ferromagnet (MiloSeviC and Stanley 1972). 
These characteristics of gl(x) then lead to those of g2 and go as described in § 1. The 
discussion for g2 and go is presented in appendix 3. 

We now turn to the scaling functions obtained by scaling by the other variable ( E )  

depicted in figure l(a).  Clearly, scaling functions f :  and g, are derivable from each 
other since 

. f :  (x) = g n ( S g n ( E ) x - a f ’ a h ) X ( l - n a h ) ’ a h  (2.10) 

f ; :  ( X ) / f i  (x) = g n ( X - a ~ ’ a h ) / g n ( - X - a ~ ’ a h ) .  (2.11) 

fl: (X) -f i ( X I  as x + m .  (2.12) 

where x = / I / I E I ~ ~ ’ ~ * .  Therefore 

The continuity of g,(x) at x = 0, then, implies for all n that 

This is precisely what was observed in 0 1 since it amounts to the fact that the two 
branches of f o ,  f l  and f 2  in figure 1 approach one another as the scaling variable grows 
large. This concludes the qualitative discussion on the forms of various scaling 
functions. 

3. Exactly soluble cases: one dimension and mean-field theory 

3.1. One dimension 

One of the few exactly soluble systems of percolation is the case of one dimension. 
Reynolds et a1 (1977) pointed out that the (nearest-neighbour) site and bond problems 
in one dimension have the same generating function provided that ‘zero site clusters’ 
are included in the sum in the case of the site problem. This is correct, but the 
justification for this procedure comes from the covering transformation which is 
invertible only for one dimension. For this reason, we prefer to define G(E,  h )  by 
normalising the number of clusters per occupied site as described in 8 1. To see this, 
consider the generating function for the d = 1 site problem in zero ghost field: 

a2 

G s i t e ( P )  = ( l / p )  C q 2 p S  = 1 - P  = G b o n d ( ~ )  

G(E,  h ) =  (1 - ~ ) ~ ( 1 -  h ) / [ l  - p ( l -  h ) ]  

Gsing(e, h )  = (e2+ Eh + h2)/(E + h ) .  

(3.1) 
s = l  

which is also equal to q 2 p s .  If the ghost field is included, then 

(3.2) 

and thus the singular part of G(E,  h )  is given by 

(3.3) 

The scaling functions fo(xl), g0(x2)  defined in (1.7) are simply 

f O ( X 1 )  =(1+x l+x : ) / ( l+x l )  where x1 = h/E, ( 3 . 4 ~ )  

g o ( x 2 )  = (1 +xz+x:)/(l + x 2 )  where x 2  = E/h. (3.46) 

These functions assume an identical form, and are represented by a curve in figure 8. 
Since in one dimension E 3 0, f o  has only one branch. Also shown in figure 8 are f l ,  gl 
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1 0 - 1 0 0  
1 0’ 102 io3 

loo h i c  
10.’ 

c l h  

Figure 8. Exact scaling functions for d = 1: ( U )  gives those scaled by E while ( b )  gives those 
scaled by h. 

(obtained from the first derivative of Gsing with respect to h )  and f 2 ,  g2 (from the second 
derivative). We note that these forms conform to the general features discussed in the 
previous section. 

3.2. Mean-field theory 

We now turn to the other closed-form limit, the mean-field theory (MFT), to investigate 
the general shapes of these curves. In appendix 4, we extend the discussions of Mittag 
and Stephen (1974) to the case of percolation with the ghost field h (cf Stephen 1977). 
The resulting Gibbs potential per site (in the Q + 1 limit of the Q-state Potts model) is 
given by 

(3.5) g = 1 + I t J R  - R - (1 - R ) In( 1 - R ) + HR 

where t is the coordination number of the lattice and R is the order parameter as 
defined in appendix 4. We take the derivatives of g with respect to H in order to obtain 
the percolation analogues of the magnetisation and isothermal susceptibility. For the 
first derivative, 

dg/dH = R + (dg/dR)(dR/aH) E (zJ - 1) + [ ( z J  - 1)2 + 2H]’/’  (3.6) 

x = - z J + l  Y = H ,  (3.7) 

neglecting higher orders. Writing the two scaling fields as 

we arrive at 
g‘” = - x  + (x’+ 2 y y .  

= ( x 2 +  2 p 2 ,  
Similarly, for the second derivative, 

(3.9) 
and for the original Gibbs potential, 

g = - x y + ~ ( x 2 + 2 y ) 3 / 2 + w ( x ) .  (3.10) 

We note that y = h and, for large z ,  x = ( p c - p ) / p c ,  and thus (3.8)-(3.10) are consistent 
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with the Bethe lattice solution in terms of the critical exponciits (a = -1, p = y = 1 and 
s = 2). 

From (3.10), we obtain for the scaling functions 

f ;  (xl) = T X ~  +$(I + 2 ~ ~ ) ~ / ~  

gO(x2)  = -x2 +$(x i  + 2 p 2  

(3.11a) 

(3.1 1 b )  

where x1 = y / x 2  and x 2  = x/y1/2 and the upper (lower) sign corresponds to x1 > O  
(xl < 0). Similarly, from (3.8), 

f : (x1)=Tl+(l+2x1)1/2 ( 3 . 1 2 ~ )  

gl(x2) = -x2  + ( x i +  2 y ,  

f ;  (Xl) = (1 + 2x1)-1/2 

g2(x*) = (x;+2)-1/2. 

and from (3.9) 

(3.12b) 

( 3 . 1 3 ~ )  

(3.13 6 )  

Figure 9 represents these scaling functions schematically. We note that these diagrams 
again satisfy the description of § 2, and that only few differences from d = 1 (figure 8) or 
d = 2 (figure 1) can be observed. In particular, go now has a minimum for some positive 
value of x 2 ,  and g2 is symmetric about the origin. 

1 

h l c 2  c l h " 2  

Figure 9. Mean-field scaling functions: ( a )  scaled by E ;  ( b )  by h. 

In the percolation limit, the internal energy can be written as 3zJR2 while entropy is 
given by (1-Z?)(l-ln(1-R)). A note of caution is that this entropy is defined 
somewhat differently from that introduced in § 2. 

Thus far, we have studied the MFT of the Q-state Potts model to extract information 
for the percolation problem. Now, however, we calculate the singular parts of the 
analogues of thermodynamic potentials directly from the known exact solution for n, on 
the Bethe lattice. It is instructive to see if there are any substantive differences between 
these two solutions in terms of the scaling functions. 

From § 1, we have 

(3.14) 
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We shall deal with the bond problem, and thus p ,  = 1. Here we modify the solution for 
the site problem (Fisher and Essam 1961; see also Flory 1941, Stockmayer 1943), first 
because this is a bond problem and second because we include the ghost field h. We find 

G(E, h)=$(l-p)‘(l-h)(2-~X(Z))/(l-X(Z))‘ (3.15) 

where z = a + 1 is the coordination number, Z ( p ,  h )  = p ( l  - -~ )~ - ‘ ( l -  h )  and X ( Z )  is 
implicitly determined as that solution of X(l -X)‘-l = 2 that goes to zero as 2 does. 
Thus, the singular part is given by subtracting from G its regular part, 

(3.16) Gsing= G + h -$(l- l/a) -i(l+ l/a)(l - c T ~ ) ,  

and the first and second derivatives of Gslng with respect to h are 

G:::, = P =  1-p(l-p)2“(1-h)2/[X(Z)(1-X(Z))2“] (3.17) 

G%, = [(I -p)2z2/p1{2/[X(1 -X)zul 
-Z[I - (2a+ I)x(z)~/[x~(I - X ) ~ ~ - ~ ( I  (3.18) 

Although X ( Z )  is given only implicitly in general, the case of z = 3 ((+ = 2) can be 
solved explicitly. The scaling functions in this case turn out to be almost identical to 
those of MFT. For example, we have 

f i ( x 1 )  = F ( 3 ~ 1 + 2 ) + 2 ( 1 + ~ 1 ) ~ / ~  ( 3 . 1 9 ~ )  

and 

go(xz )  = -(3x2 + 2x:) +qX; + p2. (3.196) 

These are substantially the same as (3.1 l) ,  and the other scaling functions also behave 
similarly. In particular, the two branches of f z  collapse into one, and gz is symmetric 
about the origin where the maximum is located. Since the Laplace transform of n, with 
respect to s gives the analogue of the Gibbs potential, if the scaling function for n, is 
exp(-ix2) (Stephen 1977), then one may expect that the ‘thermodynamic’ scaling 
functions contain terms such as (1 + 2x1)”’ or (x: + 2)”’. These factors of 2 (as in 2x1 or 
in +2) follow from the factor of 4 in the exponent in the cluster number scaling function, 
and are absent for the Bethe lattice solution with (+ = 2 since the n,  scaling function for 
that case is exp(-x2). The factor $ is achieved for the Bethe lattice only in the limit of 
z + CO, and thus only then is it entirely equivalent to the MFT solution. With this proviso, 
the MFT duplicates the more complicated solution for the Bethe lattice. However, the 
scaled plots of (3.16)-(3.18) (without first taking the scaling limit of E + 0, h +- 0, and 
h / e 2  + constant) show rather poor data collapsing for p > p c .  This may be caused by the 
special nature of the lattice where there can be an infinite number of infinite clusters 
above p c .  

4. Monte Carlo results for 2 < d 9; 7 

We have discussed scaling functions f :  ( h / / ~ / ” )  and g n ( ~ / h l ’ ” )  which were derived 
from the nth derivative with respect to h of Gsing(e, h) .  Furthermore, figure 1 shows the 
schematic diagrams of fi, f : ,  f z ’  and go, gl, gz for d = 2, while in figures 8 and 9 we do 
likewise for d = 1 and MFT respectively. In this section, we present the scaled plots for 
d = 3-7 (as well as d = 2 for comparison purposes) drawing from our extensive Monte 
Carlo data. 
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In particular, for d = 3, we have generated 12-15 realisations of loo3 simple cubic 
bond samples with free boundaries at each of 15 probabilities such that 0.2 S p G 0.3. 
Although both p c  and the exponents are varied to test for the best data collapsing 
visually, the central values employed are p c  = 0.25, p = 0.42 and y = 1-78. These are 
the values obtained as the best estimates based on the same Monte Carlo data 
previously (cf table IV of Nakanishi and Stanley 1980), and they indeed turn out to be 
consistent with scaling (figures lO(b), l l ( b ) ,  12(b) and 13(b)). A shift of p c  by as little as 
0*001 makes the data collapsing visibly somewhat poorer. Similarly, the series esti- 
mates of the exponents (Sykes et a1 1976a, b) do not produce as good data collapsing. In 
these plots, the h field ranges from 0.005 to 0.025, which is substantially smaller than 
the values used to obtain scaling plots for the d = 2 square bond problem (Nakanishi 
and Stanley 1978). If we extend the range to 0.1, we immediately notice the breakdown 
of data collapsing, at least for h 

The two branches of the three-dimensional scaling functions f: are closer together 
than their counterparts for d = 2, implying near symmetry fof p > p c  and p < p c  of 
susceptibility (cf equation (1.3)). In g2 also the differences are clear between d = 2 and 
d = 3: e.g., the maximum value normalised by g2(0) is much closer to 1 for d = 3 than for 
d = 2, although the location is not much different (which is reminiscent of the situation 

0.04. 

10-2 

lo0 IO2 104 106 100 10' 102 

t 
' 160 io' 102 103 10-1 100 io' i d 2  

I I 1  

h / lc lPa 

Figure 10. Monte Carlo data collapsing for (a) d = 2-(f) d = 7 for the scaling function f;. 
The d = 6 data do not include the logarithmic corrections. 
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Figure 11. Monte Carlo data collapsing for ( a )  d = 2-(f) d = 7 for the scaling function gl 
The d = 6 data do not include the logarithmic corrections 

for the n, scaling function studied previously). Thus, the d = 3 results appear to be 
visibly closer to the MFT case than d = 2 is. 

For d = 4 and 5, our Monte Carlo data are not as extensive: in these dimensions, 20 
realisations of 204 (d = 4) and lo5  (d = 5) hypercubic site samples are generated with 
periodic boundaries at each of 6 occupation probabilities: 0.177, 0.187, 0,192, 0.197, 
0.207 and 0.217 for d = 4, and 0 ~ 1 2 1 , 0 ~ 1 3 1 , 0 ~ 1 4 1 ,  0.146, 0.151 and 0.161 for d = 5. 
As in the case of d = 3, we have used the best estimates of p c  and the exponents based on 
our own data as the central values, and varied them to test for sensitivity. These central 
values are p c  = 0.198, p = 0.55, y = 1 - 4  for d = 4, and p c  = 0-143, p = 0.60, y = 1.3 for 
d = 5 .  For d = 4, in contrast to the case of d = 3, we find that somewhat better data 
collapsing is achieved with the previous Monte Carlo exponents (Kirkpatrick 1976) of 
p = 0.52, y = 1.6 still with p c  = 0.198, although even with these, the data collapsing is 
not outstanding, particularly with g2 (figures lO(c), l l ( c ) ,  12(c) and 13(c)). We 
attribute this mostly to rather large uncertainties associated with our original estimates 
of the exponents due to the smallness of the samples. For d = 5, we still find that our 
central values are consistent with scaling (figures 10(d), l l ( d ) ,  12(d) and 13(d)). 
However, for both d = 4 and d = 5 ,  the series estimates (Gaunt et a1 1976) of p c  and the 
exponents do not yield as good data collapsing as the Monte Carlo estimates. In all of 
these plots, h ranges from 0.005 to 0.025. 
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t 
Figure 12. As figure 10, but for the second moment f;. 

In comparison with d = 2 and 3, we again note the progressive approach of the two 
branches fz, while in MFT they actually coalesce. Data collapsing is not good for the 
function g2, and thus it is hard to estimate either the location or the value of the 
maximum. However, it does appear that d = 4 and 5 continue the trend of d = 2 and 3 
and the normalised maximum of g2 decreases further. The concave curvature of gl for 
E < 0 also decreases to approach the overall convexity of the MFT result. 

The results for d = 6 presented here do not take into account the logarithmic 
corrections, which will be discussed in the next section. Thus, we use for the exponents 
the exact values of p = y = 1. The value of p c  obtained previously for these data was 
p c  = 0.108 (from the susceptibility), which is also the best estimate using series methods 
(Gaunt et a1 1976). We have generated 30 samples of lo6 hypercubic site lattices (with 
periodic boundaries) at each of 9 probabilities between 0.088 and 0.128. Using the 
range of h between 0.005 and 0,025, we find both f; and g2 not showing a good degree 
of data collapsing for any reasonable estimates of p c  (figures 10(e), l l ( e ) ,  12(e) and 
13(e)). We find that f: and gl show a comparatively better data collapsing than& and 
g2 (though not as good as for lower d) .  We will see in 0 5 that this problem can be 
resolved by including the logarithmic corrections, while f: do not scale well even with 
such corrections, presumably due to other correction terms or to a further reduction in 
the size of the scaling region. 
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Figure 13. As figure 11, but for the second moment gz. 

Thus, any conclusion we may draw from fi or g2 should be taken with a grain of salt. 
However, it is very likely that the two branches f: are rather close, as well as that the 
maximum of g2 occurs roughly at the origin. In these plots, we present those with the 
choice of pc  = 0.108 although without the logarithmic corrections the choice of pc  = 
0.106 appears to scale better. 

Our last data are from d = 7, where 16 samples of 8' hypercubic site lattices (with 
periodic boundaries) are used at each of 6 occupation probabilities 0.075 s p 6 0.1. 
Our own estimate of pc  is 0,085 (from susceptibility), and we vary the trial values of p c  
for the scaling plots about this value while p and y are fixed at 1. We find that somewhat 
better data collapsing is observed with the choice of pc  = 0.083 than with 0.085, and 
thus this value is used in figures 10( f), 11( f), 12( f) and 13( f) together with 0.005 6 h s 
0,025. 

It is striking that the two branches f; now appear virtually collapsed. If this is not an 
artifact of fluctuations, then d = 7 has already the characteristics of the MFT even in the 
sense that f2 has only one branch-and thus the susceptibility is symmetric about pc. The 
data for g2 do not appear collapsed, however, and we cannot do more than state that if 
scaling holds, the maximum ought to be very close to the origin. Moreover, gl now 
seems to be a convex function overall (again similar to the MFT result). 
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5. Corrections to scaling 

Within the framework of the GHF approach, the corrections to scaling can be obtained 
by including ‘irrelevant’ parameters in the homogeneity equation. Thus, if p is such a 
parameter, we assume (asymptotically for E + 0, h -j 0 and p + 0) the generalised 
homogeneity of the singular part of the mean number of clusters 

G(A%, Aahh, h a s p )  =AG(E, h, p )  ( 5 . 1 )  

for all A > 0 provided that all the arguments remain small. This leads to 

G(E,  h, p )  = lEl-l’ReG(*l, h//El-ah’ae, p \ ~ l - ~ * ’ “ ~ )  ( 5 . 2 ~ )  

and 

G(E,  h, p )  = h-l’ahG(Eh-ae’ah, 1 ,  ph-a*’ah 1. (5 .2b)  

From previous work, 

l l a 6  = 2 - a  l / a h  = 1 + 116 aJah = PS.  (5.3) 

When we take for p the ‘most important irrelevant’ operator, namely the one with the 
largest lapi, then the exponent -daw = w is termed the correction-to-scaling exponent 
(Houghton et a1 1978). In the present case of percolation, p corresponds to the 43 
operator in the field-theoretic formulation arising from the lack of up-down symmetry 
in the problem. Unfortunately, however, one does not have a direct way to vary p, and 
thus (5.2) cannot be tested directly. 

If one expands (5.2) in powers of p, one recovers the expansion 

G(E,  h, p )  = / E / ~ - ~ G ~ ( ~ / E I - ~ ’ ~ ~ ) + I E I * - ~ + ~ ~ ~ G : ( ~ ~ E ~ - ~ ’ ~ ~ ) + .  . . . (5.4) 

Taking the case of h = 0, one obtains asymptotically 

G ( E ,  0 ,  p )  = I E ~ ’ - ~ ( A  + B I E I ~ ~ ) .  (5 .5a )  

Similarly, for p = p, ,  

G(0, h, F )  = hl ’ l ’S (A’+B’h””’PS) .  (5.5b) 

Thus, corrections to scaling could be tested numerically against the GHF predictions 
(5.5) provided that up < 0 (or w > 0), signifying the ‘irrelevance’ of the parameter p. 

Of course, at the upper critical dimension d, = 6, we have w = 0, and the approxi- 
mation made in (5.5) is no longer valid. In fact, the discussions on the logarithmic 
corrections at d, = 4 of the thermal problem (Wegner and Riedel 1973) turn out to be 
almost equally applicable for percolation. Thus, the theory predicts logarithmic 
corrections to scaling (analogous to the thermal problem) which will be described in the 
remainder of this section. 

Wegner and Riedel (1973) showed for the n-vector model with d = d, = 4 that the 
free energy per spin can be written as 

F(g1, gh) = go+~abllg:(L+Lo)2p+1/(2p + 1) 

+e-4L{~p0[g1 e 2 L ( ~ + ~ O ) P ] + ~ ( p o  = 0, gl eZL(L +L~)’, gh e3“)) (5.6) 

where gl - t (reduced temperature), gh - H  (external field) and go is the field cor- 
responding to the constant term in the Hamiltonian. Here, abll and p are constants 
which depend on the spin dimensionality. In writing down an expression such as (5.6), 
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however, one must be cautious, since if one lets the quartic field term go to zero, then 
the free energy has no lower bound below T,. This sort of difficulty restricts the 
applicability of (5.6) so that only the second h-field derivative F”’ makes sense if used 
directly. The reason for this becomes clear when one considers the mean-field theory, 
in which the magnetisation M - U-’” (H  = 0)  where U is the q54 coupling constant. 

Thus, we consider for scaling 

F”’ = e2LF‘2’(po = 0 ,  g l  eZL(L +L~)’, g h  e3=). (5.7) 

In the present case of the Potts model, the last term in (5.6) must be modified as 
exp(-6L)F(po = 0,  g l  exp(2L)(L +Lo)’, gh exp(4L)). Thus (5.7) becomes 

(5 .8 )  F”’ = e  F ( F ~  = 0, g l  eZL(L +Lo)’, gh e4“). 

This expression together with the vanishing cubic coupling is meaningful, even though 
there are added complications here because of the existence of the q53 term in the Potts 
model Hamiltonian. Setting lgll exp(2L)(L+LO)’ = 1, or L+Lo-  llnltlI, we obtain 

gh  e4L - h/tl-211nltj/-2P ( 5 . 9 ~ )  

2 L  (2) 

(5.9b) 

Thus, we have a modified form of scaling for x which incorporates the logarithmic 
correction. We note p = -3 for percolation. This particular form (5.9b) is tested using 
our d = 6 data, but the result in a scaled plot (not shown) does not improve data 
collapsing very much (except for very small h ) :  this should be attributed to other 
corrections, as well as a small scaling region. 

However, if we wanted to find similar logarithmic corrections for the potential itself 
or the equation of state, we would have to obtain additional information. In the case of 
the thermal n-vector model, Wegner and Riedel accomplished this by making use of the 
mean-field theory after taking the system far from criticality by renormalisation with 
large L. A similar analysis for percolation would thus involve the quartic coupling 
constant, which must be kept positive for stability and is thus more complicated. We 
can discuss logarithmic corrections in the following two different ways. 

On the one hand, we can write in scaling form the results for the equation of state of 
Essam et a1 (1978), who used the method of BrCzin et a1 (1976) and the calculations of 
Amit (1976). First, recall the expression for the Q-state Potts model given by Essam et 
a l :  

H(t ,  R, g, p )  = [cltR(Iln RI)’ +c2R2(11n RI)+-;I(I +O(l/l ln RI)). (5.10) 

Apart from the correction terms, H ( R ,  t )  is a generalised homogeneous function with 
a, = ad = $ where E = R /In R I-’, noting p = - 3 for percolation. This gives 

( 5 . 1 1 ~ )  

(5.1 1 b) 

~ ( c ,  P )  = 2 f i P / l n  ~ l - ” ~ / I e l )  

= P211n ~ l - ~ / ~ c ( E / ( ~ l l n  PI-’”)) 
where f and are now explicitly given by 

2 f(x) = c1x +czx 

i(x) = c1x + c2. 

and 

( 5 . 1 2 ~ )  

(5.12 b) 
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Equations (5.12) give the global scaling form of the equation of state which contains 
more information than the logarithmic correction form such as P - / E I  lln1~1/”~ which is 
given for h = 0 only. Scaling forms (5.1 1) are tested with our Monte Carlo data, and the 
scaled plots are presented in figure 14 together with those without the logarithmic 
corrections. These plots show that the logarithmic corrections (5.11) improve the data 
collapsing to a considerable degree. The linearity expressed in (5.12b) is also borne out 
very well. We note also that the form (5.10) is GHF only if 2 p  = a p  - 5  or p = -3. This 
means that in the Q-state Potts model hierarchy, only the percolation limit makes the 
equation of state with the logarithmic corrections to be a GHF (in modified variables 
containing logarithms). It is interesting to note that this peculiar property is shared by 
the Ising model within the n-vector model hierarchy. 

On the other hand, the logarithmic corrections for the approaches to the critical 
point (E = h = 0) along the weak ( H  = 0) and strong (E = 0) paths can be obtained for 
various ‘thermodynamic’ functions using the method of Rudnick and Nelson (1976). 
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Figure 14. Monte Carlo data collapsing for the Logarithmic corrections to the scaled 
equation of state (cf equation (5.11)). The function f is plotted (a)  without and ( b )  with the 
logarithmic corrections, and similarly g’ is plotted ( c )  without and ( d )  with the logarithmic 
corrections. 
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Since this approach has been illustrated for the function n, previously, we shall only 
quote the results here. Let us define e;,  Ok, e;, el, &, O3 by 

( 5 . 1 3 ~ )  

(5.13b) 

( 5 . 1 3 ~ )  

Then we find that for the Q-state Potts model 

where p = 2(Q -2)/(10-3Q). From (5.14), we immediately see that = O2 = O3 = 
6” = 3 for percolation. In fact, all the powers of the logarithmic terms are equal only for 
Q = 1 or the percolation problem. This is a remarkable property since it implies the 
linear terms in (6 - d) of the exponents ‘y, -p, LY and - 2 / S  are all identical. Of course, it 
may be said that this cannot be compared with the case for other values of Q since the 
(6 - d )  expansions make sense only for small Q (Q < y) ,  but even then it is a notable 
fact. 

In this connection, we must mention that the Ising model occupies a very similar 
position within the n-vector model. There, the analogues of the exponents 0 are 

= -p, O2 = $(p + l ) ,  O3 = 2p + 1, and 8’ = 3 where p = -(n +2)/(n + 8 ) .  Thus, again, 
el = & = O3 = 8’ = 4 for n = 1 and only for that case. This sort of similarity between the 
Ising model and percolation has not been noticed before, but it helps to throw light on 
the special role percolation plays in the hierarchy of the Q-state Potts model. 

6. Summary 

We have calculated the percolation scaling functions using Monte Carlo simulation for 
d = 2-7, and compared them with the exactly calculable limits of d = 1 and the MFT. 
The general features of these functions thus observed have been interpreted qualita- 
tively from the standpoint of the close analogy to the thermal critical phenomena. This 
analysis reveals why the percolation scaling functions are so similar in form to those for 
the usual ferromagnets. Furthermore, we calculated the predictions for logarithmic 
corrections to the scaling function L ( x )  at the upper marginal dimensionality, and tested 
this prediction using our data from d = 6. We have observed no qualitative change in 
the percolation scaling functions at d = 4, as in our previous studies of the cluster 
number scaling (Nakanishi and Stanley 1980). 
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Appendix 1. Properties of the Griffiths function d ( x )  

In this appendix, we present the discussions leading to (h1)-(h4) of 9 2. Firstly, it is 
straightforward to see that P5 implies an inequality 0 == p G 1 where P - B(-E)”’ for 
E < 0. In addition, we have: 

R1: &(x) is positive, analytic and h (-xo) = 0 where x = EP-”’ and xo = B-”’ ; 
R1 follows at once from P1, P2, P3 and P6. 

For E > 0, by P1 and P6, we have 

H(q,  P )  = C a,(E)P“ (A.1) 

converging for P less than some P O ( € )  > 0. Thus, 

~ ( q ,  P) = E~’X-@’~(X) = a,En’xpnB 

where the expression on the right converges for sufficiently large x. By noting that 
a n ( E ) E P ( n - ’ )  cannot have an E dependence from this, we obtain 

a , (€ )  = b,~’(’-~). 04.3) 

From these considerations, 
R2: For some finite constant R, $(x) possesses a series expansion 

&x) = b,x’(S-n) (A.4) 
1 

which converges for all x such that R < x <CO.  We note that the leading term in 
equation (A.4) is x’(’-~) (cf figure 6). In addition, (A.4) implies that H(q,  P) is analytic 
for P <  (E/R)’  including the region P = 0, q > qc, the region not included by R1. 

Since we have 

(a/dP)*H = P’-’[Gi(x) - (l /p)xi’(x)],  (‘4.5) 

P3 gives: 
R3: pSi(x) 3 xi’(x) for -xo < x < CO. 
The consequences of P4 are more difficult to translate to percolation. We start by 

recalling the definition of the exponent cy : 

CH=O= C p = o = ( A / a ) ( ~ - ~  - 1)+B ( E  > 0). (A.6) 

We note that Cp=o can only be defined for E > 0 since there is no ‘two-phase’ region in 
percolation, while CH=o can be defined both below and above pc.  Of course, Cp for 
general P is defined throughout the ‘one-phase’ region, 

C P  = (qa/aq)Ps = ( q a / a q ) X .  (A.7) 

The continuity of S (P l )  requires cy < 1, but otherwise there is no a priori constraint on 
the value of cy, In fact, we know -1 .s cy < 0 by numerical methods (see, for example, 
Stauffer 1979, Essam 1980). Since scaling for A(q, P )  near the critical point reads as 

A(q, P )  = A ~ ( ~ ) + P ” ’ ~ ( E P - ~ ’ ’ ) ,  (A.8a) 
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we have 

c p  = C&) +q2P-a/%yEP-1/P) (A.8b) 

where Ao, CO are analytic functions of q. In fluids and simple ferromagnets, a > 0, and 
therefore the second term would completely dominate in equation (A.8b) near the 
critical point. This would then mean P4 is valid if and only if a" 3 0 for all x in the range 
-xo < x <CO. In our case, however, a < 0, and thus the condition one can place on a (or 
$) should be much weaker, and at the same time, Co(q) plays a larger role. For example, 
if we assume a" to be bounded, then we must have Co(q)20 .  Since Co(q)= 
( q ~ 3 / a q ) ~ A ~ ( q )  where A. is the regular part of both A and G, this in turn gives a 
condition on the regular part of G. 

A necessary and sufficient condition for P4 is thus difficult to formulate. However, it 
is still true that 

(a/aP),cP = (qa /aq)WaP) ,A = -(qa/aq);H. (A.9) 

Thus, (xa/a~)~K(x) 2 0  would suffice to ensure that Cp is a non-increasing function of P. 
This would then imply that Cp does not diverge to ---CO as P+O. Noting that 
(qa/aq)  =-(qCJ/a4) near 40 

R4: h"(x) 2 0 for -xo < x < 03 

is a sufficient condition on h' to ensure that the catastrophe of the divergence of Cp to 
-03 does not occur. This is clearly much stronger than necessary for this rather loose 
criterion; however, it might be considered plausible when a much stronger condition P4 
is satisfied. These considerations lead to (h1)-(h4). 

Appendix 2. Properties of the percolation scaling function p"(x) 

In this appendix, we discuss the characteristics of p"(x) based on those of i(x). From 
(2.9b), we easily obtain 

(A.lOa) 

(A.lOb) 

Differentiating equation (A.lOb) once, we obtain 

i'(x) = -sp"(xi(x)-'~~s)-s-"(x)-1~~s-'p"'(xi(x)-'~~s)[~(x) - Xi'(X)/PS] (A. 11) 

where the quantity in the square brackets is non-negative by R3. Together with 
i'(x) > 0, which follows from (h l )  and (h4), this implies 

$ ' S O .  (A.12) 

Similarly, &(-xo) = 0 ( R l )  gives p'(-co) = +a, and R2 and equation (A.lOb) give 
@(+CO) = o since y = P ( S  - 1) <PS (i.e., X~(X)-'/~~ -xl-y'ps >> 1 for x >> 1). 

We now compute p"". Noting from (A.lOa) that 

( A . 1 3 ~ )  --1/s-1 h -, ] [ p " - l / P  - (x/p)p"-l/P-lp"'], p" '= [-(1/6)h 

we obtain 

p"! = - ( l / s ) p - l ) / P s  h - 1  [l - (~/pS)&~/~~-~h"]. (A.13 b )  
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Using (A.13b) and also the scaling law cu'+P(S+ 1) = 2, 

p'u = [I-  ( x / p ~ ) h ' l / P S - l h " , ] - 3 ( - ~ ' / p G - l  /a)  
x{((Y'"s)h''2+ h'P-(x(l -p)/(ps)2)h""PS--'h"'3}. (A.14) 

We note that the quantity in the square brackets can be rewritten as 

&Y ) - l [ R Y )  - (Y/PS)h",(Y 11 y = xp'(x)-l/P, (A. 15) 

which is non-negative by R3. Thus, the sign of e'' is always the opposite of that for the 
quantity in the curly brackets in (A.14). The sign of this quantity is, however, not trivial 
to determine. For large x (>>l), we know y = xp'(x)-' 'O is also large, and K(y) - y '. 
Thus, in this limit 

(A.16) 

By using the scaling laws, the quantity in square brackets can be rewritten as -p2y 
x (1 + Y ) / ( P S ) ~ ,  which is negative. Thus, $"(x) 0 for x >> 1, as expected from F'S 0 
and that p ' ( x )  + 0 as x + CO. On the other hand, for x << -1, we have y - -XO, and thus 
l- 0. If we assume that k(-xo) # 0 (empirically true, cf figure 6), and that &" + 0 as 
x + -xo, then only the first and last terms can be important in the curly bracket. If P = 1, 
as in the MFT, then the last term vanishes, and the expression in curly brackets is 
negative. On the other harid, if P < 1, then the second term dominates since h" is 
bounded, and it is positive. Thus, in particular, the MFT should give $"(-CO) 3 0. These 
considerations can be summarised as (pl)-(p3). 

{. * .I = [(cu'Y2/PS + Y(Y - 1)) - Y 3 ( 1  -P)/(Pa21&Y). 

Appendix 3. The percolation scaling functions g2 and go 

In this appendix, we look into the forms of two other scaling functions, g2 and go (cf 
equation (1.7)). By differentiating (2.9b) with respect to H, we obtain 

(A.17) (d/dH)P(q, H )  = (l/ps)H'/s-'(p$(x) -x$'(x)) 

which gives 

( A . 1 7 ~ )  

(A.17b) 

For the form of $(x) shown in figure 7, gh(x)sO for x >> 1. On the other hand, 
gh (0) = -(1- p)$'(O)/pS 3 0. Thus, g2(x) has a maximum for some x 3 0. In MFT 
where p = 1, this occurs at x = 0. This is indeed consistent with the form we saw in 0 1. 

(J/aH)Gsing = (l/PS)H'/'[(2 - )go(x) - xgb (XI], (A.18) 

Recalling equations (1.6) and (1.7), we have 

which gives 

(2 - .)go(x) - xg;l (x) = P S $ ( x )  = P & l ( X ) .  (A.19) 

The general solution to (A.19) can be formally expressed as 

gdx) = 1xI2--( C - P S  sgn(x) 1' g1(t)/ltl3-" dt) (A.20) 
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where C is to be determined by a suitable boundary condition. Thus, the large-1x1 
behaviour of go is controlled by the first term, which explains the gross curvature of 
figure 1. For x very near 0, p ' ( x )  can be replaced by d(0) 2= 1, and this gives go(0)  = 
[pS/(2 -a ) ]p I (O)  = a h .  The leading correction, which is given by the linear term in x of 
p' (x) ,  is positive for x 0 while negative for x > 0 since p"'(0) < 0. This last statement 
explains the 'skewed' appearance of go in figure 1. 

Appendix 4. Mean-field treatment of the Q-state Potts model with Q + 1 

Here, we present a mean-field treatment of the Q-state Potts model. We include the 
external ordering field H, and derive the scaling functions in the percolation limit of 
Q -+ 1 (cf Stephen 1977). We compare these with the exact solution for the Bethe lattice 
in 9 3. Comparisons with the Monte Carlo data for two dimensions up to seven 
dimensions are made in 9 4. 

We begin by introducing the problem for H = 0. A spin representation introduced 
by Mittag and Stephen (1974) is used here. In this representation, each state of the 
Q-state Potts model is represented by a spin variable A which assumes the value of one 
of the Qth roots of unity. Then, the dimensionless nearest-neighbour interaction 

EAA'= -J(SAA,- l /Q) (A.21) 

can be written as 
Q-1 

k = l  
E,,,,! = (-l/Q)J A k A ' Q - k .  (A.22) 

Thus, the Hamiltonian for one spin A in the effective medium of the surrounding spins is 
given by 

H A  = ( - I / Q ) Z J ~  A ~ ( A ' ~ - ~ ) .  (A.23) 

Here, z is the lattice coordination number and ( A )  denotes the thermal average 
performed consistently as 

(A.24) 

and (Q - 1) equations to 
ensure consistency. To solve for these order parameters, we consider the intuitive 
physical fact that at low temperatures we expect to have order in which one species is 
dominant while all the others are equally few. Thus, we have 

( A )  = R eie, (A.25) 

where ele is one of the Qth roots of unity (the dominant species) and R is a real number 
less than 1. If one further considers (A "), one finds that 

if m = 1,2,  . . . , Q - 1 (A.26) 

since that part of the dominant species giving the modulus R in (A.25) still has the same 
modulus. The results (A.25) and (A.26) indeed satisfy the consistency requirements 
(A.24) provided that 

( A )  = Tr A exp(-H,)/Tr exp(-H,). 

There are (Q - 1) order parameters (A),  (A'), . . . , ( A  

( A m )  = R e'"'' 

Tr A exp[(tJR/Q)(A ei(Q-l)e + . . . + A  Q-l e")] 
i(Q-l)e +. . .+,iQ-'eie)] ' Tr exp[(zJR/Q)(A e 

R eie = (A.27) 
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Without loss of generality, let eis = 1 ; that is, consider the root 1 as the dominant species 
of the phase. Then (A.27) reduces to 

(A.28) R = (ezJR - l)/[eZJR + (Q - l)]. 
Therefore, the dimensionless internal energy per spin is given by 

U =(-1/Q)(zJ/2) (Ak)(A’Q-k)=(l/Q- 1)(zJ/2)R2 (A.29) 

To obtain the dimensionless free energy per spin -fa = --U + s / k B ,  we must cal- 
where R is determined by (A.28). 

culate the entropy per site s / k B .  From statistical mechanics, 

s/ k B  = -C nj In nj 
i 

(A.30) 

where n j  is the expected fraction of spins in thejth state. Let thejth state ( j  # 1) be U’-’ 

where 1 + w + , . . + w = 0. Then ni is given by 
Q 

ai = (aA,,,-i) = (I/Q) 1 (A k ,  = (1 -R) /Q.  (A.31) 

Thus 
Q 

j = 2  
s / k B  = -nl In n l  - 1 nj In nj 

=In Q-{[(Q-l)R+l]In[(Q-l)R +l ]+(Q- l ) ( l -R) ln( l -R)} /Q.  (A.32) 

Combining (A.29) and (A.32), we finally obtain 

-fa = (1 - l /Q)(zJR2/2)+1n Q-{[(Q- l ) R  + 11 In[(Q- l )R + 11 
+ ( Q - l ) ( l  - R )  ln(l-R)}/Q. (A.33) 

It is clear that this free energy leads to a first-order phase transition for all Q other 
than 2. 

A meaningful limit Q -+ 1 is obtained from (A.33) by considering the derivative 

f = ( d / d Q ) ( - f ~ ) ~ = ~ =  1+&JR2-R - ( l - R )  ln(1-R). (A.34) 

From the work of Kasteleyn and Fortuin (1969), we know that f corresponds to the 
mean number of clusters in percolation where the bond probability is given by 
p = 1 - exp(-J). The minimum of f is achieved when 

(A.35) 

and thus the transition is of second order unlike in the original case of (A.33). The 
critical point is at ZJ, = 1 or pc = 1 -exp(-l/z), to be compared with the Bethe lattice 
result of p c  = l / ( z  - 1) (Fisher and Essam 1961). Also, we note that (A.35) follows if we 
set Q = 1 in the consistency requirement (A.28). 

Now let us include a dimensionless field H,  that couples to all spins, favouring the 
species 1. Thus, the dimensionless coupling energy is 

(A.36) 

(d/aR)f = t J R  + In(1- R )  = 0, 

EAH = -H(~I ,A  - 1/Q). 
With this addition, the single-spin effective medium Hamiltonian becomes 

(A.37) 
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Equations (A.24HA.26) remain valid, and the consistency condition is now 

R = (ezJR+H - l)/[ezJRtH + (Q - l)], 

while the dimensionless Gibbs free energy per spin is given by 

(A.38) 

-gQ = -fa (I - I/Q)HR. (A.39) 

The percolation limit can be taken, to yield 

g =(d/dQ)(-go)QZ1= 1+izJR2-R - (1 -R) ln ( l -R)+HR.  (A.40) 

In analogy to (A.341, g corresponds to the mean number of clusters in percolation 
where p = 1 - exp(-J) and h = 1 - exp(-H) with h (the ‘ghost bond’ probability) 
coupling to each site. Its minimum is obtained when 

(a /aR)g=zJR+ln( l -R)+H=O,  (A.41) 

again the same as (A.38) if Q = 1 is substituted. The critical point is unchanged at 
z J c = l ,  H = O  (orpc=l -exp(- l /z ) ,  h = 0 ) .  
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