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We extend our proof of the equivalence of the Wilson and Wegner-Houghton generators
(previously given for isotropic fixed points and to first order in a perturbation expansion
for the critical exponents) to all fixed points which can be described by the corresponding
approximate generators. This includes all those fixed points which are to leading order
“wave-vector independent.” The proof is again to first order in perturbation theory and
exploits the properties of the linearized eigenfunctions (eigenoperators) to evaluate the

nonlinear terms.

Recently,! we described an approximate differen-
tial renormalization-group generator based on the
exact Wilson incomplete integration generator.?
Among the systems studied were the higher-order
critical points for isotropically interacting n-com-
ponent spin systems described by Landau-Ginz-
berg-Wilson Hamiltonians of degree © in . The
critical exponents were obtained to first order in
the “e, expansion” and were shown to agree with
the results obtained previously from another ap-
proximate generator derived from the Wegner-
Houghton equation.®** Independently, Wegner® has
shown that this equivalence extends to the critical
exponents of anisotropic perturbations at these
isotropic fixed points. In this note, we extend the
proof of this equivalence (to first order) to aniso-
tropic fixed points.

Anisotropic fixed points are of particular inter-
est since many coupled order-parameter problems
can be expressed in terms of anisotropic Hamil-
tonians.® For many systems, the fixed-point Ham-
iltonian is, to leading order, wave-vector indepen-
dent; that is, it has precisely the simple form of
the original Landau-Ginzberg-Wilson initial Ham-
iltonian. For such systems we can replace the
enormous apparatus of the exact renormalization-
group formulations with an approximate scheme.
For the approximate generators, the wave-vector
dependent parts (e.g., gradient terms) are renor-
malization invariants!? and we do not write them
explicitly. The Wilson-based (WB) equation for
the Hamiltonian H (S, 1) is

0H /01=\H —ANS+VH +V3H - VH - VH . (1a)
The Wegner-Houghton (WH) based generator is

=2 AXNS-VH +Trln(6 +izl-1— (1b)
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The numbers A, and AX depend on the details

of the “gradient” terms. For example, for
Lifshitz points, ® where the critical propagator
takes the form G™'=}, |k;|°i ,we have X =0, 2 d; /0;
(where o, is the largest of the propagator ex-
ponents ¢;) and A\ =3(\,-0,). This choice is not
unique (one may rescale 1), but it has the advan-
tage of reducing to A,=d and Ar=3(d-2) if

all the propagator exponents o; =2.

The Gaussian eigenfunctions of WB and WH
when linearized around H =0 are polynomials in
the spin components s;; an eigenfunction of degree
p has Gaussian eigenvalue 2, - pAXx. The eigen-
functions may be orthonormalized with respect to
the weight w (S) =exp(—2Ar5§2). If one of the eigen-
values is small, say A;=e< 1, then, in principle,
there exist fixed points proportional to €¢,, where
¢, is some eigenfunction with eigenvalue €. There
are generally many such fixed points for each
small eigenvalue, since the eigenvalues depend
only on the degree of the polynomial. For systems
restricted a priori to be isotropic, there is only
one such fixed point, but for anisotropic systems
there are more (some of these may be unphysical
in the sense that no initial Hamiltonian can ever
reach them). The index I therefore runs over
some large set of values which label the eigen-
functions which are appropriate to the system con-
sidered.

At the nontrivial fixed point, the Gaussian eigen-
values are corrected by an O(e) amount, which can
be calculated in terms of “triple inner products”
of the Gaussian eigenfunctions. We have

NS =Xy =26, J|J)Y/ALLIT), (2)

where the bracket is defined for the WB equation
by

1,71 B s = [ d"sw@6cF6, Vo, (32)
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while for the WH equation

&I =y [ 47 0@ b

X[VZ-V.q),- _6¢J_ ‘V"i’l’ €V2¢J
-V, VV2e,]. (3b)

The indicesJ, K refer toany eigenfunction. QOur task
is to show that the ratio which appears in (2) is
numerically the same whether (3a) or (3b) is used.
In Ref. 1, the eigenfunctions ¢; were restricted
to be isotropic; in that case they are simply the
generalized Laguerre polynomials and the proof
proceeded via Laguerre polynomial identities and
integrations by parts. Here, we must make more
direct use of the linear operator.

Using the fact that V2p, =AN(S -V —p, )¢, (where
P, is the degree of $,) we can write (3b) as

1 -
<Iy J’K>WH ZZ fd "s 70(S)¢K
x[V2=AXS- YV +AN(p, +p, = 2)]

Xe‘i’z‘ -V’Qbf- (4)

The differential operator in the square brackets
in Eq. (4) is, however, Hermitian with respect to
the weight w(s). Therefore, Eq. (4) simply gives

Ay JIK Yy = 38N P+ Py =Py = 2, I |[K )y - (5)

A similar calculation gives a simple expression
for (I, J| K )yg:

I, K )y = 28N(pr +0; = Py) fd"s w(E) Db b -
()

The eigenvalue corrections in (2) depend on (I, J|K)
only in the case J =K. The difference between the
WB and WH calculations is only a factor of
IAX(p, - 2); therefore, the ratio needed for (2) is
the same. For explicit calculations, Eq. (6) may
be useful.

If ¢, belongs to a degenerate set of eigenfunc-
tions, then it is necessary to choose a basis in
that subspace such that (I, J|K) =0 if J#K. Since
Py =Pk, Eas. (5) and (6) show that this is always

possible. In such a basis, Eq. (2) applies directly.
If we wish to express matters in a basis indepen-
dent way, we may say that the corrected eigen-
spectrum in each degenerate subspace is obtained
from the eigenvalues of the matrix M, =2(/,J|K)/
(I, I|I. In particular, when the fixed point itself
is anisotropic, there may be other eigenfunctions
with eigenvalue €. The fixed point is stable with
respect to these eigenfunctions if M -7>0 as a
matrix (where J and K index those eigenfunctions
degenerate with the fixed-point eigenfunction).
This guarantees that the corrected eigenvalues
are negative at the fixed point. This is related to
the studies of Mukamel and Krinsky® who use the
exact Wilson recursion relations to study the sta-
bility of certain fixed points to O(e). The result
given in this note shows that the approximate WH
generator (which is the differential limit of the
Wilson recursive procedure) or the simpler WB
generator [Eq. (1a)] can be applied to such prob-
lems. If M -1 has a zero eigenvalue, then one
must go to second order in € and the approximate
generators may not be adequate; however, in
some cases an examination of the global stability
relations at O(e) may still be sufficient to deter-
mine the local stability.

A simple example of these criteria is provided
by the coupled order parameter problem described
in Ref. 6. There are three nontrivial fixed points:
the isotropic n-component fixed point, the iso-
tropic 2n-component fixed point, and a fixed point
of mixed symmetry, denoted in Ref. 6 as the “z
point.” We have

1 0
M=-Dn=| _ n-4|
0 —_—
n +8

1 0
(M—I)m{o (4—n)(n—2):|’ (7
”+8

1 0
M =Dem = 2-n |
0
n +8

The usual stability conditions are easily read off
the matrices in Eq. (7). Similar calculations can
be done for the examples of Ref. 9.

*Work supported in part by the NSF and the Air Force
Office of Scientific Research.

3. F. Nicoll, T. S. Chang, and H. E. Stanley, Phys.
Rev. A 13, 1251 (1976). We note that Eq. (2.16a) of
Ref. 1 should read 7)~4€2/n(g/2)3.

2K. G. Wilson and J. Kogut, Phys. Rep. 12, 85 (1974).

3J. F. Nicoll, T.S. Chang, and H. E. Stanley, Phys. Rev.

Lett. 33, 540 (1974).
4F. J. Wegner and A. Houghton, Phys. Rev. A 8, 401
(1972).

°F. J. Wegner, Phys. Lett. 544, 1 (1975).

83. F. Nicoll, T.S. Chang, and H. E. Stanley, Phys.
Rev. B 12, 458 (1975) and references contained therein.

"R. M. Hornreich, M. Luban, and S. Shtrikman, Phys.
Rev. Lett. 35, 1678 (1975); Phys. Lett. 55A, 269 (1975).

8J. F. Nicoll, G. F. Tuthill, T. S. Chang, and H. E.
Stanley, Phys. Lett. 58A, 1 (1976).

D. Mukamel and S. Krinsky, Phys. Rev. B 13, 5065
(1976); 13, 5078 (1976); 13, 5086 (1976), and references
contained therein.



