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We present a systematic approach to scaling at ordinary critical points with special emphasis on the
critical point of a single-component fluid. Recent work on scaling in fluids has avoided the possibility
of a singular coexistence surface. In particular, the consequences of satisfying the inequality 8 < a + 8
as an equality have not been explored. We show that @ = o + 8 is a prediction of scaling, and that, if
6 = a + B, the specific heat at constant volume has a leading-order (a-divergent) asymmetry across the
coexistence surface. We further show that the asymmetric nature of the fluid critical point precludes
the analyticity of the critical isochore above the critical temperature, whether the critical isochore is
expressed in terms of u(T) or P(T). A weak singularity of the form |T — T P~2@+® is predicted for
the isochore, which may be dominated by stronger singularities.

I. INTRODUCTION

The original scaling hypothesis was made by
Widom® (and, independently, by-others?) to de-
scribe behavior near the critical point of a fluid.
More recently, it has been realized that this
form of the scaling hypothesis may only be ade-
quate to describe the leading-order behavior of
models and real fluid systems. The interest in
extending the domain of validity of the scaling
hypothesis has been stimulated by the discovery
of a singular diameter® in certain models* ® and by
recent renormalization-group calculations® ; the
singularity behaves like |T - T, |1"%, where a
(a >0) is the exponent characterizing the diver-
gence of the specific heat, C,. Mermin and
Rehr” have suggested that this (1 — a) singularity
may be expected generally in fluids.

To incorporate the diameter singularity, Cook
and Green® have suggested a very general equa-
tion of state. It contains as its leading term the
scaling equation of state and many less singular
terms. These corrections to scaling yield the
diameter singularity and other weakly singular
corrections to leading-order scaling behavior.
On the other hand, Rehr and Mermin® have shown
that the singular diameter can be derived from a

simple modification of the original scaling equation.

In 1965, Griffiths'® derived the rigorous in-
equality 6 <a +B, where 6 is the exponent char-
acterizing the divergence of the curvature of the
vapor pressure curve, (82P/8T?),. In Refs. 8 and
9 this Griffiths inequality is not satisfied as an
equality since assumptions are made about the
smoothness of the chemical potential (Ref. 9) or
the degree of symmetry about the liquid-vapor
coexistence surface. This suggests that the ap-
proaches of Refs. 8 and 9 do not explore the con-
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sequences of the scaling hypothesis for fluids in
the most general way.

In this work, we show how to formulate a scaling
hypothesis which can satisfy the Griffiths inequal-
ity 6 <o +B as an equality. To separate physical
assumptions from mathematical assumptions, we
consider the general problem of making a scaling
hypothesis at an ordinary critical point with spe-
cial attention paid to the liquid-vapor critical
point. To make a scaling hypothesis for a fluid
system the following four decisions must be made:
(i) which thermodynamic variable to select as the
dependent variable of the scaling equation; (ii)
what independent variables to choose in the scaling
equation; (iii) what curves in the thermodynamic
space to describe and how to express them in the
variables chosen; (iv) whether to augment the
scaling equation with correction terms. We will
illustrate these four decisions by examining the
assumptions implicit in the original scaling hypoth-
esis proposed by Widom?:

(i) First, a particular thermodynamic potential
must be selected as a candidate for a scaling equa-
tion. For fluids, Widom chooses the pressure, P.
Each choice of a potential carries with it a natural
set of variables (here u and T, where u is the
chemical potential and T the temperature) and a
natural set of associated thermodynamic quantities
given by the partial derivatives of the potential
with respect to these natural variables. For exam-
ple, the number density p is given by p=(0P/ou)y.
On the other hand, if one chooses the Gibbs poten-
tial, G(P, T), then the volume V is given by
V=(8G/8P),. [For amagnetic system, —M= (6G/8H),,
where M is the magnetization and H is the
magnetic field.] Symmetries or asymmetries in
quantities such as p or V, will differ depending
on the choice of variables and potential (cf. Fig. 1).
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(ii) Second, one must choose variables in which
to state the scaling equation. Widom chooses
= u(T)and T, where u(T) describes the co-
existence surface for T<7T,, and the critical iso~
chore for T>T,. The choice of T as the second
variable instead of some combination of u and T,
coupled with Widom’s use of a single scaling func-
tion, has the consequence that the density diame-
ter is rectilinear (cf. Sec. III). The |T =T,|'"“
dependence of the diameter can be obtained in
two ways (a) by allowing the second variable to
be a function of y and T, and (b) by adding correc-
tion terms to the scaling equation. As we will
see in Sec. III, the amplitude of the |T - T,|'"®
term in the diameter is explicitly related to the
amplitudes of leading order singularities in case
(a), while in case (b) the amplitudes need have no
relationship. Thus, the use of a different “second
variable” (instead of T'), which Rehr and Mermin®
call “revised scaling,” gives the expected form of
the diameter singularity but may not correctly
give the associated amplitude, as they have pointed
out.

(iii) Third, one must decide which surfaces in
the thermodynamic space to describe and how to
describe them in terms of the scaling variables.
By his choice of - u(7) as his first variable,
Widom singles out the liquid-gas coexistence sur-
face (i.e., the vapor pressure curve) and the
critical isochore and describes them both by the
homogeneous!! equation y — u(7)=0. The coexist-
ence surface is a natural choice in that it is the
real phase boundary. The critical isochore is not
a natural choice in this sense, but both the co-
existence surface critical isochore correspond
to paths utilized in experimental measurements,
making it highly desirable to describe these paths.
The use, however, of a homogeneous'! descrip-
tion of these paths by an equation x, =0, where x,
is some appropriate variable, limits the scaling
approach to systems described by smooth'? sur-
faces. To see this statement, suppose that u(7T)
were singular on the coexistence surface or
critical isochore. Then the variable x; =y — u(T)
would have singularities at 7'=7, even away from
the critical point. This behavior is undesirable
although perhaps tolerable if the singularity were
sufficiently weak.'® Since the singularity in the
vapor pressure P(T) [and its critical isochore
continuation for 7> T,] is expected to be strong,
having a divergent curvature, (8°P/87%), -~ as
T-T,, there has been a nearly universal avoid-
ance of p—t¢ scaling of G. (Here we utilize the
reduced variables, p=P-P, and t=T -T,.) In
this work we weaken Widom’s assumption to allow
inhomogeneous’! descriptions of the critical iso-
chore and coexistence surface in order to en~

compass the more general situation. This permits
us to consider p-¢ scaling of the Gibbs potential
G as well as u-f scaling of the pressure P.

(iv) Fourth, one must decide whether to de-
scribe the system with a single scaling function
or to augment the scaling equation with correction
terms. Widom’s choice of a single function ac-
counts for the leading-order singular behavior
and, as extended in Ref. 9, places strong restric-
tions on the forms and amplitudes of asymmetries
and other weakly divergent corrections to the lead-
ing-order behavior. On the other hand, multiple
correction terms give considerable freedom to
the equation of state. Therefore, it is possible
that the revised scaling approach of Rehr and
Mermin® gives only the qualitative nature of the
diameter, but cannot correctly predict the ampli-
tude.

In Sec. II A we introduce a general potential ¥
which could be taken to be (within a linear term
subtracted off) either P(u, T) or G(P, T) for fluids
[or, for the sake of comparison, G@E, T) for a
magnetic system]. We initially choose to de-
scribe the system with a single scaling function
to simplify the exposition and to explore the limita-
tions of this approach.

In Sec. II B we discuss the restrictions that can
be placed on the forms of thescaling variables
used to describe the system. We show that the
preferred (“weak”) direction of Griffiths and
Wheeler,'* as reflected in the scaling variables,
is an automatic consequence of the scaling hypoth-
esis. That is, one of the scaling variables, x,,
must be chosen such that the line x, =0, the x,
axis, is tangent to the coexistence surface at the
critical point. We further show that a change in
the second variable, x,, generates a series of
correction terms to the scaling equation of a form
suggested by a restriction of the formalism of
Cook and Green.®

In Sec. IIC we form a hypothesis for the de-
scription of the coexistence surface and critical
isochore in terms of the scaling variables x, and
%,. The scaling-invariant form x, =Ax,® % is sug-
gested by the scaling hypothesis. We show that
this choice in a fluid system corresponds to a
vapor-pressure curve with a divergent curvature,
(6%2P/8T?),, characterized by an exponent 6 =a +8,
and an asymmetry in the amplitudes of the specif~
ic~-heat divergence across the coexistence surface
(cf. Sec. III).

In Sec. III we derive the usual critical-point
exponents and the relationships between the ampli-
tudes of the leading-term singularities and those
of the asymmetries, such as the diameter, utiliz-
ing the s caling~invariant parametric form x,
=Ax,P® for the coexistence surface and critical
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isochore. We then show that if a single scaling
function is used, this scaling~-invariant form can-
not suffice on the critical isochore, but it must
be modified by the-addition of a specific correc-
tion term.
II. A MODIFIED SCALING HYPOTHESIS AT AN
ORDINARY CRITICAL POINT

A. Choice of potential and scaling equation

We consider a system that can adequately be
described near its critical point by a potential ¥
which can be expected to scale. By keeping ¥
general, we can discuss p-t and u-t scaling in
fluids and H -t scaling in a simple magnetic
system, simultaneously. For example, ina
magnetic system, we can choose ¥ =GH, T)~G,
+S,(T =T, ),' where S is the entropy (the subscript
¢ denotes the value at the critical point).

For simplicity we choose to describe ¥ with one
scaling function and we employ initially aribtrary
scaling variables. Inthe simple case of a single
function, we write

v=8+®, (2.1)

where the scaling function 8(x,, x,) is a general-
ized homogeneous function (GHF)

A8(x,, x,) =8(N%1xy, X%2x,), (2.2)

and & (x,, x,) is a C” background term which van-
ishes and whose first partial derivatives vanish

at the critical point (0, 0). We choose x, and x,

to be smooth invertible functions of the usual
thermodynamic variables, y, and y,. For ex-
ample, in the simplest Ising ferromagnet, x,=y,
=H and x,=y,=t. The convention a,>a, labels x,
and x, as the strong and weak variables of Griffiths
and Wheeler.'* 18 By restricting the transforma-
tion to be smooth and invertible, we exclude those
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cases in which the geometry of the transforma-
tion may be as important or more important than
that of the scaling function 8. In particular, the
parametric representations of Schofield” embody
the singularities directly into the transformed
variables used in the parametrization. The trans-
formation is singular and noninvertible at the
critical point.

Of the large number of thermodynamic quanti-
ties, we will discuss in detail three: C, which
is an “order parameter” for the system; D,, a
typical strongly divergent quantity; and D, a
typical weakly divergent quantity.'® In terms of
the potential ¥, these are given by

C=v!, (2.3)
D =¥", (2.4)
DWE(\IIII\I/ZZ—\IJIZ\IIR)/\I/”; (2.5)
we introduce the notation
i OF _9F
=94, =2 2.6
F ay; 7 Tt axy (2.6)

Table I lists the specific symbols for ¥, C, D,
Y1, Vs, and D,, for the three cases considered
in this work.

B. Restrictions on the forms of the variables x, and x,

It is straightforward to show'® that the scaling
hypothesis (2.2) implies that near the critical
point

bl ay
22 (A
b; (‘93’2>c ’ (2.7)

where we use the notation

TABLE I. Values of symbols used in the text in three cases. Symbols not defined in the
text are s =S/V (entropy density) and K 5, the isothermal compressibility.

u —t scaling p—1t scaling Magnetic system

v P-P, —p; (1 —Hg) G -G, +(T-T,)S, G -G, +(T -T,)S,
—(T-T,)s, ~P-P, )V,
¥y B—ke p =P P, H
vy t=T-T, t=T-T, t=T-T,
C P =P vEV -V, -M
o ® 2
T OH/ 1

D, pCy/T -C,/T -Cy/T

& )
d, 9T/,

(), (&)
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FIG. 1. View of the coexistence surface in P —V or
u — plane for the case of an asymptotically symmetric
top.

; _9x
i i 2.
b, :83), . (2.8)

Equation (2.7) is proved under less restrictive

hypotheses (than the scaling hypothesis) in Ref. 18.

Equation (2.7) shows that the line x, =0, which is
the x, axis, must be tangent to the critical iso-
chore at the critical point, as postulated in Ref.
14 (cf. Fig. 2). We assume that the derivative
(2.7) is continuous from above T, to below T, so
that the x, axis is also tangent to the coexistence
surface at the critical point. Equation (2.7) deter-
mines x, to linear order, In general, x, will have
higher-order dependence on y, and y,; however,
this dependence cannot be extracted from leading-
term or even first-nonleading-term behavior of
any thermodynamic quantity. The linear depen-
dence of x, must be determined from nonleading-

Por 4 N
Y4
% Critical
N / isochore
/
/ /)\(2
/
/,
— 32
C Coexistence
surface -
T

FIG. 2. Relationship between the x, axis and the
coexistence surface. The dashed line denotes the criti-
cal isochore for T>T,.
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order terms, so that the higher-order dependence
of x, is even more difficult to extract. For this
‘reason, we will discard any term which does not
dominate these weak singularities coming from
the nonlinear portions of the transformation be-
tween (x,, x,) and (¥, ).

The original postulate of Griffiths and Wheeler'*
(that the strong direction, the x, axis, is arbi-
trary), however, is correct if and only if we con-
sider solely leading terms in the expressions for
thermodynamic quantities. Our scaling hypothesis
(2.1) is stated in terms of a GHF, 8; for a function
which is a GHF to remain a GHF after a change
of variables, the change of variables is severely
limited. The transformation cannot be linear in
both variables unless either it is the unit trans-
formation or the scaling powers are equal. The
proof of these statements is given in Appendix A.

If we consider a linear transformation in one
variable, setting X, =x, — (const)x,, our GHF,
8(x,, %,), can be expanded as a sum of GHF’s:

8 (%1, %5) =8(x,X,) + (const)x,8,,(x,, X,)

+[(const)?/21 ] x38,,(x,, X;)++++ . (2.9)

Equation (2.9) is a series of correction terms of
the form suggested® to account for certain of the
asymmetries in a fluid. For example, one can
easily show that the second term on the right-hand
side of (2.9) can be written

- X
| X, [1-ozren/a @ <,—X—2,-‘7;)

= |X,|3 B0t Q ( —xﬁg> : (2.10)
| X,

For the convenience of the reader, the right-hand

side of (2.10) utilizes the expressions in terms of

a, and a, of the critical-point exponents to be ob-

tained in Sec. IIL

If we try a more general smooth change of vari-
ables, we generate a more general series of cor-
rections. However, the most singular of these
corrections will still be given by the linear part
of the change of variables. It is important to 0b-
sevve that a linear change in the stvong varviable
x; genevates a sevies of covvection tevms, each
of which is move singular than the previous terms.
Therefore, even if we did not have (2.7) we would
not be free to choose x, arbitrarily. This state-
ment is a special case of the situation for » vari-
ables discussed in Appendix A.

The correction terms of (2.9) are explicitly re-
lated to the original GHF, 8. They are not, of
course, the most general correction terms of the
same form. However, if for some choice of x, the
corrections of the form (2.10) vanished identical-
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ly, then revised scaling® alone would be sufficient
to account for all the asymmetries discussed (at
least to leading order in those asymmetries). On
the other hand, one may be forced to include cor-
rection terms from the beginning. In this case,
a change of x, simply changes the exact form of
the correction terms without changing their quali-
tative nature; x, can be chosen “arbitrarily.” The
use of revised scaling relates the amplitudes of
the weaker singularities to those of the stronger
singularities, and is therefore capable of sharper
testing when compared to models or experiment,
than the corrections-to-scaling approach® which
leaves the weak amplitudes independent of the
leading~-term amplitudes. If revised scaling® does
correctly give the weak amplitudes, then the x,
axis forms a second preferred direction in the
sense that it defines the most appropriate vari-
ables in which to state the scaling equation.

The x, variable, although unspecified, has a
simple form on many paths. It is essentially equal
to y,. To see this, observe that on any path T,

dx2> J
= 2.11
<dy2 o bi=bildx,/dx,)r’ ( )

where J denotes the Jacobian of the transforma-
tion between (x,, x,) and (y,, y,),

J=bibZ —bb3. (2.12)
We assume that J is nearly constant near the
critical point; this is consistent with our assump-
tion of a C” transformation. For convenience we
will normalize our variables so that at the critical
point J=1 and b7 =1.

In this case, an approximate integral of (2.12) is

X, =9, +b%x,(x,). (2.13)

We will see that on the coexistence surface and

critical isochore dx,/dx,~ 0 at the critical point,
so that the approximation in (2.13) is a good one.

C. Forms of the coexistence surface and critical isochore

We choose to describe the critical isochore as
well as the coexistence surface, since experi-
ments are performed along both paths; as we will
show in Sec. III, the critical-isochore path is
slightly inconvenient theoretically.

On all paths passing through the critical point,
the singularities of ¥ in (2.1) are assumed to come
from terms involving 8. We know from (2.7) that
x,~0 on both the critical isochore and coexistence
surface. Using the properties of GHF’s we write

for 8; and §;;:

84 (%1, %5) = | %, l(l—ai)/azsi(xl/lxz [41/%2,+1), (2.14a)

850wy, %) = [, l(l_ai-aj)/azsij (/x5 %1%, £1).
(2.14b)

The upper sign is used for x, positive and the
lower sign for x, negative.

Equations (2.14) suggest the possible validity
of the following scaling~invariant form for the
relationship between the scaling variables on paths
of interest:

% =A, |x,|1% :A&|leﬂé- (2.15)

In (2.15), A, is a constant, possibly zero, which
may differ above and below T, (the subscript
denotes the sign of T - T,).

The limiting case, A, =0, reduces to the homo-
geneous relation x, =0, corresponding to a smooth
form for the phase boundary and critical isochore.
The case of A, #0 gives a power-law singularity.
We observe that on any path T,

(%) :-béJ,(al&) <€l£a>
dy, /. dx, ). \ dy,

The b} are smooth by assumption and by (2.13),
(dx,/dy,)r is nearly constant. We therefore ex-
pect that the curvature of the path d?y,/dyZ on a
scaling-invariant path (2.15) will be given approxi-
mately by

dzy de a,=2a, a -
(dy22>r~<dx22>r~ly21(l 222/ ~|y, | 6’
(2.17)

(2.16)
r

where the exponent is given by
6=a+8. (2.18)

In both p-¢ and u-t scaling, (2.18) satisfies the
inequality’® 6 <o +B as an equality.!®‘®> Physical
necessity (as well as convenience) suggests the
relationship (2.15) for the coexistence surface.

In the two-phase region below T, there are two
branches of 8§ corresponding to the liquid and gas
phases. The coexistence surface is defined by the
equality of § on these two branches; that is, on the
coexistence surface,

Sliauid (xx,) =85 (x,, x5,) . (2.19)

Only the form given in (2.15) allows (2.19) to be

satisfied exactly,'®®) if a single scaling function
is used. On the other hand, we will show in Sec.
III that if a single scaling function is used, (2.15)
cannot be used on the critical isochore and must



be modified by the addition of corrections.

Before we present the detailed results of our
modified scaling hypothesis, a discussion of the
use of any inhomogeneous descriptionis in order.!!
In the p-t scaling case, for example, we can write
the form of the coexistence surface as

p = (const)t = (const’)t2++++=A_[t ]2 %4+
(2.20)

The left-hand side of (2.20) is an acceptable choice
for x,; that is, it satisfies (2.7). Using (2.13) we
could rewrite (2.20) to lowest order as

%, =A_|x,]27°. (2.21)

(A similar situation might exist in pu-¢ scaling
with the possibility that §<0.) We assume, there-
fore, that any nonanalyticity on the coexistence
surface or critical isochore can be expressed in
an inhomogeneous way such as (2.15) or (2.21).
This is equivalent to defining x, to be some or all
of the smooth part of the coexistence surface and
critical isochore. If both of these are smooth,
we have the case treated by Widom. If one is
smooth, but the other is not, x, is the analytic
continuation of the smooth surface.

III. RESULTS OF REVISED SCALING

In this section we develop the results of a re-
vised-scaling hypothesis using a single scaling
function with no correction terms [cf. Eq. (2.1)]
and utilizing the scaling invariant form (2.15) to
describe the coexistence surface and critical iso-
chore. We derive the usual critical-point expo-
nents and relate the amplitudes of the weaker
singularities to the amplitudes of the dominant
singularities in C, Dy, and D,. We show that the
use of (2.15) with A, nonzero changes both the
leading and nonleading amplitudes and gives a
leading-term (a-divergent) liquid-gas asymmetry
in D, across the coexistence surface. Finally,
we show that the use of a single scaling function
and the scaling~invariant form are incompatible
on the critical isochore; to retain a single scaling
function, Eq. (2.15) must be modified. This modi-
fication has the consequence that a weak singularity
is predicted for the pressure of a fluid system on
the isochore similar to one found in the correc-
tions-to-scaling approach of Cook and Green.®

Employing Eq. (2.15), and utilizing the proper-
ties of GHF’s, we can express the quantities ¥,
C, D, and D, as follows®% 2!

\I/lelt lz_a+Q2't |3-2a-6,
C=C,[t]°+C,lt ['77,

(3.1a)
(3.1b)
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Dy=K |t |7 +K, [t |77,
D, =D, +D,|t |~ +D, |t |'"2*"F,

(3.1¢)
(38.1d)

We have replaced y, with ¢ (=T — T, ) for the sake
of clarity since this substitution is appropriate in
the three cases we are considering. The con-
stants in Eqs. (3.1) are given in Table II. The
constant D, is not derived from the scaling func-
tion 8, but comes instead from the background
term ® of Eq. (2.1). Background terms have been
dropped from the other expressions. The diver-
gence in D,, tends to be weak (¢ =0.1), and hence
the terms coming from the background may be
important and measurable. The constant @, and
the final terms in C,, K,, and D, come from the
expansion of x, given in (2.13) with the upper and
lower signs applying to the critical isochore and
coexistence surface, respectively. We note that
the independent parameters in Table II are b,

Q,, C,, K,, andA,."*® The critical-point ex-
ponents are obtained in the usual way,™

B:(l _al)/az; (323.)
-y=01-2a,)/a,, (3.2b)
-a =(1-2a,)/a,. (3.2¢)

On the critical isotherm, x,xx,, so that by us-
ing GHF properties we have (dropping all but the
leading term)

C:'Jﬁl(l_al)mlsl(il,()). (3.3)

Here the upper sign corresponds to x; positive
and the lower sign to x, negative, and

6=a,/[1-a,). (3.4)

Combining (3.2) and (3.4) we observe that the
usual exponent inequalities involving «, B, y, and
5 are satisfied as equalities; for example,

(3.5a)
(8.5b)

a+2B+y=2,
y=p(6-1).

TABLE II. Values of constants in Eq. (3.1).

Q=8U,,£1)

Q,=% 2-a)b}4,Q,

Ci=8,A,,%t1)

Cy=bil(2-)Q{ +CA, (-BO£B)]

K=8;;A,, £1)

K,=2b}{BC-K p}A, (2B67)
Dy=(2-0a)(1-a)Q—B*CI/K~CBoA, (1-~a—B)
Dy =—b}D;[2BC,/K +A.(—2p6 £ a)]
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Below the critical temperature, Eq. (2.19) pro-
vides some information which relates the ampli-
tudes of the scaling function 8 on the liquid and
gas sides of the phase boundary. If we also re-
quire that the coexistence surface have an asymp-
totically symmetric top, then

Slliquid (x” xz) = _Sﬁas(xl, xg) ) (36)

at least to lowest order, on the coexistence curve.
Similarly, if the strongly divergent quantities are
to have the same leading-term behavior in the two
phases, we must require

slﬁmd(xu %,) =853 (%1, %5 (3.7)

to leading order.?>® Note that (2.15) is the only
relationship between x, and x, which allows (3.6)
and (3.7) to hold exactly.

Using (2.19), (3.6), and (3.7), we can evaluate
the asymmetries across the phase boundary:

Cheud 1 02 =252Q,(2 - @) | ¢] 177, (3.82)
D — D& =4p7pCT ] P, (3.8b)
Dlavid _ peas = _gcliavid(A _g5(1— o — ) |¢] %+ 52| ¢] 1720~ B
x{B8(1 - a - p)(285 + a)A%
+20[(2 - )1 - 0)Q, - B*C3 /K, /K }) .
(3.8¢)

Observe that the asymmetries in (3.8a) and (3.8b)
are proportional to »%. If 5% =0, then the implied
symmetry leads to a rectilinear diameter as is the
case in the original Widom formulation. This is
also true of the weaker asymmetry in (3.8c); how-
ever, the leading asymmetry depends only on A_.
If A_ is nonzero, the amplitudes of the weak di-
vergence differ in the liquid and gas phases.?>
Thus, although we can maintain symmetry in the
order parameter and the strong divergence, @

=a + f3 breaks the symmetry of the weak diver-
gence, typically, the specific heat.

The expressions given in Table II have one un-
fortunate consequence. On the critical isochore,
setting C, =C, =0 implies D, =0. That is, there is
no « singularity of the specific heat. The difficulty
arises because we have implicitly assumed that the
isochore is a natural path in the same sense that
the coexistence surface is a natural path. This is
not the case in an asymmetric system. The most
natural order parameter ¢ is not simply the den-
sity or entropy, but some function of p and s given
by

v
_8—x,' (3.9)
Lines of constant ¢ might be expected to be scal-
ing invariant. If, however, we wish to describe

TABLE III. Values of constants in Eq. (3.13).

Q1=84,,1)

Q,=b{2-a)4,Q)

K1=8,;4,,1

K4y=-b}A, K{(2B6 +y) + 2—)8y;; A4, , 1)Q) /K{]
= @-0a)(1-a)Q |

Dy=biDA [286—0a +B6(1—a—B)/ (1~ a)]

the isochore, we cannot expect that path to be scal-
ing invariant as well. We could abandon revised
scaling and add correction terms to the equation

of state (2.1). If, however, we retain revised scal-
ing, we find on the isochore

1-0-8 -81(x1/x288, 1)

s = 3.10
S (2 /55 1) :
bix 8,(x,/x5°,1) ( )
Inverting this equation we find that
x,/x88 =f (x}=2758). (3.11)

Since we have neglected background terms and ex-
cluded corrections to scaling, we are only justified
in expanding the right-hand side of Eq. (3.11) to
first order in x}~*~8. Using the explicit forms
given in (3.10) we discover that on the isochore,

8$,(4,,1)=0, (3.12a)

bzl(z _ Ol)S(A+, l)xg—z(ow B
811(A+’ 1)

x,=A, x5 - (3.12b)
Since (3.12b) is not a scaling-invariant relation-
ship for »3#0, the arguments of 8; and §,; will no
longer be constant; the expansion of these ampli-
tudes gives corrections of the same order as the
corrections due to revised scaling. Employing
(3.12b), we write for the critical isochore only

U =Qi P+ @ ]2 28, (3.13a)
D=Ki|t|"7+KL [P, (3.13b)
Dw:Do+D”tl_a+Délt|l-2cx—B. (3130)

The constants are given in Table III. All the for-
mulas given in this section are special cases of
the equations developed in Appendix C (cf. Tables
IV-VI).

In the case of u -t scaling of the pressure (3.12)
gives the following expression for the pressure on
the critical isochore (T>T,):

p =(const)t +(const’)? + @, £~
+0RQUA, (2 - )2 4 p A f2mmB

_pcb§<Q1(?{l— (1) _Ag+ (2 - - B)> £3-2at 8) .
(3.14)
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An expression of this form with A, =0 and the co-
efficient of the last term unrelated to 8 follows
from a correction to the scaling approach as well.?®
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APPENDIX A: PROPERTIES OF GENERALIZED
HOMOGENEOUS FUNCTIONS

In this appendix we will develop some properties
of generalized homogeneous functions (GHF’s) nec-
essary to the body of the work. We will always be
discussing a GHF, F(x,,...,%,),

AYF(xy, - ooy %) =F(A 2y, o, A0,) (A1)

Since thermodynamic functions are often evaluat-
ed along particular paths (such as the isochores
and isotherms), the behavior of GHF’s along diff-
erent paths is crucial. The simplest path is one
along a variable axis, that is, a path on which all
the variables except one, x;, are zero. On such a
path, F is given by

F(xy, ... %) = |%,|%/%F(0,0,...,sgnx;,0,...).

: (A2)
This homogeneous description'! gives a pure pow-
er-law behavior. However, there are many other
paths that give a pure power-law dependence. If

we write F as
%) = | |70 Fxy/ | x|V,
';xn/'xfla"/aj)’

(A3)

F(xy,. -

SgNnx;, . .

we recognize a class of paths which we term scal-
ing-invariant paths, which are characterized by

X :Ak!xj’ak/ai: k#j. (A4)

On suc>hwa paéh we have the simple power-law de-
pendence of the homogeneous paths

F(Xyy ooy = |2 | ¥/ %F(Ay, ..., 880%,...,A,).
(A5)
However, there is a still larger class of paths
which give essentially the same behavior as (A4).

If on a path we can write
Xy =Ap | 2y | %% + By | x; | /4T (A6)

with g,>0, and if F is sufficiently nice (analytic)

near (A,,A,,...,sgnx,,...,A,) we would expect
(A5) to hold approximately. We would write

F(x“ ceey x") :x;lf/a/
X (F(Al, A
. Z 9F(A, - - 'A,,)

e
v Byl x| > .

(AT)

Equation (A7) has (A5) as its leading term. We
will term paths such as given in (A6) as asymp-
totically tangent to the x; axis. Note that in the
case of scaling-invariant paths (A4), the path is
asymptotically tangent to all the axes with nonzero
A,.

An example of particular interest is the “straight
line,” for which the path is described by a linear
parametrization,

k #f

Xp = CpXy - (A8)

Then if a; >a,, for all k such that ¢, #0, the path
is asymptotically tangent to the x, axis since 1
=a,/a, +1-a,/a,; and, by assumption, 1-a,/a,>0.

The variables employed in (Al) and in the body
of this work may seem arbitrary and unconnected
to the thermodynamic variables one is accustomed
to. If we make a change of variables from (x,,
Hgye ooy %) 1O (Y, Koy ooy x,) With ¥ =9(xy, x5, .+ 0, %)
we cannot expect the GHF F to remain a GHF.
Writing F for F as a function of (y, x,,. .., x,), the
statement that F is still a GHF, i.e.,
AFF(y, Koy o vy Xn) =F‘(>\uyy, A2, ., N0,),

(A9)

is equivalent to the following differential equation
for y(xy, gy e« - 5 Xp)t

Ay) /2 5 /&
where the differential operators A and A are de-
fined by

(A10)

n
ol
A=ay- D ax5—, (A11)
j=1 4
n
- _ 2]
A= Z(a, -a,)x, 5—9—(; (A12)

i=2

From (A10)-(A12) we see that if the transforma-
tion leaves the basic scaling exponents unchanged
along paths asymptotically tangent to the x; axes

(j=2), thatis, a,=3;, theny satisfies the homo-

geneous equation!!
Ay=0. (A13)

The solutions of (A13) are GHF’s,
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AY(yy e vy Xy) =Yy, o A y,) (A14)

The converse is not true. If we rewrite (A10) as

8r
5y Ay =AF, (A15)
where the new differential operator, &, is given
by
z 8
A= IZ; (a; = )%, (57})}., (A16)

we see that y, a GHF, implies that AF=0. This
always has the trivial solution y =F.

In general, the right hand side of (A10) is a GHF
W such that

AW (X, - o vy %) =Wy, ooy, A%, (A17)

Now if y is taken to be an analytic function of
(x,5---5%,), then W must also be analytic. The

right-hand side of (A10) is analytic only if
na; =a,, (A18)

for some integers n;. Furthermore, if the trans-
formation is linear, then the left hand side of (A10)
is linear and we must have n; =1, or g, =aq, for
all j.

If we consider a linear transformation

y=x,+ Z CijXy,
1=2
we can expand F to yield
n BF
F=F(y, %%, — /Z; C,xjg;;(y,xz, ce sy Xy)

(A19)

J

From (A19) we see that if a,<q, for all j such that
c; #0, then the correction terms generated are
weaker than the leading term, and that, converse-
ly, if a,>a, for some k such that ¢,+#0, then the
correction term is stronger than the original term.
Therefore, linear (and, in general, smooth trans-
formations with a nonvanishing linear part) vari-
able changes can only involve variables stronger
than the variable undergoing transformation. The
strongest variable cannot be changed at all, the
second strongest can have mixtures of the strong-
est added to it, the third strongest, mixtures of
the first and second, and so forth, down to the
weakest variable, which can be considered as ar-
bitrary.

APPENDIX B: EXACT FORMS OF C, D,,, AND D,

From the definitions it is straightforward to ob-
tain

C=b3y, +b%y,, (B1)
D =bib}¥,, +20165 , + b303,, + 01,0, + b3, ,
(B2)
Dw:[Jz(‘I’11‘I’22_‘I’12‘I’12)+W1 +W2]/Ds’ (B3)
where
i = %%
I ayjayk.

The quantities W, and W, are given by the lengthy
expressions

W, =W, (51,635 + byb1b) — 2b1;,61b3) + 2%, ,,[b1,b365 + baab1bs — b1, (b10] +b3b3)]

+ W, W, (01,0503 +b,,030% = 2b1,620%) + W W, (b],b;, — b1yb1p) + 30, W, (B30, + b11b3e — 2b3,0%,),

W,=W,,1=2.

The b,i and bjh must be understood to be smooth
functions of y, and y, so that the singularity struc-
ture of D, for example, is given by

Do=ky+ky|t| Y +Ry |t Bt 4Ry [t]
thy|t]B Ry [P kg |21 (B5)

The constant k; comes entirely from the ¢ depen-
dence of b}b}; the constants k, and k; are a mix-
ture of b}, and b%,, on the one hand, and the ¢ de-
pendence of 5;5% and 5%b%, on the other. Terms
like the 1 -y divergent term % in (B5) could also
arise by replacing the scaling function in (2.1) with

(B4a)

(B4b)

T
the product of a smooth function of y, and y, and
the same scaling function. This is related to the
idea employed by Domb** to generate corrections
to scaling for the Ising ferromagnet.

The detailed dependence of D, as expressed in
W, and W, in (B4) is very complicated and general-
ly unenlightening. Each term is proportional to
second derivatives of the transformation between
(v1,,) and (x,, x,) which, unlike the first deriva-
tives, we have no method of estimating. A change
of variables which changed the second derivatives
(but left the first derivatives unchanged) leads to
the generation of a series of corrections to the
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scaling equation that are always weaker than the
original scaling function. Therefore, if we are
willing to carry correction terms of that type, we
may choose the second derivatives in any way we
wish.

We observe that if o + 8<%, the leading singular
term in W, is in fact larger than the [¢['"2**® term
discussed in Sec. III and Appendix C. We write D,,
as

D, =Do+D,[t] =% +D, [t [*72* P+ D, [t] 7% +D, | ] ®.
_ (B6)
The new constant D, is given by

D, = Cy(b1,030;+ b3y = 2b13D3) - (B7)

Since it is proportional to C,, the [¢|® term vanish-
es on the critical isochore (T>T,).

APPENDIX C: EXTENSIONS OF REVISED SCALING

The symmetry requirements on the coexistence
surface [cf. Egs. (2.19), (3.6), and (3.7)] preclude
any modification of the scaling-invariant form
(2.15) without a corresponding modification of the
fundamental equation (2.1). That is, corrections
to scaling must be added. To illustrate what can
be done in a corrections-to-scaling approach, we
replace (2.1) with

T =8+8 +@®, (c1)

where § is a correction-to-scaling term.® We re-
strict ourselves to a single correction term for
simplicity; the further generalization is only an
algebraic complication. We have no a priovi rea-
son to restrict § in any way. However, for sim-
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plicity, we assume that § is a GHF in the same
scaling variables as 8,

A2 (x,, x,) =8 (N%x, A%2x;,) . (C2)

Note that the exponent of A on the left-hand side of
(4.2) is not 1 but 1 +ga, with ¢>0. By assumption,
the dominant behavior of any thermodynamic quan-
tity is given by 8. The correction-to-scaling term
§ cannot affect leading-order scaling. If we as-
sume that § is a GHF, we know by the discussion
in Sec. II B that the weaker variable can be chosen
freely; there is no loss in assuming it to be sim-
ply x,. The stronger variable has a natural defini-
tion as the smooth part of the coexistence surface
and critical isochore, and we assume that this
preferred variable can be carried over to the cor-
rection term. The scaling powers a, and a, have
been chosen equal to those of the scaling function
8 for further simplicity. One of the scaling powers
can always be so chosen (cf. Ref. 15), and if the
coexistence surface or critical isochore is singu-
lar with A, #0, the usefulness of the scaling-invari-
ant path suggests that both of the scaling powers
are equal to the corresponding scaling powers of
the leading-term GHF. .
Correction terms of the same order as thos
coming from 8 can be generated by modifying
(2.15). We write for the coexistence surface

x,=A_|%|2% +B_|x,\B5. (c3)
Anticipating the difficulties on the critical iso-
chore, we write for the isochore:
x,=A, %2 +B, %P0 = 532 - a)
8(A,,1) K32 B) (C4)

XSII(A-H 1) 2

TABLE IV. Values of constants in Eq. (C5).

Q1=8SA_,-1)
Q,=—b}A_(2-a)Q,

Qs=B C;+3@_,-1)
Cy=$,@4_,-1)
C,=b’2- )@ -4.q]
Cy=B_K{+8;A_,-1)
K=8,4_,-1)
K,=b}[28C—K(2B6-7)
K,=B 8y;A_,~1) 8,4, -1

Dy=(@2-a)(l-a)Q~BC}/K —CA_Bo(1~a —B)

D, =b2D,[A_(286+0)— 2BCy/K,]

Dy=B _C[B(B-20—B +2) — (1—a +q)(2—a +q)| +B2CIK 3 /K — 28
X (B+q)C4C /K + (- +q) (2~ +q)Q 3+C3B0A (@ +8—1)
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TABLE V. Value of the constants in Eq. (C9).

C,=2032-@)Q,

Cy=2B _K,+3lvid@d_, —1)+88" @4 _, -1)

Ky=4bip Clan

Ry=B I8M"@_,-1)-88i@A_, -1 +8{1" @ _, -1
-3

D=2C1"A_p_(1-a—p)

D,=K,[(2 - o) (1— &)@, — BCY/K,1/K} +bIA_(2B6 + ) D,

Dy=2B CP™YBE - 20— B+2¢) — (1 —a +¢)(2 —a +q)]
+B2CYK o/K — 2B (8 +q) CP Ty,
FCIH _CE)BO(8 o —DA,

From our discussion of changes of variable in
Sec. II B, we note that if we employ a nonzero §
with g=1- o -, we may set b%=0.

Evaluating the consequences of (4.1) and (4.3) we
find on the coexistence surface:

V=@, [tP 0+ @, [t[>27P +Q,[t[* ', (C5a)
C=C,|t|B+Cy[t|P 2 +Cy|t]| B, (C5b)
D,=K,|t| Y +K, [t]| B~ +K,|t]*Y, (C5¢)
D, =Dy +D,|t] "% +Dy|t]|"2%" B 4D, [¢]9"%. (C5d)

The constants in (C5) are given in Table IV. The
independent parameters have increased to @,, C,,
Ky Qs Csy Kiy A,, and B,.

In the simple revised-scaling scheme of Sec. III,
p—t and pu -t scaling, although handled in similar
ways, cannot be compatible due to the intrinsic
differences in symmetry. Even a pure [{| 8 depen-
dence in p(v) leads to a |¢|?8 diameter in v(p).
However, if we set ¢=p, we produce |f|2® terms
in C (and |87 terms in D,). If we assumed that
u —t scaling were valid with a [¢]|'~® density diam-
eter, then p -t scaling would also be valid if in the
p —t scaling formalism, the following relations be-
tween the constants of (C5) held:

C;=C,C,/V,, (C6a)
K3 =3K,C,/V,, (C6b)
D;=D,C,/V,. (Cée)

These relations are particularly interesting in the
case A_=0 but B_#0, since (C3) would then imply
that the divergence of the curvature of the coexis-
tence surface, (9%p/at2),,"*® would be character-
ized by an exponent 6 with

TABLE VI. Values of constants in Eq. (C10).

Q1=8@,,1)

Q4 =b}2-0)A,Qf

@y =8u,,1

K} =8,4,,1)

Ky =34, K{(286+7) + @~ )81y A, , DQ{/K]]
K% =B 8;,4,,1)+8,,4,,1)

D} =@2-a)d-0)Q]

Dy =biD'A [286—0 +B6(1~a—B)/(1-a)l
Dy=(l-o-+g)@2—-a+q)Q%

0= (cn

Equation (C7) gives the same value of 6 as that
expected in the case of a smooth coexistence sur-
face u(T).

The generation of new singular terms in (C5)
changes the asymmetries across the coexistence
surface. To evaluate the asymmetries we first
observe that in addition to (2.19), (3.6), and (3.7),

Q:l;'quid - ans . (CB)

We find for the asymmetries

Clavid L ces =T, [ #]1-2 4+ T, | ] B4, (C9a)

Dlsiquid_DiaS:RthIB‘1+[_{3lt|q-7; (C9Db)

DI — DI <, ]+, 11295+ B, | 1]
(C9c)

The constants in (C9) are given in Table V. We
observe that the amplitudes of the asymmetries
arising from the correction term cannot be evalu-
ated in terms of the amplitudes of the leading-or-
der singularities. The amplitude D, can be ex-
pressed in terms of leading-term amplitudes and
C, and K,. C, and K,, on the other hand, involve
derivatives of 8 and § which do not play a part in
any of the other amplitudes. Therefore, only the
difficult measurement of C,;, K,, and D, can give
a test of this extended revised-scaling approach.

On the critical isochore, Eqgs. (C1) and (C4) com-
bine to give

‘II=Q1t2-a+Qét3—2a+s+Qét2—a+q, (ClOa)
Dy=Kit™Y+K 8-+ K127, (C10b)
D, =Dy +Dit"%+Djt 722" B L phpe-a, (C10c)

The constants in Eq. (C10) are given in Table VI.
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