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Using Wolff’s cluster Monte Carlo simulations and numerical minimization within a mean field approach,
we study the low temperature phase diagram of water, adopting a cell model that reproduces the known
properties of water in its fluid phases. Both methods allow us to study the thermodynamic behavior of
water at temperatures, where other numerical approaches – both Monte Carlo and molecular dynamics
– are seriously hampered by the large increase of the correlation times. The cluster algorithm also
allows us to emphasize that the liquid–liquid phase transition corresponds to the percolation transition
of tetrahedrally ordered water molecules.
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1. Introduction

Water is possibly the most important liquid for life [1] and, at
the same time, is a very peculiar liquid [2]. In the stable liquid
regime its thermodynamic response functions behave qualitatively
differently than a typical liquid. The isothermal compressibility
KT , for example, has a minimum as a function of temperature at
T = 46 ◦C, while for a typical liquid KT monotonically decreases
upon cooling. Water’s anomalies become even more pronounced
as the system is cooled below the melting point and enters the
metastable supercooled regime [3].

Different hypotheses have been proposed to rationalize the
anomalies of water [4]. All these interpretations, but one, predict
the existence of a liquid–liquid phase transition in the supercooled
state, consistent with the experiments to date [4] and supported
by different models [2].

To distinguish among the different interpretations, many ex-
periments have been performed [5]. However, the freezing in the
temperature range of interest can be avoided only for water in con-
fined geometries or on the surface of macromolecules [4,6]. Since
experiments in the supercooled region are difficult to perform, nu-
merical simulations have played an important role in recent years
to help interpret the data. However, also the simulations at very
low temperature T are hampered by the glassy dynamics of the
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empirical models of water [7,8]. For these reasons it is impor-
tant to implement more efficient numerical simulations for simple
models, able to capture the fundamental physics of water but also
less computationally expensive. Here we introduce the implemen-
tation of a Wolff cluster algorithm [9] for the Monte Carlo (MC)
simulations of a cell model for water [10]. The model is able to
reproduce all the different scenarios proposed to interpret the be-
havior of water [11] and has been analyzed (i) with mean field
(MF) [10,12,13], (ii) with Metropolis MC simulations [8,14] and
(iii) with Wang–Landau MC density of state algorithm [15]. Re-
cent Metropolis MC simulations [8] have shown that very large
times are needed to equilibrate the system as T → 0, as a conse-
quence of the onset of the glassy dynamics. The implementation
of the Wolff clusters MC dynamics, presented here, allows us to
(i) drastically reduce the equilibration times of the model at very
low T and (ii) give a geometrical characterization of the regions of
correlated water molecules (clusters) at low T and show that the
liquid–liquid phase transition can be interpreted as a percolation
transition of the tetrahedrally ordered clusters.

2. The model

The system consists of N particles distributed within a volume
V in d dimensions. The volume is divided into N cells of volume
vi with i ∈ [1, N]. For sake of simplicity, these cells are chosen
of the same size, vi = V /N , but the generalization to the case
in which the volume can change without changes in the topol-
ogy of the nearest-neighbor (n.n.) is straightforward. By definition,
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Fig. 1. A pictorial representation of five water molecules in 3d. Two hydrogen bonds
(grey links) connect the hydrogens (in blue) of the central molecule with the lone
electrons (small gray lines) of two nearest neighbor (n.n.) molecules. A bond index
(arm) with q = 6 possible values is associated to each hydrogen and lone electron,
giving rise to q4 possible orientational states for each molecule. A hydrogen bond
can be formed only if the two facing arms of the n.n. molecules are in the same
state. Arms on the same molecule interact among themselves to mimic the O–O–
O interaction that drives the molecules toward a tetrahedral local structure. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

vi � v0, where v0 is the molecule hard-core volume. Each cell has
a variable ni = 0 for a gas-like or ni = 1 for a liquid-like cell. We
partition the total volume in a way such that each cell has at least
four n.n. cells, e.g., as in a cubic lattice in 3d or a square lattice
in 2d. Periodic boundary conditions are used to limit finite-size ef-
fects.

The system is described by the Hamiltonian [10]

H = −ε
∑
〈i, j〉

nin j − J
∑
〈i, j〉

nin jδσi j ,σ ji − Jσ
∑

i

ni

∑
(k,l)i

δσik,σil , (1)

where ε > 0 is the strength of the van der Waals attraction, J > 0
accounts for the hydrogen bond energy, with four (Potts) variables
σi j = 1, . . . ,q representing bond indices of molecule i with respect
to the four n.n. molecules j, δa,b = 1 if a = b and δa,b = 0 other-
wise, and 〈i, j〉 denotes that i and j are n.n. The model does not
assume a privileged state for bond formation. Any time two fac-
ing bond indices (arms) are in the same (Potts) state, a bond is
formed. The third term represents an intramolecular (IM) interac-
tion accounting for the O–O–O correlation [16], locally driving the
molecules toward a tetrahedral configuration. When the bond in-
dices of a molecule are in the same state, the energy is decreased
by an amount Jσ � 0 and we associate this local ordered config-
uration to a local tetrahedral arrangement [17]. The notation (k, l)i
indicates one of the six different pairs of the four bond indices of
molecule i (Fig. 1).

Experiments show that the formation of a hydrogen bond leads
to a local volume expansion [2]. Thus in our system the total vol-
ume is

V = N v0 + NHB vHB, (2)

where

NHB ≡
∑
〈i, j〉

nin jδσi j ,σ ji (3)

is the total number of hydrogen bonds, and vHB is the constant
specific volume increase due to the hydrogen bond formation.

3. Mean-field analysis

In the mean-field (MF) analysis the macrostate of the system
in equilibrium at constant pressure P and temperature T (NPT en-

semble) may be determined by a minimization of the Gibbs free
energy per molecule, g ≡ (〈H 〉 + P V − T S)/Nw , where

Nw =
∑

i

ni (4)

is the total number of liquid-like cells, and S = Sn + Sσ is the sum
of the entropy Sn over the variables ni and the entropy Sσ over
the variables σi j .

A MF approach consists of writing g explicitly using the ap-
proximations
∑
〈i, j〉

nin j → 2Nn2, (5)

∑
〈i, j〉

nin jδσi j ,σ ji → 2Nn2 pσ , (6)

∑
i

ni

∑
(k,l)i

δσik,σil → 6Nnpσ , (7)

where n = Nw/N is the average of ni , and pσ is the probability
that two adjacent bond indices σi j are in the appropriate state to
form a hydrogen bond.

Therefore, in this approximation we can write

V = N v0 + 2Nn2 pσ vHB, (8)

〈H 〉 = −2
[
εn + ( Jn + 3 Jσ )pσ

]
nN. (9)

The probability pσ , properly defined as the thermodynamic av-
erage over the whole system, is approximated as the average over
two neighboring molecules, under the effect of the mean-field h of
the surrounding molecules

pσ = 〈δσi j ,σ ji 〉h. (10)

The ground state of the system consists of all N variables ni = 1,
and all σi j in the same state. At low temperatures, the symmetry
will remain broken, with the majority of the σi j in a preferred
state. We associate this preferred state to the tetrahedral order of
the molecules and define mσ as the density of the bond indices
in the tetrahedral state, with 0 � mσ � 1. Therefore, the number
density nσ of bond indices σi j in the tetrahedral state is

nσ = 1 + (q − 1)mσ

q
. (11)

Since an appropriate form for h is [10]

h = 3 Jσ nσ , (12)

we obtain that 3 Jσ
q � h � 3 Jσ .

The MF expressions for the entropies Sn of the N variables ni ,
and Sσ of the 4Nn variables σi j , are then [12]

Sn = −kB N
(
n log(n) + (1 − n) log(1 − n)

)
, (13)

Sσ = −kB 4Nn
[
nσ log(nσ ) + (1 − nσ ) log(1 − nσ ) + log(q − 1)

]
,

(14)

where kB is the Boltzmann constant.
Equating

pσ ≡ n2
σ + (1 − nσ )2

q − 1
, (15)

with the approximate expression in Eq. (10), allows for solution of
nσ , and hence g , in terms of the order parameter mσ and n.

By minimizing numerically the MF expression of g with respect
to n and mσ , we find the equilibrium values n(eq) and m(eq)

σ and,
with Eqs. (4) and (2), we calculate the density ρ at any (T , P )

and the full equation of state. An example of minimization of g is
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Fig. 2. Numerical minimization of the molar Gibbs free energy g in the mean field
approach. The model’s parameters are J/ε = 0.5, Jσ /ε = 0.05, vHB/v0 = 0.5 and
q = 6. In each panel we present g (dashed lines) calculated at constant P and dif-
ferent values of T . The thick line crossing the dashed lines connects the minima
m(eq)

σ of g at different T . Upper panel: P v0/ε = 0.7, for T going from kB T /ε = 0.06
(top) to kB T /ε = 0.08 (bottom). Middle panel: P v0/ε = 0.8, for T going from
kB T /ε = 0.05 (top) to kB T /ε = 0.07 (bottom). Lower panel: P v0/ε = 0.9, for T
going from kB T /ε = 0.04 (top) to kB T /ε = 0.06 (bottom). In each panel dashed
lines are separated by kBδT /ε = 0.001. In all the panels m(eq)

σ increases when T
decreases, being 0 (marking the absence of tetrahedral order) at the higher temper-
atures and 	 0.9 (high tetrahedral order) at the lowest temperature. By changing T ,
m(eq)

σ changes in a continuous way for P v0/ε = 0.7 and 0.8, but discontinuous for
P v0/ε = 0.9 and higher P .

presented in Fig. 2 where, for the model’s parameters J/ε = 0.5,
Jσ /ε = 0.05, vHB/v0 = 0.5, q = 6, a discontinuity in m(eq)

σ is ob-
served for P v0/ε > 0.8. As discussed in Refs. [10,14] this discon-
tinuity corresponds to a first order phase transition between two
liquid phases with different degree of tetrahedral order and, as a
consequence, different density. The higher P , at which the change
in m(eq)

σ is continuous, corresponds to the pressure of a liquid–
liquid critical point (LLCP). The occurrence of the LLCP is consistent

with one of the possible interpretations of the anomalies of water,
as discussed in Ref. [12]. However, for different choices of parame-
ters, the model reproduces also the other proposed scenarios [11].

4. The simulation with the Wolff’s clusters Monte Carlo
algorithm

To perform MC simulations in the NPT ensemble, we consider
a modified version of the model in which we allow for continuous
volume fluctuations. To this goal, (i) we assume that the system
is homogeneous with all the variables ni set to 1 and all the cells
with volume v = V /N; (ii) we consider that V ≡ V MC + NHB vHB ,
where V MC � N v0 is a dynamical variable allowed to fluctuate in
the simulations; (iii) we replace the first (van der Waals) term of
the Hamiltonian in Eq. (1) with a Lennard-Jones potential with at-
tractive energy ε > J and with a hard-core at distance r0

U W (r) ≡
{∞ if r � r0,

ε
[
(

r0
r )12 − (

r0
r )6

]
if r > r0,

(16)

where r0 ≡ (v0)
1/d where d is set to 2 (2d case); the distance be-

tween two n.n. molecules is (V /N)1/d , and the distance r between
two generic molecules is the Cartesian distance between the cen-
ter of the cells in which they are included.

The simplification (i) could be removed, by allowing the cells
to assume different volumes vi and keeping fixed the number of
possible n.n. cells. However, the results of the model under the
simplification (i) compares well with experiments [12]. Further-
more, the simplification (i) allows to drastically reduce the com-
putational cost of the evaluation of the U W (r) term from N(N − 1)

to N − 1 operations. The changes (i)–(iii) modify the model used
for the mean field analysis and allow off-lattice MC simulations for
a cell model in which the topology of the molecules (i.e. the num-
ber of n.n.) is preserved. The comparison of the mean field results
with the MC simulations show that these changes do not modify
the physics of the system.

We perform MC simulations with N = 2500 and N = 10000
molecules, each with four n.n. molecules, at constant P and T , in
2d, and with the same parameters used for the mean field analysis.
To each molecules we associate a cell on a square lattice. The Wolff
algorithm is based on the definition of a cluster of variables cho-
sen in such a way to be thermodynamically correlated [18,19]. To
define the Wolff cluster, a bond index (arm) of a molecule is ran-
domly selected; this is the initial element of a stack. The cluster
is grown by first checking the remaining arms of the same initial
molecule: if they are in the same Potts state, then they are added
to the stack with probability psame ≡ 1 − exp(−β Jσ ) [9], where
β ≡ (kB T )−1. This choice for the probability psame depends on the
interaction Jσ between two arms on the same molecule and guar-
antees that the connected arms are thermodynamically correlated
[19]. Next, the arm of a new molecule, facing the initially chosen
arm, is considered. To guarantee that connected facing arms corre-
spond to thermodynamically correlated variables, is necessary [18]
to link them with the probability pfacing ≡ 1 − exp(−β J ′) where
J ′ ≡ J − P vHB is the P -dependent effective coupling between two
facing arms as results from the enthalpy H + P V of the system.
It is important to note that J ′ can be positive or negative depend-
ing on P . If J ′ > 0 and the two facing arms are in the same state,
then the new arm is added to the stack with probability pfacing;
if J ′ < 0 and the two facing arms are in different states, then the
new arm is added with probability pfacing [20]. Only after every
possible direction of growth for the cluster has been considered
the values of the arms are changed in a stochastic way; again we
need to consider two cases: (i) if J ′ > 0, all arms are set to the
same new value

σ new = (
σ old + φ

)
mod q, (17)
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where φ is a random integer between 1 and q; (ii) if J ′ < 0, the
state of every single arm is changed (rotated) by the same random
constant φ ∈ [1, . . .q]
σ new

i = (
σ old

i + φ
)

mod q. (18)

In order to implement a constant P ensemble we let the vol-
ume fluctuate. A small increment �r/r0 = 0.01 is chosen with
uniform random probability and added to the current radius of
a cell. The change in volume �V ≡ V new − V old and van der
Waals energy �EW is computed and the move is accepted with
probability min(1,exp[−β(�EW + P�V − T �S)]), where �S ≡
−NkB ln(V new/V old) is the entropic contribution.

5. Monte Carlo correlation times

The cluster MC algorithm described in the previous section
turns out to be very efficient at low T , allowing to study the
thermodynamics of deeply supercooled water with quite intriguing
results [21]. To estimate the efficiency of the cluster MC dynamics
with respect to the standard Metropolis MC dynamics, we evalu-
ate in both dynamics, and compare, the autocorrelation function of
the average magnetization per site Mi ≡ 1

4

∑
j σi j , where the sum

is over the four bonding arms of molecule i,

CM(t) ≡ 1

N

∑
i

〈Mi(t0 + t)Mi(t0)〉 − 〈Mi〉2

〈M2
i 〉 − 〈Mi〉2

. (19)

For sake of simplicity, we define the MC dynamics autocorrela-
tion time τ as the time, measured in MC steps, when CM(τ ) = 1/e.
Here we define a MC step as 4N updates of the bond indices fol-
lowed by a volume update, i.e. as 4N + 1 steps of the algorithm.

In Fig. 3 we show a comparison of CM(t) for the Metropolis and
Wolff algorithm implementations of this model for a system with
N = 50×50, at three temperatures along an isobar below the LLCP,
and approaching the line of the maximum, but finite, correlation
length, also known as Widom line T W (P ) [12]. In the top panel,
at T � T W (P ) (kB T /ε = 0.11, P v0/ε = 0.6), we find a correlation
time for the Wolff’s cluster MC dynamics τW ≈ 3 × 103, and for
the Metropolis dynamics τM ≈ 106. In the middle panel, at T >

T W (P ) (kB T /ε = 0.09, P v0/ε = 0.6) the difference between the
two correlation times is larger: τW ≈ 2.5 × 103, τM ≈ 3 × 106. The
bottom panel, at T 	 T W (P ) (kB T /ε = 0.06, P v0/ε = 0.6) shows
τW ≈ 3.7 × 102, while τM is beyond the accessible time window
(τM > 107).

Since as T → 0 the system enters a glassy state [8], the effi-
ciency τM/τW grows at lower T allowing the evaluation of thermo-
dynamics averages even at T � TC [21]. In particular, the cluster
MC algorithm turns out to be very efficient when approaching the
Widom line in the vicinity of the LLCP, with an efficiency of the
order of 104. We plan to analyze in a systematic way how the ef-
ficiency τM/τW grows on approaching the LLCP. This result is well
known for the standard liquid–gas critical point [9] and, on the
basis of our results, could be extended also to the LLCP. However,
this analysis is very expensive in terms of CPU time and goes be-
yond the goal of the present work. Nevertheless, the percolation
analysis, presented in the next section, helps in understanding the
physical reason for this large efficiency.

The efficiency is a consequence of the fact that the average
size of Wolff’s clusters changes with T and P in the same way
as the average size of the regions of correlated molecules [19],
i.e. a Wolff’s cluster statistically represents a region of correlated
molecules. Moreover, the mean cluster size diverges at the critical
point with the same exponent of the Potts magnetic susceptibil-
ity [19], and the clusters percolate at the critical point, as we will
discuss in the next section.

Fig. 3. Comparison of the autocorrelation function CM (t) for the Metropolis (circles)
and Wolff (squares) implementation of the present model. We show the tempera-
tures kB T /ε = 0.11 (top panel), kB T /ε = 0.09 (middle panel), kB T /ε = 0.06 (bottom
panel), along the isobar P v0/ε = 0.6 close to the LLCP for N = 50 × 50.

6. Percolating clusters of correlated molecules

The efficiency of the Wolff cluster algorithm is a consequence
of the exact relation between the average size of the finite clusters
and the average size of the regions of thermodynamically corre-
lated molecules. The proof of this relation at any T derives in
a straightforward way from the proof for the case of Potts vari-
ables [19]. This relation allows one to identify the clusters built
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during the MC dynamics with the correlated regions and em-
phasizes (i) the appearance of heterogeneities in the structural
correlations [22], and (ii) the onset of percolation of the clusters
of tetrahedrally ordered molecules at the LLCP [23], as shown in
Fig. 4.

A systematic percolation analysis [18] is beyond the goal of this
report, however configurations such as those in Fig. 4 allow the
following qualitative considerations. At T > TC the average cluster
size is much smaller than the system size. Hence, the structural
correlations among the molecules extends only to short distances.
This suggests that the correlation time of a local dynamics, such as
Metropolis MC or molecular dynamics, would be short on average
at this temperature and pressure. Nevertheless, the system appears
strongly heterogeneous with the coexistence of large and small
clusters, suggesting that the distribution of correlation times eval-
uated among molecules at a given distance could be strongly het-
erogeneous. The clusters appear mostly compact but with a frac-
tal surface, suggesting that borders between clusters can rapidly
change.

At T 	 TC there is one large cluster, in red on the right of the
middle panel of Fig. 4, with a linear size comparable to the sys-
tem linear extension and spanning in the vertical direction. The
appearance of spanning clusters shows the onset of the percola-
tion geometrical transition. At this state point the correlation time
of local, such as Metropolis MC dynamics or molecular dynamics
would be very slow as a consequence of the large extension of the
structurally correlated region. On the other hand, the correlation
time of the Wolff’s cluster dynamics is short because it changes in
one single MC step the state of all the molecules in clusters, some
of them with very large size. Once the spanning cluster is formed,
it breaks the symmetry of the system and a strong effective field
acts on the molecules near its border to induce their reorientation
toward a tetrahedral configuration with respect the molecules in
the spanning cluster.

As shown in Fig. 4, the spanning cluster appears as a fractal
object, with holes of any size. The same large distribution of sizes
characterizes also the finite clusters in the system. The absence of
a characteristic size for the clusters (or the holes of the spanning
cluster) is the consequence of the fluctuations at any length-scale,
typical of a critical point.

At T < TC the majority of the molecules belongs to a single
percolating cluster that represents the network of tetrahedrally or-
dered molecules. All the other clusters are small, with a finite
size that corresponds to the regions of correlated molecules. The
presence of many small clusters gives a qualitative idea of the het-
erogeneity of the dynamics at these temperatures.

7. Summary and conclusions

We describe the numerical solution of mean field equations and
the implementation of Wolff cluster MC algorithm for a cell model
for liquid water. The mean field approach allows us to estimate in
an approximate way the phase diagram of the model at any state
point predicting intriguing new results at very low T [21].

To explore the state points of interest for these predictions
the use of standard simulations, such as molecular dynamics or
Metropolis MC, is not effective due to the onset of the glassy
dynamics [8]. To overcome this problem and access the deeply su-
percooled region of liquid water, we adopt the Wolff cluster MC
algorithm. This method, indeed, allows us to greatly accelerate the
autocorrelation time of the system. Direct comparison of Wolff’s
dynamics with Metropolis dynamics in the vicinity of the liquid–
liquid critical point shows a reduction of the autocorrelation time
of a factor at least 104.

Furthermore, the analysis of the clusters generated during the
Wolff MC dynamics allows to emphasize how the regions of tetra-

Fig. 4. Three snapshots of the system with N = 100 × 100, showing the Wolff’s clus-
ters of correlated water molecules. For each molecule we show the states of the
four arms and associate different colors to different arm’s states. The state points
are at pressure close to the critical value PC (P v0/ε = 0.72 	 PC v0/ε) and T > TC

(top panel, kB T /ε = 0.0530), T 	 TC (middle panel, kB T /ε = 0.0528), T < TC (bot-
tom panel, kB T /ε = 0.0520), showing the onset of the percolation at T 	 TC .

hedrally ordered molecules build up on approaching the liquid–
liquid critical point, giving rise to the backbone of the tetrahedral
hydrogen bond network at the phase transition [23]. The coexis-
tence of clusters of correlated molecules with sizes that change
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with the state point gives a rationale for the heterogeneous dy-
namics observed in supercooled water [22].
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