PHYSICA

ELSEVIER Physica A 239 (1997) 255-266

Stock market dynamics and turbulence:
parallel analysis of fluctuation phenomena
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Abstract

We report analogies and differences between the fluctuations in an economic index and the
fluctuations in velocity of a fluid in a fully turbulent state. Specifically, we systematically compare
(i) the statistical properties of the S&P 500 cash index recorded during the period January 84—
December 89 with (ii) the statistical properties of the velocity of turbulent air measured in
the atmospheric surface layer about 6 m above a wheat canopy in the Connecticut Agricultural
Research Station. We find non-Gaussian statistics, and intermittency, for both processes (i) and
(ii) but the deviation from a Gaussian probability density function are different for stock market
dynamics and turbulence.

Stock exchange time series have been modelled as stochastic processes since the
seminal study of Bachelier published at the beginning of this century [1]. Several
stochastic models have been proposed and tested in the economics [ 2—9] and physics
[ 10—14] literature. Alternative approaches based on the paradigm of chaotic dynamics
have been also proposed [ 15—17]. Several statistical techniques (e.g. the measure of the
probability density function, the measure of the spectral density, etc.) commonly used
in the study of the stochastic processes have been used for a long time in turbulence
[18,19]. Moreover, in recent years there has been much effort to select stochastic process
with statistical properties that are close to the one observed in turbulence [20]. Here
we report analogies and differences between the quantitative measures of fluctuations
in an economic index (i) and the fluctuations in velocity of a fluid in a fully turbulent
state (i1). We observe non-Gaussian statistics, and intermittency, for both processes (i)
and (ii) but the time evolution of the second moment and the shape of the probability
density functions are different for stock market dynamics and turbulence.
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Fig. 1. (a) Time evolution of the S&P 500, sampled with a time resolution Ar=1h, over the period
January 1984 -December 1989. (b) Hourly variations of the S&P 500 index in the 6-year period January
1984-December 1989. (c) Time evolution of the wind velocity recorded in the atmosphere at very high
Reynolds number; the Taylor microscale Reynolds number is of the order of 1500. The time units are given
in arbitrary units. (d) Velocity differences of the time series given in (c).
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Fig. 1. contd.

The economic data set consists of all 1447514 records of the S&P 500 cash index
recorded during the period January 84-December 89. In our analysis we define a “trad-
ing time” starting from the opening of the day until the closing, and then continuing
with the opening of the next trading day. The time intervals between successive records
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Fig. 2. (a) Standard deviation az{At) of the probability distribution P(Z) characterizing the increments Zx,(¢)
plotted double logarithmically as a function of As for the S&P 500 time series. After a time interval of
superdiffusive behavior (0 < Ar<15min) a diffusive behavior close to the one expected for a random process
with independent identically-distributed increments is observed; the measured diffusion exponent 0.53 is close
to the theoretical value % (b) Standard deviation oy(At) of the probability distribution P(U) characterizing
the velocity increments Up,(¢) plotted double logarithmically as a function of At for the velocity difference
time series in turbulence. After a time interval of superdiffusive behavior (0 < Ar<10), a diffusive behavior
close to the one expected for a fluid in the inertial range is observed (the measured diffusion exponent 0.33
is close to the theoretical value %). (c) Spectral density of the S&P 500 time series. The 1/f2 power-law
behavior expected for a random process with increments independent and identically distributed is observed
over a frequency interval of more than 4 orders of magnitude. (d) Spectral density of the velocity time series.
The 1/ inertial range (low frequency) and the dissipative range (high frequency) are clearly observed.
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Fig. 2. contd.

are not fixed: the average value between successive records is close to 1 min during
1984 and 1985 and close to 15s during 1986-1989. From this database, we select the
complete set of non-overlapping records separated by a time interval Ar+eAr (where ¢
is the tolerance, always less than 0.035). We denote the value of the S&P 500 as y(z)
(Fig. 1(a)), and the successive variations of the S&P index is Za, (1) = v(1)— y(t — At)
(Fig. 1(b)).
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The turbulence data were kindly provided by Prof. K.R. Sreenivasan. Measurements
were made [21] in the atmospheric surface layer about 6 m above a wheat canopy in
the Connecticut Agricultural research station. The Taylor microscale Reynolds number
R, was of the order of 1500. Velocity fluctuations were measured using the standard
hot-wire velocimeter operated in the constant temperature mode on a DISA 55MOI
anemometer. The file consists of 130000 velocity records v(f) digitized and linearized
before processing (Fig. 1{c)). The associated velocity differences Ux,(2) = v(z) — v(t ~
At) is shown in Fig. 1(d).

We focus attention on the dynamics of the index variation Za,(?) and on the dy-
namics of the velocity difference Ua,(¢), and denote by P(Z) and P(U') the associated
probability density functions (PDFs). We perform several tests to detect the properties
of the investigated stochastic process.

By measuring the time dependence of the standard deviations oz(At) and oy (At)
of P(Z) and P(U), we find that:

(i) In the case of the S&P 500 index variations (Fig. 2(a)) the time dependence of
the standard deviation, when A¢ > 15 min fits well the behavior

o7(At) o (A1) (1)

The exponent is close to the typical value of 0.5 observed in random processes with
independent increments.

(ii) The velocity difference of the fully turbulent fluid shows a time dependence of
the standard deviation, fitting the behavior (Fig. 2(b))

cu(AL) x (A1) (2)

which is observed in short-time anticorrelated random processes.

Similar conclusions are reached if we measure the spectral density of the time series
»(t) and v(¢). Economic data (Fig. 2(c)) have the spectral density typical of a Brownian
motion, S(f) x f~2 [22]. For turbulence data (Fig. 2(d)) the spectral density shows
a wide inertial range (see, e.g., [18]).

Next we present a different kind of analysis of the PDFs P(Z) and P(U) which turns
out to be quite powerful for the description of experimental results. Specifically, we
study the dependence on A¢ of the point of each PDF that is least affected by the noise
introduced by the finiteness of the data set [23] — P(0), the “probability of return”
to the origin. In Figs. 3(a) and (b) we show double logarithmic plots of P(Z=0)
and P(U =0) as functions of the time interval A between successive observations.
The deviation from a Gaussian process is shown by plotting on the same figure the
value of P,(0) determined starting from the measured values of o(Az) under the hy-
pothesis of Gaussian processes — using the equation

1

F0)= Vara(Ar) ®
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Fig. 3. (a) S&P 500 index. Probability of retum to the origin P(Z =0) (o) and F,(Z =90) (filled squares)
(see Eq. (3)) as functions of the time sampling interval Af. The two measured quantities differ in the full
interval implying that the profile of the PDF must be non-Gaussian. A power-law behavior is observed for
the entire time interval spanning three orders of magnitude. The slope of the best linear fit is —0.71 £0.023.
(b) Velocity of the fully turbulent fluid. Probability of return to the origin P(0) (¢} and F,(0) (filled squares)
(see Eq. (3)) as functions of the time sampling interval Ar. Again, the two measured quantities differ in
the full interval, implying that the profile of the PDF must be non-Gaussian. However in this case, a single
scaling power-law behavior does not exist for the entire time interval spanning three orders of magnitude.
The slope of the best linear fit (which is of quite poor quality) is —0.59 & 0.11. (¢) Experimental PDF
P(Z) of the S&P 500 index variations Za,(t) observed at time intervals Ar=1min (circles). In the figure
we also plot as a solid line the symmetrical Lévy stable distribution of index x=1.40 and scale factor
y=0.00375 (solid line). The parameters characterizing the stable distribution are obtained from the analysis
of the scaling properties of the experimental data on the probability of return to the origin P(Z = () [13]. (d)
Experimental PDF P(U) of the velocity difference Ua,(¢) of a fluid in fully developed turbulence observed
at the highest temporal resolution available Ar=1 (circles). [n the figure we also plot as a solid line the
symmetrical stretched exponential distribution of index m = 0.61 and scale factor / = 0.0654 (solid line). The
characterizing parameters of the stretched exponential distribution are obtained starting from the experimental
value of the probability of return to the origin P(U =0).

The clear difference between P(0) and £,(0) shows that both PDFs have a non-Gaussian
distribution, but the detailed shape and the scaling properties of the two PDFs are
different.

A scaling compatible with a Lévy stable process [24-26] is observed for economic
data (Fig. 3(a))} and indeed a Lévy distribution reproduces quite well the central part of
the distribution of the S&P 500 index variations (Fig. 3(c)). The Lévy stable modeling
with an index a« =140, obtained from the best fit of the probability of return to the
origin data, describes the data well over a three order of magnitude time interval
(ranging from 1 to 1000 minutes). The tails deviate from the Lévy profile when Z > 0.3,
ensuring a finite variance to the stochastic process [14].
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A similar scaling does not exist for turbulence data over a wide time interval
(Fig. 3(b)). By using the measured values of P(0) and oy and hypothesizing a stretched
exponential PDF[21], it is possible to describe quite well the experimental PDF of the
velocity difference with a stretched exponential distribution

__m _lm
P(U)_ZII/MF(I/m)eXp( ! ) @

characterized by a (time-dependent) stretching exponent m and a scale factor /. In
Fig. 3(d) we show the experimental probability density function measured for At=1,
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together with a stretched exponential distribution characterized by the parameter
m=0.61.

The variance of index variations (Fig. 4(a)) and a representative component of the
rate of dissipation of the kinetic energy &(t), namely ¢ = (dv/dt)? (Fig. 4(b)) show an
intermittent profile [27]. Considerable experimental evidence that the rate of dissipation
of fully developed turbulence is multifractal has been obtained [28,29], but a more
detailed study of stock exchange data is needed before drawing conclusions concerning
the usefulness of a multifractal model in the time evolution of the index variance.

The parallel analysis of the statistical properties of an economic index and the
velocity of a turbulent fluid in a three-dimensional space shows that the two pro-
cesses are quantitatively different. The absence of an inertial range associated with
the economic time series and the differences observed in the scaling properties of the
“probability of return” to the origin clearly rule out the possibility that a Navier—Stokes
type of equation might describe the dynamics of the index in a three-dimensional
space. However, for d-dimensional turbulence with non-integral 4 [30], it is pos-
sible to select a non-integral dimension (&2.05) at which the spectral density of
the turbulent fluid shows the same behavior observed in uncorrelated stochastic pro-
cesses. Thus, our results cannot rule out the possibility that stock indices are con-
trolled by a Navier-Stokes type of equation in an abstract space of non-integral
dimension.

The parallel analysis of the statistical properties on an important stock exchange
index and the velocity of the air in a fully turbulent state shows that an interaction
between economics and statistical physics may be useful — i.e., it may be fruitful
to pursue analogies and differences between various stochastic models developed in
economics {3,6-8] and the various approaches used in turbulence theory [18,19,28].
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Fig. 4. (a) 1 min variance of the PDF P(Z) for the variations Za,(t) of the S&P 500 index measured in a
1h time interval. A strong intermittent behavior is observed on a short time scale. (b) ¢'(t) , representative
component of the rate of dissipation of the kinetic energy &(t) plotted at the highest time resolution available,
and showing the typical intermittent profile of turbulent fluids.
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The exchange of concepts, models and techniques of data analysis offers the opportunity
to characterize qualitatively and quantitatively analogies and differences between these
two stochastic processes.
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Note added in proof

Part of this work was also presented as a poster at the Sixteenth workshop on
Dynamics Days held in Lyon on June 28th—July 1st 1995. Analogies and differences
with turbulence have also been investigated by other groups, with a variety of dif-
ferent conclusions [31,32]. A discussion of some aspects of this problem is presented
in [33].
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