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FIG. 3 a, Map of the current flow in the superconducting filaments.
White and red represent high current density. This pattern is obtained
by taking the x-derivative of the field maps. Current flow is restricted to
narrow regions mostly along the edges of the filaments. A comparison
with Fig. 1a identifies these regions as phase-pure well aligned Bi-2223.
The apparent current flow in isolated regions (marked ‘T’ in Fig. 1a) or
outside the superconductor (between the second and third filaments)
is caused by the next stack of filaments just under the exposed surface

or no current at all. These sections are either isolated out-
growths, or are disconnected from a continuous current path
due to the positioning of second-phase particles. Small-angle
grain boundaries between Bi-2223 grain colonies (misalignment
angle 6~ 15°, see positions marked ‘GB’ in Figs la and 36) do
not affect the current flow significantly. Current flow from one
edge of a filament to the other occurs along misaligned Bi-2223
grain colonies (for example, position marked ‘MC’ in Fig. 1a).

Profiles of the current density at 30 K and 77 K are shown in
Fig. 2b. The large values at the interfaces are clearly seen. Even
at 77 K values of ~8 x 10* A cm™2 are observed. The numerical
uncertainties caused by the unknown aspect ratios of the current-
carrying grain colonies are <25%. The above expression for the
transport current in terms of the field gradient is not valid for
the space between the current-carrying grain colonies; thus the
negative values for J. in Fig. 2b should be ignored.

In the present sample four interconnections between filaments
(marked ‘IN’ in Fig. 1a) are observed, only one of which is
found to contribute to current transport. The coupling between
filaments is an important parameter for minimizing losses in
composite conductors carrying alternating current'®. Clearly,
magneto-optical imaging of transport currents is the ideal way
to investigate filament coupling in composites with large filament
numbers where interconnections are frequent.
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as discussed above. b and ¢, microstructure of the areas indicated by
boxes in a. Overlaid are contour lines of the current density at levels of
1.4 x 10° (red), 0.8 x 10° (yellow) and 0.4 x 10° A cm 2 (blue). Second-
phase particles (marked ‘SP’) cause frequent interruptions of the cur-
rent path, whereas small-angle grain boundaries (‘GB’) do not degrade
current flow. Well textured Bi-2223 grain colonies that carry only little
current or no current at all are marked as ‘NC’. Scale bar, 10 um.
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THE large-scale dynamical properties of some physical systems
depend on the dynamical evolution of a large number of nonlinearly
coupled subsystems. Examples include systems that exhibit self-
organized criticality’ and turbulence’®. Such systems tend to
exhibit spatial and temporal scaling behaviour—power-law behav-
iour of a particular observable. Scaling is found in a wide range
of systems, from geophysical® to biological®. Here we explore the
possibility that scaling phenomena occur in economic systems—
especially when the economic system is one subject to precise rules,
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FIG. 1 a, Probability distributions P(Z) of the S&P 500 index variations
Z(t) observed at time intervals At, which range from 1 to 1,000 min. By
increasing At, a spreading of the probability distribution characteristic
of a random walk is observed. b, Probability of return P(O) of Z(t) as a
function of the time sampling intervals At. A scaling power-law behav-
iour is observed for time intervals spanning three orders of magnitude.
The slope of the best-fit straight line is —0.712 £ 0.025. By using equa-
tion (2), from this value we obtain the index ¢ =1.40 + 0.05 characteriz-
ing the Lévy distribution. Typical estimated errors are shown. ¢, Scaled
plot of the probability distributions shown in a. All the data collapse
on the At=1 min distribution by using the scaling transformations of
equations (3a) and (3b), with ¢ =1.40. The points outside the average
behaviour define the noise level of that specific distribution.

as is the case in financial markets®®. Specifically, we show that
the scaling of the probability distribution of a particular economic
index—the Standard & Poor’s 500—can be described by a non-
gaussian process with dynamics that, for the central part of the
distribution, correspond to that predicted for a Lévy stable
process’ . Scaling behaviour is observed for time intervals span-
ning three orders of magnitude, from 1,000 min to 1 min, the latter
being close to the minimum time necessary to perform a trading
transaction in a financial market. In the tails of the distribution
the fall-off deviates from that for a Lévy stable process and is
approximately exponential, ensuring that (as one would expect for
a price difference distribution) the variance of the distribution is
finite. The scaling exponent is remarkably constant over the six-
year period (1984-89) of our data. This dynamical behaviour of
the economic index should provide a framework within which to
develop economic models.

A problem of interest for both practical and theoretical
reasons concerns the distribution of the variations of share price
and the dynamical evolution of this distribution. The most
widely accepted models state that the variation of share price is
a random process. For the distribution of the index returns
(which are the difference between two successive logarithms of
price), principal proposals include: (1) a normal distribution'>"?,
(2) a Lévy stable distribution'*"*, and (3) leptokurtic distribu-
tions generated by a mixture of distributions'®, or (4) by ARCH/
GARCH models'”'®. The most obvious difference between the
different models involves the wings of the distribution. Distin-
guishing between the processes by comparing the distribution
wings can be quite difficult because data sets are limited. Indeed,
different conclusions about the distribution of price variations
have been published'>'>'*"**, In our analysis, we investigate
both price difference and returns, and we find the two stochastic
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processes have quite similar statistical properties in the high-
frequency regime.

We have undertaken a statistical study of timescales as short
as 1 min, a value close to the minimum time needed to perform
a transaction in the market. Specifically, we investigate the
dynamics of a price index of one of the largest financial markets
in the world: the New York Stock Exchange. We study the
Standard & Poor’s 500 index during the six-year period from
January 1984 to December 1989, and we find that the S&P 500
is a stochastic process remarkably well described by a Lévy stable
symmetrical process> except for the most rare events. For a time
interval spanning three orders of magnitude, the dynamics of
the central part of the distribution are in agreement with the
predictions of a Lévy stable process.

Data were obtained from the Chicago Mercantile Exchange.
They consist of all 1,447,514 records of the S&P 500 cash index
during the period studied. The time intervals between successive
records are not fixed: the average value between successive
records is close to 1 min during 1984 and 1985 and close to 15 s
during 1986-89. We define the trading time as a continuous time
starting from the opening of the day until the closing, and then
continuing with the opening of the next trading day. We checked
that overnight price differences?® do not affect the scaling proper-
ties of the stochastic process. From this data base, we select the
complete set of non-overlapping records separated by a time
interval Ar+ ¢Atr (where ¢ is the tolerance, always less than
0.035). We denote the value of the S&P 500 as y(¢), and the
successive variations of the S&P index is Z(¢) = y(¢) — y(1— At).

To characterize quantitatively the experimentally observed
process, we first determine the probability distribution P(Z) of
index variations for different values of Ar. We select At values
that are logarithmically equally spaced ranging from 1 to
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1,000 min. The number of data in each set decreases from the
maximum value of 493,545 (At=1 min) to the minimum value
of 562 (At=1,000 min).

Figure la is a semilogarithmic plot of P(Z) obtained for seven
different values of Az. As expected for a random process, the
distributions are roughly symmetrical and are spreading when
At increases. We also note that the distributions are leptokurtic,
that is, they have wings larger than expected for a normal pro-
cess. A determination of the parameters characterizing the distri-
butions is difficult if one uses methods that mainly investigate
the wings of distributions, especially because larger values of At
imply a reduced number of data.

Therefore we use a different approach: we study the ‘probabil-
ity of return’ P(Z=0) as a function of At. With this choice we
investigate the point of each probability distribution that is least
affected by the noise introduced by the finiteness of the experi-
mental data set. In Fig. 15, we show P(0) versus At in a log-
log plot. The data are fitted well by a straight line of slope
—0.712+0.025. We observe a non-normal scaling behaviour
(slope # —0.5) in an interval of trading time ranging from 1 to
1,000 min. This experimental finding agrees with the theoretical
model of a Lévy walk or Lévy flight’''. In fact, if the central
region of the distribution is well described by a Lévy stable
symmetrical distribution,

Lz An=t r exp (—yAtg®) cos (gZ)dg (1)
T 0

of index a and scale factor y at At=1, where exp (—yAt|q|“) is
the characteristic function of the symmetrical stable process,
then the probability of return is given by

r'(/a)
ma(yAn'®

where I' is the Gamma function. By using the value
—0.712+0.025 from the data of Fig. 15 we obtain the index a =
1.40+0.05.

We also check if the scaling extends over the entire probability
distribution as well as Z=0. To this end, we first note that
Lévy stable symmetrical distributions rescale under the trans-
formations

P0)=L,(0, At)= (2

4
S=W (33)
and
_L(Z, Ar)
Lu(Zi D=8 57 (3b)

Figure 1c shows the distributions of Fig. la plotted in scaled
variables. All the data collapse on the Az=1 min distribution
when we use equations (3a) and (3b) with a =1.40. From Fig.
lc we conclude that a Lévy distribution describes well the
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FIG. 2 Comparison of the At=1 min probability distribution with the
symmetrical Lévy stable distribution of index ¢ =1.40 and scale factor
¥ =0.00375 (solid line). The scale factor y is obtained from equation
(2) by using the experimental values of @ and P(0). The dotted line
shows the gaussian distribution with standard deviation o equal to the
experimental value 0.0508. The variations of price are normalized to
this value. Approximately exponential deviations from the Lévy stable
profile are observed for |Z|/c > 6.

dynamics of the probability distribution P(Z) of the random
process over time intervals spanning three orders of magnitude.

In Fig. 2, we compare the probability distribution observed
for Ar=1 min with the Lévy stable distribution of index a=
1.40. Note that the solid line is not simply a ‘fit’ to the data;
rather, the appropriate scale factor y=0.00375 is obtained by
using the experimental value of P(0) and equation (2). A good
agreement with the Lévy (non-gaussian) profile is observed for
almost three orders of magnitude when |Z|/o<6 and an
approximately exponential fall-off from the stable distribution
is observed for | Z| /o> 6; here o =0.0508 is the standard devia-
tion. Our results show a clear deviation of the tails of the distri-
bution from the Lévy profile.

The Lévy distribution has an infinite second moment (if
a <2). But our experimental finding of an exponential (or
stretched exponential) fall-off implies that the second moment
is finite, thereby resolving the question of how one could get
around the problem of an infinite variance if the Lévy distribu-
tion is used to describe the price difference distribution®*. This
conclusion might at first sight seem to contradict our observation
of Lévy scaling of the central part of the price difference distribu-
tion over fully three orders of magnitude. However, there is no
contradiction, because (for example), a recent study®’ finds that
Lévy scaling may hold over a long period of time for the dynam-
ics of ‘quasi-stable’ stochastic processes having a finite variance.

By using the Berry-Esseen theorem®®*’, we can estimate that
the maximal time needed to observe convergence for the price
differences to a gaussian process is of the order of 1 month. This
estimate is obtained by using the experimental values of (| Z|*>
and (Z?) observed in the high-frequency regime (for example
at Ar=1 minute). For our data set, we measure {|Z|*>=
0.605 x 107> and (Z?»=0.00257, and we set an upper bound of
the difference between the integral of the distribution and the
corresponding asymptotic normal process of 0.1. Our estimate
of roughly 1 month is in agreement with an independent empir-
ical study of the distribution of daily, weekly and monthly
returns, for which a progressive convergence to a gaussian
process is found*.

We also investigate the scaling properties of P(0) within each
year to determine if the scale index a is highly fluctuating from
year to year. The results of this analysis are shown in Fig. 3.
We also show the line best fitting P(0) of the entire set of data.
In different years, the graph of P(0) is always parallel to the
overall behaviour (dotted line) in a log-log plot. This implies
that the index a is roughly constant over the years. The scale
factor y (related to the vertical position of data in Fig. 3) varies
somewhat from year to year. It is higher (lower positions of the
experimental points in the figure) for periods of higher ‘volatility’
(an economic term indicating higher values of the variance of the
price variations). When the same analysis is performed monthly,
similar conclusions are obtained: « is roughly constant (a =
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FIG. 3 Probability of return P(O) of the S&P 500 index variations as a
function of the time sampling intervals observed in different years. The
same scaling behaviour of the complete set of data (dotted line) is
observed each year (data are parallel to the dotted line). The scale factor
v is slowly time-dependent, as the vertical positions of the probability of
return change from year to year.

1.38+0.14) and y fluctuates more than «, having bursts of activ-
ity localized in specific months (such as April 1987, and October
1987 and immediately following months).

We compare our experimental results with the statistical prop-
erties of the heteroskedastic stochastic process GARCH(1, 1)
(ref. 18). We simulate GARCH(1, 1) processes characterized by
control parameters close to the values obtained in the time-series
analysis of stock returns®. We find that the time evolution of
the probability density functions (PDFs) of the GARCH(1, 1)
process is quite different from that observed in the experimental
data. In particular, we investigate the probability of return to the
origin of the GARCH(1, 1) simulated process using the values of
the control parameters selected to mimic the experimental Az =
1 min PDF, and find the data are fitted well by a straight line
in a log-log plot, with slope —0.531+0.025. The scaling index
is therefore 1.88 +£0.09, a value close to 2 but 43% larger than
the value of 1.4 observed in the experimental data. O
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MoTILE cells of Escherichia coli aggregate to form stable patterns
of remarkable regularity when grown from a single point on certain
substrates. Central to this self-organization is chemotaxis, the
motion of bacteria along gradients of a chemical attractant that
the cells themselves excrete'. Here we show how these complex
patterns develop. The long-range spatial order arises from inter-
actions between two multicellular aggregate structures: a ‘swarm
ring’ that expands radially, and focal aggregates that have lower
mobility. Patterning occurs through alternating domination by
these two sources of excreted attractant (which we identify here
as aspartate). The pattern geometries vary in a systematic way,
depending on how long an aggregate remains active; this depends,
in turn, on the initial concentration of substrate (here, succinate).

Under certain conditions, cells of chemotactic strains of Esch-
erichia coli and Salmonella typhimurium excrete an attractant,
aggregate in response to gradients of that attractant, and form
patterns of varying cell density'. This process occurs only if
cells are chemotactic towards aspartate, and can be suppressed
by addition of aspartate or aspartate analogues. In E. coli, aggre-
gates form in the wake of a travelling circular band, producing
highly symmetrical patterns'. Their geometry depends on initial
conditions; for example, the concentration of growth substrate.
In S. typhimurium, aggregates arise from the centre of an
unstructured bacterial lawn, producing patterns with lower
symmetry’. The present work was undertaken to determine the
mechanism by which E. coli forms patterns with long-range spa-
tial order and why particular geometries arise at different initial
concentrations of substrate. Succinate and fumarate both work
well'; we used succinate.

Patterns appear within a certain range of succinate concentra-
tions (Fig. 1). The concentrations of growth substrate required
for each pattern vary from strain to strain, but for a given strain,
the succession of patterns observed with increasing concentra-
tions is fixed. At low concentrations of succinate, one sees a
single compact travelling band (swarm ring) that moves slowly
outwards (Fig. 1a). At higher concentrations, spots appear in
concentric rings in radial rows (that is, on a pseudo-rectangular
lattice), Fig. 1b, then in sets of intersecting spirals (that is, on
a pseudo-hexagonal lattice), Fig. l¢, and finally on a pseudo-
hexagonal lattice but with radial tails, Fig. 1d. As evident in Fig.
1d and documented below, the spots form in the wake of a band
of cells moving outwards at the periphery of the pattern. An
unstructured zone of low cell density always precedes the first
element of a pattern. The radius of this zone decreases with
increasing concentration of substrate. The radial periods and
circumferential spacings differ from strain to strain, from about 1
to 6 mm. At even higher concentrations of substrate, one obtains
more elaborate patterns, with radial streaks, indented rings, or
petals (not shown). These patterns are not as reproducible, even
in replicate plates, and some geometries appear only with certain
strains.

To understand how changes in one initial condition, the con-
centration of succinate, can so dramatically alter the pattern-
forming behaviour of the system, we studied effects of succinate
concentration on bacterial growth and chemotaxis. The growth
rate of E. coli in succinate saturates and is approximately con-
stant over the concentration range 0.5-7 mM, in agreement with
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