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A new family of fractals is investigated. The fractal dimension Dy is found to be equal to a variable
parameter of the model characterizing the strength of the screening. Thus we can make fractals with arbi-
trary Dy, and study anomalous diffusion as a function of Dy. Our data support a generalization we propose
of the recent Aharony-Stauffer conjecture based on the spatial distribution of ‘‘growth sites’’ of a fractal.

It is of considerable general interest to discover how the
familiar laws of physics are modified for fractals, in part be-
cause of the numerous examples of fractal structures in
nature.!* Some studies have focused on regular fractals
—such as the Sierpinski gasket—for which the fractal
dimension Dy is usually known exactly.>® Recently it has
become increasingly apparent that the physical systems of
interest are not describable by regular fractals, and hence
many studies of random fractals have been undertaken. A
major problem that plagues these studies is that Dy is not
generally known exactly, even for simple d =2 systems.

Here we develop a family of random fractal structures for
which Dy is known exactly. Moreover, one can continuous-
ly tune Dy in order to test laws that may not be readily test-
ed using the discrete values of D, available from the
above-mentioned fractals; these fractals thereby provide an
ideal testing ground for properties of random fractals in gen-
eral. More important, perhaps, is the conceptual rationale
for this model. It bears the same relation to the Rikvold
model” (or any other model with a discrete value of Dy) that
the Fisher-Ma-Nickel model® of spin-spin interactions that de-
cay as a power law bears to the ordinary Ising model with
short-range forces.

We are concerned with clusters generated by starting from
a seed and successively adding new sites at the perimeter.
The probability for adding a new site at the vacant perimeter
site x is given by’

P=Kx) /[ 3 KOG,

» € perimeter

(1a)

where

K(x)= 11

y € cluster

exp(—|x—y|-¢) . (1b)
Here € is a free parameter. Thus we grow a cluster by suc-
cessive addition of new sites on the perimeter with a long-
range screening effect as a result of the nature of the depen-
dence of p(x) on the existing cluster sites. We have three
main objectives: (i) to give a compelling argument that
Dy;=e, (i) to put this prediction to a searching test by
means of very large scale numerical simulations, and (ii) to
investigate the properties of random walks on these clusters,
thereby testing the relative validity of two competing
theories of fractal dynamics.® 10

Fractal dimension. To find Dy it is more convenient to
visualize the cluster being generated by growing sites at a
rate K (x) given by Eq. (1b), so that 3,, K(») is the aver-
age number of sites created per unit time. Now consider
K (x) as a function of Dy. Changing from sums to integrals
and going over to polar coordinates,

R - -
3 lx—yl=f a7 =0 R vo)
» € cluster
2

where a is a short-distance cutoff on the order of the lattice
length. First suppose that Dy > €, so that
K(x)=exp(— AR,
K() < R exp(— AR ™) << 1

y € perimeter

(3a)
(3b)
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Equation (3) then implies that the total growth rate de-
creases dramatically as R becomes large. However, it is na-
tural to assume that such a ‘‘blocked’’ process would be un-
stable against the formation of branches which effectively
decrease Dy, thus allowing the process to continue growing.
This means that eventually Dy will be less than or equal to
€. Assume now Dy < e. Then from (3a) it follows that the
rate of growth K (x) is essentially a constant independent of
x. This would mean that the model belongs in the same
universality class as the Eden model, implying Dy=d. This,
however, would only be consistent if e = d. Therefore,

Dy=min(e,d) . 4)

It should be pointed out that the above reasoning totally ex-
cludes Dy= € for any reasonable cluster size, but allows for
some finite-size effects if Dy=<e, since at finite size it is
clearly not true to say that K (x) is essentially a constant if
Dy=<e. This may explain why the observed values of Dy
are systematically somewhat lower than e.

Computer simulations. The generation of clusters using the
screened growth model has been described previously.” The
screening effect of a single occupied lattice site x, (the nth
site) is to reduce the growth probability at site x, by a factor

1001 LATTICE UNITS

1001 LATTICE UNITS

of S, where
S,(x)=exp(—|x—x,|7¢) . )

Since our model assumes that the screening effects of more
than one site are multiplicative, the growth probability is
given by K (x) of Eq. (1b). The growth simulation was car-
ried out on a 1001x 1001 lattice with a ‘‘seed”” or growth
site at the center of the lattice and the simulation was
stopped when the growing cluster either reached an edge of
the lattice or attained a size of 25000 occupied lattice sites.
Fractal dimension of substrate: simulation results. Simula-
tions were carried out with the screening exponent € set to
the values of ¥, +, 3, and %— Typical clusters are shown
in Fig. 1. The fractal dimensionality was estimated from
both the density-density correlation function C(r) and the
dependence of the radius of gyration on cluster size. Our
first estimate of Dy ‘can be obtained from the density-
density correlation function by using the relationship
(1)
c(ry~rr 1. 6
In practice, we use the dependence of C(r) on r at inter-
mediate length scales (larger than a few lattice units but

D=4/3
(b)

1001 LATTICE UNITS

D=175

701 LATTICE UNITS

FIG. 1. Typical clusters grown on a 1001x 1001 lattice using the screening function given in Eq. (5). The screening exponents (e) used
to generate Figs. 1(a), 1(b), 1(c), and 1(d) are %, -§~, %, and %, respectively. The number of sites occupied by the clusters in 9347 [Fig.

1(a)], 9536 [Fig. 1(b)], 20695 [Fig. 1(c)], and 25000 [Fig. 1(d)].



RAPID COMMUNICATIONS

31 NEW CLASS OF SCREENED GROWTH AGGREGATES WITHA . .. 1197

smaller than the overall size of the cluster), where
In[C(r)] depends approximately linearly on In(r). A
second effective dimension D? can be obtained assuming
that!!

(2)
l/Df )

R,~N @)

Both estimates for the fractal dimension are consistent
with the result that Dy=e. In our earlier work’ with smaller
clusters, we found that D, was substantially smaller than e
for e=1.5. We still find that D, is smaller than € for
€=1.75 but now the difference between D, and e is much
smaller, and we believe that even better agreement would
be obtained with larger clusters ( >> 25000 occupied lattice
sites).

Random walks on screened fractals. Random walks were
simulated on all 28 clusters. For each cluster we carried out
4000 walks, each consisting of 2!5 (32768) steps. Each walk
was started out on sites randomly chosen from those sites
which were occupied when the growth process was 5%-25%
complete. Ideally, the random walks should sample as large
a region of the cluster as possible, avoiding the (small) re-
gion near the origin, which may be anomalous, and the
outer regions of the cluster which may be subject to further
growth. Clearly, these requirements cannot be satisfied
simultaneously and the choice of the origin and length of
the walks was made in order to achieve a reasonable
compromise. The quantities measured during the walks
were (r?) (the mean displacement from the origin of the
walk), (r*), (s) (the mean number of sites visited by the
walk), and (s?). The quantities (r?) and (r*) allow us to
estimate the fractal dimensionality of the walk (D,) from
their relationship to N, (the number of steps in the walk)

(r%y ~ N*¥Pw (=1,2) . (82)

The fracton or spectral dimensionality D; is obtained using
Eq. (1). A more direct way of estimating D; is to use the
dependence of {s) and (s?) on N,

(9~ N> (k=1,2) . (8b)

The results for Dy and D,, are displayed in Table I. The
exponents are estimated in two ways, using either k=1 or
k=2. It is seen that both are well compatible.

The third column displays €/ D,,, which should be equal to
+D,. We notice that for e=1.5 there is a small—and for

e=1.75 a larger—discrepancy. A closer examination of the

TABLE 1. Fractal properties of screened growth model. The top
row arises from (8a) and (8b) with k=1, while the bottom row is
from (8a) and (8b) with k=2.

€ Ds 2/Dw €/Dw Dw

1.25 1.10 £0.02 0.85 £0.05 0.53 £0.03 2.25 £0.05
1.10 £0.01 0.85 £0.05 0.53 £0.03 2.25 £0.05
—;— 1.11 £0.014 0.84 £0.03 0.56 £0.02 2.38 £0.09
- 1.11 £0.015 0.85 £0.04 0.57 £0.03 2.36 £0.12

1.5 1.17 £0.02 0.81 £0.03 0.61 £0.025 2.47 £0.09 -
) 1.17 £0.02 0.78 £0.04 0.59 £0.03 2.54 £0.12
1.75 1.22 £0.03 0.78 £0.02 0.67—0.70 2.57 £0.07
1.22 £0.03 0.76 £0.01 0.66—0.67 2.63 £0.04

data shows, however, that the exponent D, has not saturat-
ed to its final value but is growing as the number of steps
increases, whereas D,, does not show any such tendency.

As 9a final remark, note that the Alexander-Orbach (AO)
result

D,=3Ds, D,;=% , (9a)

which is valid to high accuracy for percolation clusters and
frequently close to measured values for other fractals, is
here definitely invalid (at least for € less than 1.75). Since
it is well known that D,=2, Eq. (9a) cannot hold for
€< . This is borne out by our results. However the re-
gion where AO breaks down extends probably to e=1.5.
Indeed there is no reason to think that it should hold for
any particular range of values of € but for e=1.75 the un-
certainty about D, is too large to permit any meaningful
Sstatement. -

However, the values of D; can be interpreted using a re-
cent idea of Aharony and Stauffer (AS).!® If the number of
growth sites (adjacent sites to the sites visited by the walk)
scales as [{s)]Y2, then one obtains the AO conjecture.!?
On the other hand, AS assume that the growth sites lie on a
narrow ring around the perimeter of the walk, and argue
that the AO rule must fail for Dy < Df, where Dy =2 is a
lower critical dimension. For Dy < Dy, they find

D,=1+Dy; D,=2D;/(1+D;) . (9b)

This formula agrees well with our data for all e.

An explanation of this agreement follows from the gen-
eral approach of Ref. 13. Define the ‘‘chemical distance” /
as the length of the shortest path connecting two points,
and define D} and D}, by'>14

l !
N~ R~ (10)

However, if we define ;, by p(/) ~ 1", where p(/) is the
resistance between two points connected by a path of length
I, then one obtains from the Einstein relation!?

{=DL-D} . av

But if large loops do not occur, then two points are connect-
ed by one path only and hence {;=1. Since D; is indepen-
dent of the metric used, one obtains in this case!?

D,=2D} /Diy=2D} /(D}+1) . (12a)
Since D} < Dy, we find
D,<2D} /(D}+1) . (12b)

Thus, the AS value of D,, (9b), is a rigorous upper bound
for any fractal for which loops are irrelevant. Moreover, the
AS result becomes exact if D}= Dy. Since our present results
agree well with the AS conjecture, we may conjecture that
D}= Dy and work is underway to test this conjecture.
Summarizing, we have studied the properties of a certain
class of screened growth clusters. A convincing argument
has been given to show that they are fractals and that their

- fractal dimension is identical to the parameter € involved in

their definition. This hypothesis has been tested numerical-
ly and shown to hold within the accuracy of the measure-
ment. Random walks were then generated and the ex-
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ponents D, and D; measured. The relationship
D,=2D;/D, was found to hold to a good accuracy except
for e =1.75, where the measured value of D, was unreliable.
This data do not support the Alexander-Orbach conjecture,
but do support the recent AS conjecture based on the spatial
distribution of ‘‘growth sites’’ of a random walk.
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