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individually off the trapped electrons which are still periodically
deployed in space (that is, still k-matched to forward scattering)
but having a range of momenta producing, therefore, a range
of scattered frequencies'’. Also, the Doppler shifts® expected
for electrons moving at, say, a relativistic y @4 within a range
of angles corresponding to f/5 focusing is approximately o, and
nearly symmetric on the red and blue sides of the satellites which
could further explain the ‘filling in’ of the satellites.

Figure 2 shows the measured electron energy spectra corre-
sponding to the two optical spectra in Fig. 1 plus an intermediate
plasma density of 1.0x 10" cm™. The number of accelerated
electrons at a given energy and the maximum electron energy
both show a dramatic increase as the plasma density is increased
to 1.5x10” ecm™: the number of electrons above 20 MeV
increases by at least two orders of magnitude and the accelerated
electron distribution is rather flat up to 30 MeV where it begins
to decrease with energy up to 44 MeV, which is the spectrometer
limit. We interpret this sudden increase in accelerated electrons
and maximum energy, together with the broadening of the elec-
tromagnetic spectrum, as the signature that wave-breaking has
occurred. The large increase in the number of electrons acceler-
ated at the highest plasma density is consistent with the wave
trapping the bulk of the plasma thermal distribution function
rather than a few tail particles at low plasma densities. Indeed
the (spectrometer-limited) maximum electron energy of 44 MeV
is not too far from the absolute maximum of 70 MeV that a test
electron would obtain, limited by dephasing in an ideal plasma
wave with @ = 1 which is near the relativistic warm-plasma wave-
breaking limit expected for our plasma conditions.

We note that the normalized transverse emittance &,=yc 60
of any particular energy group from this experiment is quite
small. Here y is the relativistic Lorentz factor for that energy
group, o is the source size (~10 um), and 0 the angular spread
(~8 mrad due to the f/60 collection). At 30 MeV, &,=57 mm
mrad which is low enough to be competitive with modern photo-
injector-based linacs®. However, the beam current measured
here (~1 A in a +1% bandwidth around 30 MeV) is roughly
10-100 times lower than present-day photoinjector technology.
The tremendous advantage over conventional linacs is the
extremely short distance over which this energy is obtained. As
dephasing limits the acceleration length to my/ko= 300 um, the
44 MeV that the electrons gain indicate a peak electric field of
over 100 GV m~' which would represent the higher collective
wave field ever produced in a laboratory. Given that laser tech-
nology, including repetition rate, average power, efficiency and
smaller packaging is advancing very rapidly, it is reasonable
to expect that the average current can be increased through a
combination of higher laser frequencies and plasma densities as
well as by increased repetition rate. Thus, one could envisage in
the not-too-distant future a new class of compact accelerators
based on the breaking of relativistic electron plasma waves which
may find applications where 2-200 MeV electrons or photons
are needed. O
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CITIES grow in a way that might be expected to resemble the
growth of two-dimensional aggregates of particles, and this has
led to recent attempts'~ to model urban growth using ideas from
the statistical physics of clusters. In particular, the model of diffu-
sion-limited aggregation®® (DLA) has been invoked to rationalize
the apparently fractal nature of urban morphologies'. The DLA
model predicts that there should exist only one large fractal cluster,
which is almost perfectly screened from incoming ‘development
units’ (representing, for example, people, capital or resources), so
that almost all of the cluster growth takes place at the tips of the
cluster’s branches. Here we show that an alternative model, in
which development units are correlated rather than being added to
the cluster at random, is better able to reproduce the observed
morphology of cities and the area distribution of sub-clusters
(‘towns’) in an urban system, and can also describe urban growth
dynamics. Our physical model, which corresponds to the correlated
percolation model®® in the presence of a density gradient’, is
motivated by the fact that in urban areas development attracts
further development. The model offers the possibility of predicting
the global properties (such as scaling behaviour) of urban
morphologies.

In the model we now develop we take into account two points.
First, data on the population density p(r) of actual urban sys-
tems are known to conform to the relation'® p(r) = poe™*, where
r is the radial distance from the compact core, and A is the
density gradient. Therefore, in our model the development units
are positioned with an occupancy probability p(r) = p(r)/p, that
behaves in the same fashion as is seen in observations of real
cities. Second, in actual urban systems, the development units
are not positioned at random. Rather, there exist correlations
arising from the fact that when a development unit is located
in a given place, the probability of adjacent development units
increases; each site is not independently occupied by a develop-
ment unit, but is occupied with a probability that depends on
the occupancy of the neighbourhood.

In order to quantify these ideas, we use the correlated percola-
tion model® ®. In the limit where correlations are so small as to
be negligible''""'?, a site at position r is occupied if the occupancy
variable u(r)—an uncorrelated random number—is smaller than
the occupation probability p(r). To introduce correlations
among the variables, we convolute the uncorrelated variables
u(r) with a suitable power-law kernel’, and define a new set of
random variables 7(r) with long-range power-law correlations
that decay as r~“, where r=|r|. The assumption of power-law
interactions is motivated by the fact that the ‘decision’ for a
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development unit to be placed in a given location decays gradu-
ally with the distance from an occupied neighbourhood. The
correlation exponent « is the only parameter to be determined
by empirical observations.

To discuss the morphology of a system of cities generated in
the present model, we show in Fig. 1 our simulations of corre-
lated urban systems for a fixed value of the density gradient A,
and for different degrees of correlation. The correlations have
the effect of agglomerating the units around an urban area. In
the simulated systems the largest occupation density is situated
in the core (which acts as an ‘attractive’ centre of the city), and
this is surrounded by small clusters or ‘towns’. (In previous
work' ? the compact core has been called the central business
district (CBD).) The correlated clusters are fairly compact near
their respective centres and become less compact near their
boundaries, in qualitative agreement with empirical data on real
large cities such as Berlin, Paris and London"".

The urban boundary of the largest city is defined to be the
perimeter of the connected cluster connected to the CBD. As
p(r) decreases as one moves away from the core, the probability
that the largest cluster remains connected decreases with r. The
mean distance of the perimeter from the centre r,is determined
by the value of r for which p(r) equals the percolation thresh-
old—that is, p(r;) =p., so r,=A""In (1/p,.) (ref. 9).
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The urban boundary in the model has the scaling properties
of the external perimeter of a correlated percolation cluster in
the presence of a gradient. The scaling of the length of the boun-
dary within a region of size /, L(/) ~ /", defines the fractal dimen-
sion D,, which we calculate to have values D.~1.3 for the
uncorrelated case, and D.x 1.4 for strong correlations (a—0).
Both values are consistent with actual urban data, for which
values of D, between 1.2 and 1.4 are measured'. Near the frontier
and on length scales smaller than the width of the frontier, the
largest cluster has fractal dimension d,~ 1.9, as defined by the
‘mass-radius’ relation'?, independent of the correlations.

So far, we have argued how correlations between occupancy
probabilities can account for the irregular morphology of towns
in an urban system. As can be seen in Fig. 2a, the towns sur-
rounding a large city like Berlin are characterized by a wide
range of sizes. We are interested in the laws that quantify the
town size distribution N(A4), where 4 is the area occupied by a
given town, so we calculate the actual distribution of the areas
of the urban settlements around Berlin and London. We find
(Fig. 3a) that for both cities, N(A4) follows a power law.

This result can be understood in the context of our model.
The small clusters surrounding the largest cluster are all situated
at distances r from the CBD such that p(r)<p. or r>r,. There-
fore, we find N(A), the cumulative area distribution of clusters

FIG. 1 a—c, Simulations of urban systems for different degrees of corre-
lations. Red indicates the urban areas, and light green shows the exter-
nal perimeter or urban boundary of the largest cluster connected to the
CBD. In all the panels, we fix the value of the density gradient to be
2=0.009. a, b, Two different examples of interactive systems of cities
for correlation exponents a =0.6 and a = 1.4, respectively. The devel-
opment units are positioned with a probability that decays exponentially
with the distance from the core. The units are located not randomly as
in percolation, but rather in a correlated fashion depending on the
neighbouring occupied areas. The correlations are parametrized by the
exponent a. The strongly correlated case corresponds to small a (a—0).
When a>d, where d is the spatial dimension of the substrate lattice (d =
2 in our case), we recover the uncorrelated case. Notice the tendency to
more compact clusters as we increase the degree of correlations (a—0).
¢, As a zeroth-order approximation, one might consider the morphology
predicted in the extreme limit when development units are positioned
at random, rather than in the correlated way shown in a and b. The
results for this crude approximation of a non-interactive (uncorrelated)
system of cities clearly display a drastically different morphology than
found from data on real cities (such as shown in Fig. 2a). The non-
interactive limit looks unrealistic in comparison with real cities, for the
lack of interactions creates an urban area characterized by many small
towns spread loosely around the core.
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of area A, to be
Pe
N(A)zf n(A, p) dp~A~TH 14 (1)
0

Here, n(A4, p)~ A "g(A/Ao) is defined to be the average number
of clusters containing A sites for a given p at a fixed distance r,
and t=1+42/d,. Here, Ao(r)~|p(r)—p.| ~“* corresponds to
the maximum typical area occupied by a cluster situated at a
distance r from the CBD, and g(A4/A4,) is a scaling function that
decays rapidly (exponentially) for 4> A,. The exponent v=
v(a) is defined by &(r)~ | p(r) —p.| ~Y, where &(r) is the con-
nectedness length that represents the mean linear size of a cluster
at a distance r>r, from the CBD.

In our numerical simulations we find a drastic increase of
v(a) with the increase of the long-range correlations (a—0)
(Fig. 3b)®. The exponent v(a) affects the area distribution of
the small clusters around the CBD (Fig. 3c¢), as specified by
equation (1), and can be used to quantify the degree of inter-
action between the CBD and the small surrounding towns. For
instance, for a strongly correlated system of cities characterized
by small @, v(a) is large so that the area 4,(r) and the linear
size £(r) of the towns will be large even for towns situated far
from the CBD. This effect is observed in the correlated systems
of cities of Fig. 1.

In Fig. 3a we also plot the power law for the area distribution
predicted by equation (1) along with the real data for Berlin and
London. We find that the slopes of the plots for both cities are
consistent with the prediction (dashed line) for the case of highly

FIG. 2 Qualitative comparison
between the actual urban data and
the proposed model. a, Three steps of
the growth with time of Berlin and sur-
rounding towns. Data are shown for
the years 1875, 1920 and 1945 (from
top to bottom). b, Dynamical urban
simulations of the proposed model.
We fix the value of the correlation
exponent to be a=0.05 (strongly
correlated case), and choose the occ-
upancy probability p(r) to correspond
to the density profiles shown in Fig. 4.
We use the same seed for the random-
number generator in all panels.
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correlated systems, indicating qualitative agreement between the
morphology of actual urban areas and the strongly correlated
urban systems obtained in our simulations. Clearly, the exponent
of the area distribution provides a stronger test of our model
against observations than does the fractal dimension D, of the
perimeter.

We now discuss a generalization of our static model to
describe the dynamics of urban growth. Empirical studies'® of
the population density profile of cities show a remarkable pattern
of decentralization, which is quantified by the decrease of A (1)
with time (see Table 4 in ref. 14). The dynamics in the model
(see Fig. 4) are quantified by a decreasing A(z), as occurs in
actual urban areas. These considerations are tested in Fig. 2b,
which shows our dynamical urban simulations of a strongly
interacting system of cities characterized by a correlation expon-
ent ¢ =0.05 for three different values of A. Qualitative agreement
is observed between the morphology of the cities and towns of
the actual data of Fig. 2a and the simulations of Fig. 2b.

We wish to comment on the coincidence between the settle-
ment area distribution for different cities and different years
(Berlin 1920 and 1945, and London 1981). We first note that
these distributions are calculated on length scales larger than the
domain of influence of any local planning constraint imposed
on the growth of the cities. This fact, together with the fact that
interactions among development units can be modelled by a
scale-invariant power law, implies that the area distribution
N(A) is not affected by the effects of local growth restraints. A
more detailed study (for example, calculating N(4) only for
those settlements under the domain of influence of applied local
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FIG. 3 a, Log-log plot of the area distribution N(A) of the
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FIG. 4 Semi-log plot of the density of occupied urban
areas pa(r)=e ~* for the three different stages in the

growth of Berlin shown in Fig. 2a. Least-squares fits
yield the results 1~ 0.030, A~0.012, and 1~ 0.009,
respectively, showing the decrease of A with time.
We use these density profiles in the dynamical simu-
lations of Fig. 2b. In the context of our model, this
flattening pattern can be explained as follows. The
model of percolation in a gradient can be related to
a dynamical model of units (analogous to the devel-
opment units in actual cities) diffusing from a central
seed or core®. In this dynamical system, the units
are allowed to diffuse on a two-dimensional lattice
by hopping to nearest-neighbour positions. The
density of units at the core remains constant: when-
ever a unit diffuses away from the core, it is replaced
by a new unit. The density of units is analogous to
palr), which in turn is proportional to the population
density p(r). A diffusion front (defined as the bound-
ary of the cluster of units that is linked to the central
core) evolves with time. The diffusion front corre-
sponds to the urban boundary of the central city.
The static properties of the diffusion front of this
system were found to be the same as those pre-
dicted by the gradient percolation model®. Moreover,
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the dynamical model can explain the decrease of
At) with time that is observed empirically. As the
diffusion front situated around r; moves away from
the core, the city grows and the density gradient
decreases because A(t)oc1/ry.

policies) is needed in order to identify the effects of planning
policies on distribution of settlements. Finally, we note that only
the parameter A depends on time; possibly, future urban forms
may be predicted by extrapolating A. O
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WATER, carbon dioxide and sulphur are important in the evolution
of magmas'? and the physics of volcanic eruptions™*. These vola-
tile constituents occur in magmas as dissolved species in silicate
melt, but can also form bubbles of exsolved gas if the magma is
gas-saturated’. Quantifying the total (dissolved plus exsolved) pre-
eruptive concentrations of magmatic volatiles is essential for
understanding a wide range of magmatic processes. We present a
method for quantifying both the amount and distribution of pre-
eruptive exsolved gas in a crystallizing silicic magma body. Appli-
cation to the 0.76-Myr-old® Bishop rhyolitic tuff in eastern
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California reveals a pre-eruptive gradient in exsolved gas, with gas
contents varying from less than 2 wt% in the deeper regions of the
magma body to nearly 6 wt% near the top. This gradient would
have promoted stable stratification of the magma body because
exsolved gas lowers bulk magma density. More generally, exsolved
gas in silicic magmas could contribute to the formation of many
hydrothermal ore deposits and to the fluxes of volatile species from
volcanic systems.

It has commonly been assumed that silicic magmas only
become gas-saturated during shallow ascent and eruption, or
during the final pegmatitic stages of plutonic crystallization. But
trapped inclusions of gas or fluid in volcanic phenocrysts provide
direct evidence that an exsolved gas phase was present during
crystallization, even in relatively crystal-poor rhyolitic magmas’.
These inclusions provide little constraint on the mass fraction
of exsolved gas in pre-eruptive magma, but remote-sensing data
for volcanic SO, emissions suggest that many magma bodies do
contain significant amounts of exsolved gas before eruption and
that a large proportion of the emitted SO, is derived from the
pre-eruptive gas phase® '

To estimate exsolved magmatic gas contents we first focus on
variations in dissolved volatiles and the physical processes by
which these variations arise. Glass inclusions in phenocrysts
from volcanic tephra provide a record of pre-eruptive conditions
because the glass is trapped and quenched magmatic liquid that
has retained its original dissolved volatile content'>. We have
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