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Chapter 4
Anticipating Stock Market Movements
with Google and Wikipedia

Helen Susannah Moat, Chester Curme, H. Eugene Stanley, and Tobias Preis

Abstract Many of the trading decisions that have led to financial crises are captured
by vast, detailed stock market datasets. Here, we summarize two of our recent
studies which investigate whether Internet usage data contain traces of attempts to
gather information before such trading decisions were taken. By analyzing changes
in how often Internet users searched for financially related information on Google
(Preis et al., Sci Rep 3:1684, 2013) and Wikipedia (Moat et al., Sci Rep 3:1801,
2013), patterns are found that may be interpreted as “early warning signs” of stock
market moves. Our results suggest that online data may allow us to gain new insight
into early information gathering stages of economic decision making.

4.1 Introduction

Stock market data provide extremely detailed records of decisions that traders have
made, in an area in which disasters have a widespread impact. As a result, these
stock market records have generated considerable scientific attention [7, 8, 11–13,
18–24, 26–28].
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Decisions, such as trading decisions, do not however consist solely of the final
execution of a chosen action, such as a trade recorded at the stock exchange. Instead,
humans often begin by gathering information to help identify what the consequences
of possible actions might be [33].

Nowadays, the Internet has greatly extended human capabilities to distribute and
gather information [1, 6, 14, 15, 31]. As a result, online resources have become
the first port of call in many quests for new information. Providers of such
online resources often collect extensive data on their usage, adding to a range of
new large-scale measurements of collective human behavior [5, 17]. These new
Internet derived datasets open up new avenues for scientists to investigate the early
information gathering stages of decision making processes.

Previous studies have demonstrated that analysis of search data can provide
insight into current or even subsequent behavior in the real world. For example,
changes in the frequency with which users look for certain terms on search engines
such as Google and Yahoo! have been correlated with changes in the numbers
of reports of flu infections across the USA [9], the popularity of films, games
and music on their release [10], unemployment rates [2, 4], tourist numbers [4],
and trading volumes in the US stock markets [3, 25]. A recent study showed that
Internet users from countries with a higher per capita gross domestic product (GDP)
search for proportionally more information about the future than information about
the past, in comparison with Internet users from countries with a lower per capita
GDP [29].

In the two studies summarized here and described in [16] and [30] in full length,
we ask whether online searches for information might contain information relevant
not only to the current state of the stock market, but also to subsequent trends.
Specifically, can we find any evidence that changes in the volume of searches
for financial information on Google and Wikipedia may provide insight into the
information gathering process of investors before they make decisions to buy
or sell?

4.2 Google Searches and Subsequent Stock Market Moves

To investigate whether changes in information gathering behavior as captured by
Google Trends data were related to later changes in stock price in the period
between 2004 and 2011, in [30] we implemented a hypothetical investment strategy
for a portfolio using search volume data, called ‘Google Trends strategy’ in the
following. In this strategy, as described in both [30] and [16], we quantify changes
in information gathering behavior by using the relative change in search volume:
!n.t;!t/ D n.t/!N.t !1;!t/ with N.t!1;!t/ D .n.t !1/Cn.t !2/C : : : C
n.t ! !t//=!t , where t is measured in units of weeks. We sell the DJIA at the
closing price p.t C 1/ on the first trading day of week t C 1 if search volume has
increased in week t such that !n.t;!t/ > 0. We then close the position by buying
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Fig. 4.1 Cumulative performance of an investment strategy based on Google Trends data
(Reproduced from [30]). Profit and loss for an investment strategy based on the volume of the
search term debt, the best performing keyword in our analysis, with !t D 3 weeks, plotted as
a function of time (blue line). This is compared to the “buy and hold” strategy (red line) and the
standard deviation of 10,000 simulations using a purely random investment strategy (dashed lines).
The Google Trends strategy using the search volume of the term debt would have yielded a profit
of 326 %

the DJIA at price p.t C 2/ at the end of the first trading day of the following week
t C 2. If instead search volume has decreased or remained the same in week t such
that !n.t;!t/ " 0, then we buy the DJIA at the closing price p.t C 1/ on the first
trading day of week t C 1, and sell the DJIA at price p.t C 2/ at the end of the first
trading day of the coming week t C 2 to close the position.

In [30], we analyzed the performance of a set of 98 Google search terms.
We included terms related to the concept of stock markets, with some terms
suggested by the Google Sets service, a tool which identifies semantically related
keywords.

In Fig. 4.1, taken from [30], we depict the performance of our strategy between
2004 and 2011 using the search term debt, a keyword with an obvious semantic
connection to the most recent financial crisis, and overall the term which performed
best in our analyses. The performance of the Google Trends strategy based on
the search term debt is depicted by a blue line, whereas dashed lines indicate
the standard deviation of the cumulative return from a strategy in which we buy
and sell the market index in an uncorrelated, random manner (‘random investment
strategy’). The standard deviation is derived from simulations of 10,000 independent
realizations of the random investment strategy. Figure 4.1 shows that the use of the
Google Trends strategy, based on the search term debt and !t D 3 weeks, would
have increased the value of a portfolio by 326 %. The performance of Google Trends
strategies based on all other search terms that we analyze is depicted in a similar
manner in [30].

We rank the full list of the 98 investigated search terms by their trading
performance when using search data for U.S. users only (Fig. 4.2a) and when using
globally generated search volume (Fig. 4.2b). In order to ensure the robustness of
our results, the overall performance of a strategy based on a given search term
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is determined as the mean value over the six returns obtained for !t D 1 : : : 6
weeks. Returns of the strategies are calculated as the logarithm of percentage
profit, following the usual definition of returns. Here we report R, the cumulative
returns of a strategy, in standard deviations of the cumulative returns of these
uncorrelated random investment strategies. In [30], we find that returns from the
Google Trends strategies we tested are significantly higher overall than returns from
the random strategies (hRiUS D 0:60; t D 8:65, df D 97, p < 0:001, one sample
t-test).

We compare the performance of these search terms with two benchmark
strategies. The ‘buy and hold’ strategy is implemented by buying the index in the
beginning and selling it at the end of the hold period. This strategy yields 16 %
profit, equal to the overall increase in value of the DJIA in the time period from
January 2004 until February 2011. We further implement a ‘Dow Jones strategy’
by using changes in p.t/ in place of changes in search volume data as the basis of
buy and sell decisions. In [30] we find that this strategy also yields only 33 % profit
with !t D 3 weeks, or when determined as the mean value over the six returns
obtained for !t D 1 : : : 6 weeks, 0.45 standard deviations of cumulative returns of
uncorrelated random investment strategies (Fig. 4.2a, b).

It is widely recognized that investors prefer to trade on their domestic market,
suggesting that search data for U.S. users only, as used in analyses so far, should
better capture the information gathering behavior of U.S. stock market participants
than data for Google users worldwide. Indeed, in [30] we find that strategies based
on global search volume data are less successful than strategies based on U.S.
search volume data in anticipating movements of the U.S. market (hRiUS D 0:60,
hRiGlobal D 0:43; t D 2:69, df D 97, p < 0:01, two-sided paired t-test).

J
Fig. 4.2 Performances of investment strategies based on search volume data (Reproduced
from [30]). (a) Cumulative returns of 98 investment strategies based on search volumes restricted
to search requests of users located in the United States for different search terms, displayed for
the entire time period of our study from 5 January 2004 until 22 February 2011 – the time
period for which Google Trends provides data. We use two shades of blue for positive returns
and two shades of red for negative returns to improve the readability of the search terms. The
cumulative performance for the “buy and hold strategy” is also shown, as is a “Dow Jones strategy”,
which uses weekly closing prices of the Dow Jones Industrial Average (DJIA) rather than Google
Trends data (see gray bars). Figures provided next to the bars indicate the returns of a strategy,
R, in standard deviations from the mean return of uncorrelated random investment strategies,
hRiRandomStrategy D 0. Dashed lines correspond to !3, !2, !1, 0, +1, +2, and +3 standard deviations
of random strategies. We find that returns from the Google Trends strategies tested are significantly
higher overall than returns from the random strategies (hRiUS D 0:60; t D 8:65, df D 97,
p < 0:001, one sample t-test). (b) A parallel analysis shows that extending the range of the
search volume analysis to global users reduces the overall return achieved by Google Trends trading
strategies on the U.S. market (hRiUS D 0:60, hRiGlobal D 0:43; t D 2:69, df D 97, p < 0:01,
two-sided paired t-test). However, returns are still significantly higher than the mean return of
random investment strategies (hRiGlobal D 0:43; t D 6:40, df D 97, p < 0:001, one sample t-test)
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4.3 Wikipedia Views and Edits and Subsequent
Stock Market Moves

In [16], we investigate whether data from the popular online encyclopedia Wikipedia
may hold similar insights. We consider data on both how often pages on the English
language Wikipedia have been viewed, and how often pages on the English language
Wikipedia have been edited. We calculate our weekly measure of information
gathering behavior, n.t/, as previously described, but using either view or edit data
for Wikipedia in place of search volume data from Google. Data on Wikipedia page
views were downloaded from the online service http://stats.grok.se, and data on
Wikipedia page edits were obtained by parsing the Wikipedia “Revision history”
page associated to the article. In [16], we then implement the same trading strategy
described above using data generated between 10th December 2007, the earliest
date for which Wikipedia views data are available from http://stats.grok.se, and 30th
April 2012.

Figure 4.3, taken from [16], shows the distributions of returns from two portfolios
of 30 hypothetical strategies, trading weekly on the DJIA. These trading strategies
are based on changes in how often the 30 Wikipedia pages describing the companies
in the DJIA were viewed (blue)) and edited (red) during the period December
2007–April 2012, with !t D 3 weeks. The distribution of returns from 10,000
independent realizations of a random strategy is also shown (gray).

We find that there are significant differences between these three distributions
("2 D 10:21, df D 2, p D 0:006, Kruskal-Wallis rank sum test). Our analysis
shows that the returns of Wikipedia page view based strategies for this period are
significantly higher than the returns of the random strategies (hRiViews D 0:50; W D
199;690, p D 0:005, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni
correction applied). There is however no statistically significant difference between
the returns from the Wikipedia edit based strategies and the random strategies
(hRiEdits D !0:09; W D 140;781, p > 0:9, two-tailed two-sample Wilcoxon rank-
sum test, Bonferroni correction applied).

We investigate whether these results extend to Wikipedia articles on more general
financial topics. To address this question, we make use of the fact that Wikipedia
contains lists of pages relating to specific topics. In [16], we examine view and edit
data for 285 pages relating to general economic concepts, as listed in the subsection
“General Economic Concepts” on the English language Wikipedia page “Outline of
Economics”.

Figure 4.4 shows the results of an analysis of the distribution of returns
from two portfolios of 285 hypothetical strategies, trading weekly on the DJIA.
These strategies are based on changes in how often these 285 financially related
Wikipedia pages were viewed (blue) and edited (red) during the same period,
again with !t D 3 weeks. As before, we find that there is a significant dif-
ference between the returns generated by the random strategies, the Wikipedia
view based strategies and the Wikipedia edit based strategies ("2 D 307:88, df D 2,



Author's personal copy

Author's personal copy

4 Anticipating Stock Market Movements with Google and Wikipedia 53

Return [Std. Dev. of Random Strategies]

D
en

si
ty

0.0

0.2

0.4

0.6

−2 0 2

Wikipedia Views
DJIA Companies

Wikipedia Edits
DJIA Companies 

Random
Strategy

Fig. 4.3 Returns from trading strategies based on Wikipedia view and edit logs for articles
relating to the companies forming the Dow Jones Industrial Average (DJIA) (Reproduced
from [16]). The distributions of returns from two portfolios of 30 hypothetical strategies, trading
weekly on the DJIA, based on changes in how often the 30 Wikipedia articles describing the
companies listed in the DJIA were viewed (blue) and edited (red) during the period December
2007–April 2012, with !t D 3 weeks. The distribution of returns from 10,000 independent
realizations of a random strategy is also shown (gray). Data is displayed using a kernel density
estimate and the ggplot2 library [35], with a Gaussian kernel and bandwidth calculated using
Silverman’s rule of thumb [32]. Whereas we show in the text that random strategies lead to no
significant profit or loss, we find that the returns of Wikipedia article view based strategies for
this period are significantly higher than the returns of the random strategies (hRiViews D 0:50;
W D 199;690, p D 0:005, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction
applied). There is however no statistically significant difference between the returns from the
Wikipedia edit based strategies and the random strategies (hRiEdits D !0:09; W D 140;781,
p > 0:9, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction applied)

p<0:001, Kruskal-Wallis rank sum test). Again, the returns of Wikipedia page
view based strategies are significantly higher than the returns of random strategies
for this period (hRiViews D 1:10; W D 2;286;608, p<0:001, two-tailed two-sample
Wilcoxon rank-sum test, Bonferroni correction applied). In contrast, we find no evi-
dence of a statistically significant difference between the returns from the Wikipedia
edit based strategies, and the random strategies (hRiEdits D 0:12; W D 1;516;626,
p D 0:19, two-tailed two-sample Wilcoxon rank-sum test, Bonferroni correction
applied).

We note in [16] that the lack of relationship found for the data on Wikipedia
edits may simply reflect the substantial difference in the volume of data available
for views and for edits, despite the much larger number of pages considered in this
second analysis, where further relevant statistics on views and edits of Wikipedia
pages are provided in [16]. For the purposes of these investigations, we therefore do
not consider edit data further.
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Fig. 4.4 Returns from trading strategies based on Wikipedia access and edit logs for pages
relating to finance (Reproduced from [16]). Parallel analysis of the distribution of returns from
two much larger portfolios of 285 hypothetical strategies, based on changes in how often a set
of 285 financially related Wikipedia pages were viewed (blue) and edited (red) during the same
period as Fig. 4.3, again with !t D 3 weeks. Our analysis shows that the returns of Wikipedia
page view based strategies are significantly higher than the returns of random strategies for this
period (hRiViews D 1:10; W D 2;286;608, p < 0:001, two-tailed two-sample Wilcoxon rank-sum
test, Bonferroni correction applied). Once again however, we find no evidence of a statistically
significant difference between the returns from the Wikipedia edit based strategies, and the random
strategies (hRiEdits D 0:12; W D 1;516;626, ˛ D 0:05, two-tailed two-sample Wilcoxon rank-
sum test, Bonferroni correction applied)

4.4 Financial Relevance of Information Searched
for Before Stock Market Falls

Our assumption so far was that only Google and Wikipedia usage data relating
to financial topics would provide any insight into information gathering processes
before trading decisions, and therefore future changes in the DJIA. To verify this
assumption, in [16] we carry out a further analysis of view data relating to 233
Wikipedia pages describing actors and filmmakers, where further details of these
pages are provided in [16]. We suggest that such pages have less obvious financial
connotations.

We analyze the distribution of returns for a portfolio of 233 hypothetical trading
strategies based on changes in how often these pages were viewed, trading weekly
on the DJIA with !t D 3 weeks during the period December 2007–April 2012, as
in the previous Wikipedia analyses. We ensured that this set of pages, of similar size
to the set of pages relating to financial topics, had at least equivalent traffic during
the period of investigation, to ensure that any failure to find a relationship was not
due to power issues caused through lack of data on Wikipedia views.
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Fig. 4.5 Returns from trading strategies based on Wikipedia access logs for pages relating to
actors and filmmakers (Reproduced from [16]). Parallel analysis of the distribution of returns
for another portfolio of 233 hypothetical strategies based on changes in how often a set of 233
Wikipedia pages relating to actors and filmmakers were viewed (blue). Here, we find that there is
no significant difference between the returns generated by the random strategies and the Wikipedia
view based strategies (hRiViews = 0.04; W D 1;189;114, p D 0:59, two-tailed two-sample
Wilcoxon rank-sum test)

In Fig. 4.5, we show the returns from these 233 strategies based on changes in the
number of views of Wikipedia articles on actors and filmmakers (blue), alongside
returns from the random strategies (gray). We find that there is no significant
difference between the returns generated by the random strategies and the Wikipedia
view based strategies (hRiViews D 0:04; W D 1;189;114, p D 0:59, two-tailed two-
sample Wilcoxon rank-sum test).

Similarly, in [30], we investigate whether differences in performance of the 98
Google Trends strategies we tested can be partially explained using an indicator of
the extent to which different terms are of financial relevance. We quantify financial
relevance by calculating the frequency of each search term in the online edition of
the Financial Times from August 2004 to June 2011, normalized by the number of
Google hits for each search term (Fig. 4.6). We find that the return associated with a
given search term is correlated with this indicator of financial relevance (Kendall’s
tau D 0:275, z D 4:01, N D 98, p < 0:001) using Kendall’s tau rank correlation
coefficient.

4.5 Discussion

In the investigations described in [16] and [30], summarized here, we find evidence
of increases in searches for financially related information before stock market falls.
These results are consistent with the hypothesis that historic usage data from Google
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and the online encyclopedia Wikipedia may have provided some insight into future
trends in the behavior of financial market actors.

In [16], we have proposed one potential explanation in line with these results. We
first suggest that Google and Wikipedia records may provide a proxy measurement
of the information gathering process of a subset of investors for the investigated
period. We further note that previous studies in behavioral economics have demon-
strated that humans are loss averse [34]: that is, they are more concerned about
losing $5 than they are about missing an opportunity to gain $5. By this logic, it
could be argued that the trading decision of greatest consequence for a trader would
be to sell a stock at a lower price than they had previously believed it was worth.
If we assume that investors may be willing to invest more efforts in information
gathering before making a decision which they view to be of greater consequence,
then it would follow that increases in information gathering would precede falls in
stock market prices, in line with our results.

Our results suggest that Internet usage data may offer a window into the
information gathering processes which precede real world actions captured in large
behavioral data sets. By combining these new data sets, we may be able to gain new
insight into different stages of collective economic decision making.
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