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Financial factor influence on scaling and memory of trading volume in stock market
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We study the daily trading volume volatility of 17 197 stocks in the US stock markets during the period 1989–
2008 and analyze the time return intervals τ between volume volatilities above a given threshold q. For different
thresholds q, the probability density function Pq (τ ) scales with mean interval 〈τ 〉 as Pq (τ ) = 〈τ 〉−1f (τ/〈τ 〉),
and the tails of the scaling function can be well approximated by a power law f (x) ∼ x−γ . We also study the
relation between the form of the distribution function Pq (τ ) and several financial factors: stock lifetime, market
capitalization, volume, and trading value. We find a systematic tendency of Pq (τ ) associated with these factors,
suggesting a multiscaling feature in the volume return intervals. We analyze the conditional probability Pq (τ |τ0)
for τ following a certain interval τ0, and find that Pq (τ |τ0) depends on τ0 such that immediately following a short
(long) return interval a second short (long) return interval tends to occur. We also find indications that there is
a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price
volatility.
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I. INTRODUCTION

Because the dynamics of financial markets are of great
importance in economics and econophysics [1–9], the dy-
namics of both stock price and trading volume have been
studied for decades as a prerequisite to developing effective
investment strategies. Econophysics research has found that
the distribution of stock price returns exhibits power-law tails
and that the price volatility time series has long-term power-
law correlations [10–21]. To better understand these scaling
features and correlations, Yamasaki et al. [22] and Wang
et al. [23,24] studied the behavior of price return intervals
τ between volatilities occurring above a given threshold q.
For both daily and intraday financial records, they found
that (i) the distribution of the scaled price interval τ/〈τ 〉
can be approximated by a stretched exponential function, and
(ii) the sequence of the price return intervals has a long-term
memory related to the original volatility sequence. Recently,
the recurrence intervals (another name of return intervals) of
volatility [25–30] and recurrence intervals of price returns
[31–33] for different stock markets have been widely studied.
It should be noted that the scaling and memory properties of
financial records have been found to be similar to those found
in climate and earthquake data [34–39].

A feature of the recent history of the stock market has been
large price movements associated with high volume. In the
Black Monday stock market crash of 1987, the Dow Jones
Industrials Average plummeted 508 points, losing 22.6% of
its value in one day, which led to the pathological situation in
which the bid price for a stock actually exceeded the ask price.
In this financial crash approximately 6 × 108 shares traded, a
one-day trading volume three times that of the entire previous
week. Understanding the precise relationship between price
and volume fluctuations has thus been a topic of considerable
interest in recent research [40–43]. Trading volume data in
themselves contain much information about market dynamics,
e.g., the distribution of the daily traded volume displays power-
law tails with an exponent within the Lévy stable domain
[44,45]. Recently, Ren and Zhou [46] studied the intraday

database of two composite indices and 20 individual indices in
the Chinese stock markets. They found that the intraday vol-
ume recurrence intervals show a power-law scaling, short-term
correlations, and long-term correlations in each stock index.

In this study we analyze US stock market data over
a range broad enough to identify how several financial
factors significantly affect scaling properties. We study the
daily trading volume volatility return intervals τ between
two successive volume volatilities above a certain threshold
q, and find a range of power-law distributions broader
than that found earlier in price volatility return intervals
[22,23]. We find a unique scaling of the probability density
function (PDF) Pq(τ ) for different thresholds q. We also
perform a detailed analysis of the relation between volume
volatility return intervals and four financial stock factors:
(i) stock lifetime, (ii) market capitalization, (iii) average
trading volume, and (iv) average trading value. We find
systematically different power-law exponents for Pq(τ ) when
binning stocks according to these four financial factors. Similar
to that found for the Chinese market [46], in the US stock
market the conditional probability distribution Pq(τ |τ0) for
τ following a certain interval τ0 demonstrates that volume
return intervals are short-term correlated. We also find that the
daily volume volatility shows a stronger long-term correlation
for sequences of longer lifetime but no clear changes in
long-term correlations for different stock size factors such as
capitalization, volume, and trading value.

II. DATA

In order to obtain a sufficiently long time series, we analyze
the daily trading volume volatility of 17 197 stocks listed in
the US stock market for at least 350 days. We obtain our
data from the Center for Research in Security Prices US
stock database, which lists the daily prices of all listed New
York Stock Exchange (NYSE), American Stock Exchange
(AMEX), and NASDAQ common stocks, along with basic
market indices. The period we study extends from 1 January
1989 to 31 December 2008, a total of 5042 trading days.

046112-11539-3755/2011/84(4)/046112(8) ©2011 American Physical Society



LI, WANG, HAVLIN, AND STANLEY PHYSICAL REVIEW E 84, 046112 (2011)

III. DISTRIBUTION OF VOLUME VOLATILITY
RETURN INTERVALS

For a stock trading volume time series, in a manner
similar to stock price analysis [20,21,23], we define two
basic measures: volume return R and volume volatility ν. The
volume return R is defined as the logarithmic change in the
successive daily trading volume for each stock [47],

R(t) ≡ ln
(

V (t)
V (t − 1)

)
, (1)

where V (t) is the daily trading volume at time t . For both
Dow Jones and Nasdaq indices, Ref. [47] finds power-law
auto-correlations in absolute values of logarithmic differences
of trading volume. We define volume volatility to be the
absolute value of the volume return. In order to compare
different stocks, we determine the volume volatility ν(t) by
dividing the absolute returns |R(t)| by their standard deviation,

ν(t) ≡ |R(t)|
[〈|R(t)|2〉 − 〈|R(t)|〉2]1/2

, (2)

where 〈· · ·〉 is the time average for each stock. The threshold
q is thus measured in units of standard deviation of absolute
volume return |R(t)|.

For a volume volatility time series, we collect the time
intervals τ between consecutive volatilities ν(t) above a chosen
threshold q and construct a new time series of volume return
intervals {τ (q)}. Figure 1(a) shows the dependence of Pq(τ )
on q, where Pq(τ ) is the PDF of the volume volatility return
interval time series {τ (q)}. Obviously, Pq(τ ) decays more
slowly for large q than for small q. For large q, Pq(τ ) has
a higher probability of having large interval values because
extreme events are rare in a high-threshold series. We next
determine whether there is any scaling in the distribution by
plotting the PDFs of the volume return intervals Pq(τ ), scaled
with the mean volume return interval 〈τ (q)〉, for different
thresholds in Fig. 1(b). We can see that all five threshold
value (q) curves (full symbols) collapse onto a single curve,
suggesting the existence of a scaling relation,

Pq(τ ) = 1
〈τ 〉

f

(
τ

〈τ 〉

)
. (3)

As the threshold q increases, the curve (rare events) tends to
be truncated due to the limited size of the data set. The tails
of the scaling function can be approximated by a power-law
function as shown by the dashed line in Fig. 1(b),

f

(
τ

〈τ 〉

)
∼

(
τ

〈τ 〉

)−γ

, (4)
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FIG. 1. (Color online) Probability distributions of volume volatility return intervals and price volatility return intervals for 17 197 stocks.
Full symbols with different shapes represent different thresholds q varying from 2.0 to 4.0. (a) Distribution of volume volatility return intervals,
Pq (τ ) versus τ . (b) Scaled distribution of volume return intervals (full symbols) Pq (τ )〈τ 〉 versus τ/〈τ 〉, and distribution of volume return
intervals for shuffled volatility records (open symbols). The four curves with full symbols collapse onto one single curve, indicating a universal
scaling function. The tail of the scaling function is approximately a power-law distribution, f (x) ∼ x−γ with γ ∼= 3.2, while the curve fitting
the shuffled records is an exponential function, f (x) = e−ax from a Poisson distribution. A Poisson distribution indicates no correlation in
shuffled volatility data, but the original data set suggests strong correlation in the volatilities. The power-law exponents for intraday volume
recurrence intervals of several Chinese stock indices are from γ = 1.71 to γ = 3.27 [46]. For comparison, (c) and (d) show the distribution
and scaled distribution of price volatility return intervals, respectively. Note the narrow range of the power law compared to (a).
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where the tail exponent is γ . The exponent of the scaled
PDFs for q = 2 is γ ∼= 3.2 by the least squares method,
which is the same as the unscaled PDF exponent γ ∼= 3.2
as shown in Fig. 1(a). For comparison, and using the same
approach, Figs. 1(c) and 1(d) show the analogous results for
price volatilities (see also the studies in Refs. [22,23,48]). Note
that it is not easy to distinguish between a stretched exponential
and a power law when studying price volatilities [22], i.e., the
power-law range is small and a stretched exponential could
also provide a good fit. In contrast, the PDFs of the volume
volatility return intervals display a wide range of power-law
tails, which differs from the stretched exponential tail apparent
in the price return intervals [23]. Our results for volume
volatility may suggest that Pq(τ ) for price volatility is also
a power law, but this could not be verified because the range
of the observed power-law regime [see Figs. 1(c) and 1(d)]
is more limited than the broad range of scales seen in the
volume volatility [Figs. 1(a) and 1(b)]. The difference between
the power-law and stretched exponential behavior of Pq(τ )
may be related to the existence or nonexistence respectively
of nonlinearity represented in the multifractality of the time
series. When nonlinear correlations appear in a time record,
Bugachev et al. [49] showed that Pq(τ ) is a power-law. On
the other hand, when non-linear correlations do not exist
and only linear correlation exists, Bunde et al. [36] found
stretched exponential behavior. The dependence of 〈τ (q)〉 with
q was studied recently by Podobnik et al. [47]. They find that
〈τ (q)〉 ∼ qα , where α = 3 is the exponent characterizing the
power-law decay of the probability density distribution of the
volume volatility for the S & P 500 Index.

A comparison with the shuffled records allows us to see
how the empirical records differ from randomized records.

We shuffle the volume volatility time series to make a new
uncorrelated sequence of volatility, and then collect the time
intervals above a given threshold q to obtain synthetic random
control records. The curve that fits the shuffled records
[the open symbols in Fig. 1(b)] is an exponential function,
f (x) = e−ax , and forms a Poisson distribution. A Poisson
distribution indicates no correlation in shuffled volatility data,
but the empirical records suggest strong correlations in the
volatility.

IV. FINANCIAL FACTORS

We study the relation between the scaled PDFs Pq(τ )〈τ 〉 as
a function of τ/〈τ 〉 for four financial factors: (a) stock lifetime,
(b) market capitalization, (c) mean volume, and (d) mean
trading value for threshold q = 2.0. For higher q values, we do
not have sufficient data for conclusive results [49]. In Fig. 2,
we plot the scaled PDFs for these four factors. The volume
return intervals characterize the distribution of large volume
movements. A high probability of having a large volume return
interval τ suggests a correlation in volume volatility, because
small volatilities are followed by small volatilities and the time
interval between the two large volatilities becomes relatively
longer than those of random records. In order to characterize
how these four factors affect the distribution of volume return
intervals, we divide all stocks into four subsets for each factor.
In Fig. 2(a), the probability that τ will be large is greater in
the subset with 15–20 year old stocks (triangles) than in the
subsets of younger stock. This indicates that small volatilities
(below the threshold) tend to follow small volatilities and that
the time intervals between large volatilities in the subset of
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FIG. 2. (Color online) Relations between distribution function P2(τ )〈τ 〉 of volume volatility return intervals and four financial factors:
(a) lifetime, (b) market capitalization, (c) average daily trading volume, and (d) average daily trading value, for the threshold q = 2.0. The
distribution functions decay with various exponents γ and show similar systematic tendencies for the four financial factors.
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15–20 year old stocks are larger than the time intervals in the
subset of five year old stocks (dots). The decaying parameters
represented by the power-law exponents are quite different:
γ ∼= 4.2 for the shortest-lifetime subset and γ ∼= 2.8 for the
longest-lifetime subset.

In Figs. 2(b)–2(d), we use the same approach for stock
subsets with different capitalizations, mean volumes, and
mean trading values. Trading value is defined as stock price
multiplied by transaction volume. For each stock, we designate
the lifetime average of capitalization, volume, and trading
value as performance indices. For example, the power-law
exponents of the PDFs Pq(τ )〈τ 〉 increase as the capitalization
becomes larger [see Fig. 2(b)]. To clarify the picture, we divide
all stocks into different subsets and study the behavior of the
power-law exponent γ with regard to these four factors. In
Fig. 3(a), stocks are sorted into ten subsets, from 508 days
(two years) to 5080 days (ten years). We fit the power-law
tails of the volume return intervals for each subset and plot the
exponent γ versus the lifetime of the stocks. In Fig. 3(a),
we can observe a systematic trend with stock lifetime. It
is seen that older stock subsets have smaller exponent γ ,
indicating a broader power-law tail in the distribution of
normalized volume volatility return intervals. One possible
explanation is that older stocks have larger volume volatility
autocorrelations. Similarly, we sort the stocks by capitaliza-

tion, mean volume, and mean trading value, as shown in
Figs. 3(b)–3(d). The trends are not as obvious when we group
stocks by these three factors because γ decreases with the
increasing of these factors but seems to become constant for
large values of capitalizations, mean volumes and mean trading
values.

Since all factors similarly affect the scaling of the PDF
Pq(τ )〈τ 〉, we now determine how much these factors are
correlated. To study the relations between different stock
subsets, we plot the relation between trading value versus
capitalization, mean volume versus capitalization, and mean
trading value versus mean volume for all the stocks shown in
Fig. 4. We see that larger-capitalization stocks tend to have
a larger trading volume and a larger trading value, which is
consistent with Figs. 3(b)–3(d). The correlation coefficients
between trading value and capitalization, mean volume and
capitalization, and trading value and volume are 0.62, 0.55,
and 0.78, respectively. The correlation coefficients are high
because these capitalization, volume, and trading value factors
are all affected by firm size. Our analyses do not, however,
show a significant relationship between stock lifetime and trad-
ing value, capitalization, and mean volume, and the correlation
coefficients are all smaller than 0.20. The effects of capitaliza-
tion on stock return and transaction value have been reported in
Refs. [50,51].
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FIG. 3. The power-law tail exponent γ for different subsets of stocks. (a) Stocks are sorted into ten subsets of different lifetimes. Exponents
γ are obtained by fitting the PDF of volume volatility return intervals for each subset. (b) Stocks are sorted into eight subsets for different
capitalizations. (c) Stocks are sorted into eleven subsets for different mean volumes. (d) Stocks are sorted into nine subsets for different trading
values. Older stock subsets have smaller exponents γ , indicating a broader power-law tail in the distribution of normalized volume volatility
return intervals. The trends are not as obvious when we group stocks by these three factors because γ decreases with the increasing of these
factors but seems to become constant for large values of capitalizations, mean volumes, and mean trading values.
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FIG. 4. Scatter plots for the relations in stocks between trading value and capitalization, mean volume and capitalization, and trading value
and mean volume for all 17 197 stocks. For example, a point on (a) represents a stock which has $108 capitalization and $106 average trading
value. The correlation coefficients between trading value and capitalization, mean volume and capitalization, and trading value and volume are
0.62, 0.55, and 0.78, respectively. However, our analyses do not show a significant relationship between stock lifetime and its trading value,
capitalization, and mean volume, and the correlation coefficients are all smaller than 0.20.

V. SHORT-TERM MEMORY EFFECTS

We characterize a sequence of volume return intervals in
terms of the autocorrelations in the time series. If the volume
return interval series are uncorrelated and independent of
each other, their sequences can be determined only by the
probability distribution. On the other hand, if the series is
autocorrelated, the preceding value will have a memory effect
on the values following in the sequence of volume volatility
return intervals.

In order to investigate whether short-term memory is
present, we study the conditional PDF Pq(τ |τ0), which is the
probability of finding a volume return interval τ immediately
after an interval of size τ0. In records without memory,
Pq(τ |τ0) should be identical to Pq(τ ) and independent of
τ0. Otherwise, Pq(τ |τ0) should depend on τ0. Because the
statistics for τ0 of a single stock are of poor quality, we
study Pq(τ |τ0) for a range of τ0/〈τ 〉. The entire data set is
partitioned into eight equal-sized subsets Q1,Q2, . . . ,Q8, with
intervals of increasing size τ0/τ . Figure 5 shows the PDFs
Pq(τ |τ0) for Q2, i.e., small interval size 0.2 < τ0/〈τ 〉 < 0.4,
and Q6, large interval size 3.2 < τ0/〈τ 〉 < 6.4, for different
q. The probability of finding large τ/〈τ 〉 is larger in Q6 (open
symbols) than in Q2 (full symbols), while the probability of
finding small τ/〈τ 〉 is larger in Q2 than in Q6. Thus large
τ0 tends to be followed by large τ , and vice versa, which
indicates short-term memory in the volume return interval
sequence. Moreover, note that Pq(τ |τ0) in the same subset for
different thresholds q fall onto a single curve, which indicates

the existence of a unique scaling for the conditional PDFs
as well. Similar results were found for trading volume of the
Chinese markets [46] and for price volatilities [22,23].

VI. LONG-TERM MEMORY EFFECTS

In previous studies, the price volatility series was shown
to have long-term correlations. Using a similar approach, we
test whether the volume volatility sequence also possesses
long-term correlations. To answer this question, we employ
the detrended fluctuation analysis (DFA) method [52–54] to
further reveal memory effects in the volume volatility series.
Using the DFA method, we divide an integrated time series
into boxes of equal length n and fit a least squares line in each
box. Next we compute the root-mean-square fluctuation F (n)
of the detrended time series within a window of n points and
determine the correlation exponent α from the scaling function
F (n) ∼ nα , where α ∈ [0,1]. The correlation exponent α
characterizes the autocorrelation in the sequence. The time
series has a long-term memory and a positive correlation
if the exponent factor α > 0.5, indicating that large values
tend to follow large values and small values tend to follow
small values. The time series is uncorrelated if α = 0.5 and
anticorrelated if α < 0.5.

Using the DFA method, we analyze the price volatility and
volume volatility time series by plotting in subsets the relation
between correlation exponent α and the four financial factors,
including stock lifetime, market capitalization, mean trading
volume, and mean trading value. All the price volatility and
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FIG. 5. (Color online) Conditional PDF Pq (τ |τ0) of volume volatility return intervals τ for different thresholds q = 2.0,2.5,3.0, as a
function of τ/〈τ 〉 for different τ0/〈τ 〉 subsets. A small-τ0 subset Q2 (full symbols) and a large-τ0 subset Q6 (open symbols) are displayed in
(a). For example, subset Q6 contains events of finding τ after a large interval 3.2 < τ0/〈τ 〉 < 6.4. In contrast to subset Q6, subset Q2 has larger
probability to be followed by small τ/〈τ 〉 and smaller probability to be followed by large τ/〈τ 〉, which indicates short-term correlation in the
records: small intervals are followed by small intervals and large intervals are followed by large intervals. There is no memory effect in shuffle
records as seen in (b), where the PDFs of all the subsets collapse onto one curve.

volume volatility correlation exponents are significantly larger
than 0.5, suggesting the presence of long-term memory in both
price volatility sequences and volume volatility sequences. In
all of the plots, the price volatility series shows a stronger long-
term correlation than the volume volatility series. Moreover, as
shown in Fig. 6(a), α on average increases for the stocks with

a lifetime ranging from 350 to 3800 days (about 15 years), and
then shows a slight decrease, suggesting that longer-lasting
stocks tend to have a more persistent price and volume
movement. We note that Podobnik et al. [47] and Ren and
Zhou [46] also found long-range correlations in the volume
records, consistent with our findings. The increasing exponent
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FIG. 6. (Color online) Correlation exponent α obtained from detrended fluctuation analysis of volume volatility (squares) and price volatility
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to have a more persistent price and volume movement. (b)–(d) show that there is no systematic tendency in the relation between α and market
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α indicates that the volume volatility of older stocks is more
autocorrelated than that of younger stocks. This is consistent
with the indication in Fig. 2(a) that the volume volatility of
older stocks is more autocorrelated. Figures 6(b)–6(d) show
that there is no systematic tendency relation between α and
market capitalization, trading volume, and trading value.

VII. CONCLUSIONS

We have shown the scaling properties and memory effect
of volume volatility return intervals in large stock records of
the US market. The scaled distribution of volume volatility
return intervals displays unique power-law tails for different
thresholds q. We also find different power-law exponents γ

of Pq(τ ) for the four essential stock factors: stock lifetime,
market capitalization, average trading volume, and average
trading value. These different exponents may be related to
long-term correlations in the interval series. Significantly, the
daily volume volatility exhibits long-term correlation, similar
to that found for price volatility. The conditional probability
Pq(τ |τ0) for τ following a certain interval τ0 indicates that
volume return intervals are short-term correlated.
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