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pling (g,)? alone produces a first-order Jahn—
Teller phase transition at 6 °K. When we include
the competing biquadratic coupling I, we find no
phase transition at all down to 7=0.3 °K (our nu-
merical calculations only go down to this tempera-
ture). However, the elastic constant ¢y does not
continue to soften past 9.5 °K because of the bi-
linear interactions present in DySb. These inter-
actions do not contribute appreciably to the soften-
ing of the elastic constant [except for short-range
effects, i.e., as corrections to Eq. (4)] but they
do cause the system to undergo a first-order phase
transition at 9.5 °K.

Finally, by using the values of g4 and I, deter-
mined from the elastic data and taking into account
the contributions to g, that appear below the transi-
tion, we have been able to fit'® the low-tempera-
ture data on the magnetization, susceptibility,
specific heat, 3 and anisotropic distortion. !
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Three plausible postulates (rigorous for Ising systems) are shown to lead to three new inequalities: (i)

=My 2 (8= 1)/8, (i) py>2/8(d —2+m), and (iii) dp,>(@+1)/8,

concerning M4, the critical-point

exponent characterizing the divergence along the critical isotherm of the correlation length £,(T,H)
=[z2I? |2‘°C2(T, H, T)/Z:C,(T H, )] 2%, Result (iii) for u,, is an analog, for the critical isotherm, of
the Josephson inequalities. If we make the plausible but unproved assumption that pu, is independent

of ¢, inequality (i) becomes an equality!

The divergence of a “correlation length” at the
critical point (7= T,, H=0) is a hallmark of co-
operative phenomena near phase transitions, as
it reflects the fact that the correlation function,

Co(T, H, D =(s§s8) - (s§?=T(T, B, T) - [T(T, BF
1)

is becoming extremely long range.! We define a

family of correlation lengths £,(7, H) through the

relation?

1; |T1% Cy(T, H, T) @)

4 H
ZFCZ(Ts H, 1‘)

[e,(T, B =

where £,(T, H)=£(T, H) is commonly called tze
correlation length. The corresponding critical-
point exponents are vy, i,, and v, for the three
paths (paths 1-3) defined in Table I; again the con-
ventional exponents v, ', u correspond to the case
¢=1,

The path-1 and path-3 exponents have been
studied considerably more than the path-2 expo~
nents. 2 It is the purpose of this paper to show
that one can readily obtain analogs for path 2 of
two of the classic exponent inequalities for paths
1 and 3 (relations IIa and IId of Table I). Move-
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TABLE I. New inequalities proved here for path 2,
compared with known inequalities for paths 1 and 3.
Here we require ¢=3n—1 (for otherwise 7 is not defined).
Inequalities shown in curly brackets have not been proved
thus far, to the best of our knowledge. Note that inequal-
ities a and b differ by a reversal of the inequality
sign. Note also that if u, is independent of ¢ (Postulate
D), then inequalities IIa and IIb reduce to scaling-law
equalities, while IIc and IId do not.

Path 1 (T'—T;, H=0) Path 2 (=T, H—0%) Path3 (T—T;, H=0)

fa Ila [Eq. (T)): Ila (Ref. 2):

vy 2=nz=vy 2} k(2= = (6-1)/5 ve2=m)zYy

b (Ref. 5): IIb (Ref. 5): I1Ib:

Y= 2=V 0 (6=1)= Q2 =1py/01 = @=nvy/y 2}
Ic 1lc [Eq. (9)]:

{re=28/d—2+m) 2} pe=2/8(d—2+m) no analogy

Id (Ref. 7): 1Id [Eq.(10)]: 111d (Ref. 7):
dvgz=2-a’ dpy= (6+1)/6 Ave=2-a

over, one can obtain an additional inequality (re-
lation IIc of Table D) for which the analogous inequal-
ity has not been proved for paths 1 and 3.

The new results for path 2 require for their
proof the following plausible assumptions (which
are rigorous for the Ising model®*):

Postulate A.® For all finite T and positive H,
Ty(T, H) = M(T, H) = {s§5)= 0 and C,(7T, H,T)= 0.

Postulate B.® Ty(T, H) and T'y(T, H, T)= (s§s%)
are monotonic increasing functions of Hfor fixed T and
are monotonic decreasing functions of T for fixed H,

Postulate C.* C,(T, H, T), defined in (1), is mono-
tonic decreasing in Hfor T=T,.

In addition to the exponent u, defined above
[%(Tc , H)~H™®], we introduce an exponent No»
defined by X,(T,, H=0, R)~R*"0*% to character-
ize the decay of the correlation function at the crit-
ical point; here
XQ)(T, Ha R)Ef‘lZ)R !—fIZd’CZ(T; H; F) . (3)
ris
The exponents 7, are independent of ¢, and we
write® n=n,; this relation is valid only for ¢ = 7
-1, for otherwise 7 is not defined.

The proof of relation Ila (for path 2) begins with
the observation [Postulate C] that C,(T,, 0, T)
= Cy(T,, H, T); this implies X,(7,, 0; R)= X,(T,, H, R),
and hence

X, (T, 0, R)= [£, (T, D)I**X(T., H)
—Ix"élS;R ’?|2002(Tc’ H, -f) ) (4)

where we have used (3), (2), and the fact that the
denominator of (2) is the reduced susceptibility
X(T, H). Considering first the case ¢ <0, we have

2 |F|®cyT, H,F)=R® 2 CyT, B, F)

IfI=R IF1=R

=R*3(T, H) , (5)
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where the second inequality follows from Postulate
A, Substituting (5) into (4), we have

X,(T,, 0, R) = [£,(T,, H)F*X(T,, H)
x{1 -[R/t,(T,, B)I**} . (6)

Now R is an arbitrary number; choosing R

=ct, (T, H), withc> 1, ensures thatthe factor repre-
sented by the curly brackets in (6) be a positive
number. Taking the limit H~ 0 in (8) yields
(2=-n+2¢)u, =2¢p, +(56~1)/8, or

@=mu,=(6-1/6 (relation ITa). )

To derive (7) for ¢ >0, one may repeat the same
procedure [cf. Egs. (38)-(43) of Ref. 2|, or one
may utilize the fact that p,= p, if x=y[Lemma,
Ref. 5; note that the validity of this lemma is not
restricted to positive x, y].

Relation IIc of Table I is obtained by combining
(7) with Eq. (7b) of Ref. 5;

5-1_ _2@-7) 2
5 6(d—2+?7)+2¢{6(d—2+77) _““’} ’

(8)
with the result
=2
Fo= 5la-2+7)
here d denotes the lattice dimensionality. ®
Inequality (9) may be written in the form dpu,
=2/6+(2-m)u,, and combining this with (7) we
have

(relation IIc); 9)

(10)

Note from Table I that the relations for paths 1
and 3 analogous to (10) are the Josephson’ inequal-
ities, dv’=2-q’ and dv= 2 - ¢. However, Joseph-
son required for his derivation assumptions that
have not been proved for any conventional model
system and which are sufficiently unobvious that
another author™™ has recently rederived the path-
3 Josephson inequality using an altogether dif-
ferent argument (though even the latter derivation
requires the assumption ¢ = o).

The two-exponent scaling laws, ! such as

du, = (6+1)/6 (relation IId) .

o0-1_,

6+1 (11)

d

between § and 7, have been questioned by many
authors, both because series expansions suggest
these laws fail by 1-2% for some three-dimen-
sional lattice models, and because they require
for their validity assumptions in addition to that
of homogeneity of C,(T ~ T,, H,¥). We next show
that the two-exponent scaling law (11) cannot hold
unless B(¢p)=2/6(d-2+n) - p, is identically equal
to zevo for all values of ¢ in the range 0= ¢ =37
—1. To see this, we observe that B(¢) is the
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quantity in the curly brackets of (8), and hence the
product 2¢ B(¢) is a “correction term’” to the Buck-
ingham —Gunton-Stell inequality.® But according to
(9), B(¢)=0, so that this correction term is posi-
tive for all negative ¢.

Note from (8) and (9) that we may obtain lower
and upper bounds on p, for 0= ¢ = 3n -1,

Ay _d+2-m | 2.
T2 {1' 6(d—2+17)} =He” Sla—zem O
(12)
- For the 4 =3 Ising system, series expansions sug-
gest! that =5, and =0, 041, whence (12) implies
0.4-0.025/¢ = p, = 0.4 (this enables us to pin
down the numerical value of y, to within 10% pro-
viding =i=¢p=1n-1).
Conversely, for those systems (such as the d=2
Ising model) for which (11) {s satisfied as an
equality, B(¢) must be zero for negative ¢; i.e.,®

} 2
5ld—-2+n)

Note from (12) that p, is independent of ¢ over
the range indicated!
The last rigorous result,

@=-mlysea=0-1)/5 , (14)

follows from (7) and (8) [cf. relation IIb of Table
1]. Since (14) holds for the smallest value of )
and u, is a monotonic increasing function of ¢, it
follows that if (14) is observed to hold for some
particular value of ¢, ¢=¢, (e.g., ¢o=1), then
(14) must hold for the entire range ¢q= ¢ = 31 ~1.

In light of the above discussion [especially (13)]
it might seem reasonable to make the further pds-
tulate that p, is independent of ¢:

Postulate D. |, = for all ¢.

Then (14) implies that

@-nmu=06-1)/s (15)

.U'q) (OZ = %77‘1) . (13)

which {s a prediction of homogeneity (unlike the
equalities obtained by replacing the inequalities
by equalities in relations Ilc and IId). To the best
of our knowledge, this is the first “derivation”

of a scaling law (i.e., an exponent relation pre-
dicted by the scaling hypothesis) from a clearly
defined and plausible set of mathematical assump-
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tions (viz., Postulates A-D). In particular, the
only assumption requived for (15) that has not been
shown to be rigorously true for the Ising model

is Postulate D% to suggest the possible validity

of Postulate D, we have Eq. (13) (and, of course,
the heuristic arguments supporting the scaling
hypothesis).

The principal new inequalities of this paper are
summarized in Table I as relations IIa, IIc, and
IId (path 2). Table I was constructed so that the
reader can easily see that many of the results
proved here for path 2 have not been proved yet
for path 1 and/or path 3. Some (perhaps all) of
these path-2 results may hold for paths 1 and 3,
but we have not yet seen how to prove any of them
without making additional assumptions.

One such assumption which, when combined with
Postulates A and B, leads to all unproved relations
for path 1 (Ia, Ic, and Id) is the following:

Postulate C'. Co(T, H=0,T), defined in (1), is
monotonic increasing in T for T= T,.

Under Postulates A, B, and C’the proof of the re~
sults along path 1 is exactly the same asthose along
path 2. This similarity may be visualized by com-
paring the contents of the assumptions made in
both cases. Postulate A indicates that the spin
averages I'y and T', are always positive, be it along
path 1 or 2. Postulate B indicates that I'y and T',
decrease as one approaches the critical point along
both paths. Postulate C indicates that the fluctua-
tion Co(T, H, T) increases as one approaches the
critical point along path 2, and Postulate C’ is
exactly the analog of Postulate C along path 1.
Postulate C’ has not been proved (to our knowledge)
for the Ising model, unlike Postulates A-C3%4;
however, it is a plausible assumption to make,
since the fluctuations are “thought” to increase as
T- T,. This thought is also consistent with the
few rigorous results known for the two-dimension-
al Ising model. 0

The major point of this paper is to emphasize
that thorough consideration of path 2 merits the
attention of both theoreticians and experimental-
ists; in particular, numerical experiments are
underway in order to determine values of u, for
system Hamiltonians (Ising, Heisenberg, ...) of
direct experimental relevance.
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8Equation (13) also follows directly from (12) since the quan-
tity in curly brackets is zero for those systems satisfying (11).

Note that Postulates A-D do not predict that relations II ¢
and IId of Table I become equalities, despite the fact that IIc
and IId do become equgqlities in two-exponent scaling theory.
This is not inconsistent with the current idea that homogeneity
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In an attempt to better understand the nature of the complex magnetic interaction in
antiferromagnetic a-Mn, we have undertaken an experimental determination of the Néel temperatures
(T y) of manganese-rich Mn-V, Mn-Cr, Mn-Fe, and Mn-Ru alloys. The electrical resistivities of Mn
samples containing up to approximately 2.5 at.% of V, Cr, Fe, and Ru have been studied from 4.2 K
to room temperature. Anomalies in the temperature dependence of the alloy resistivities at the onset of
antiferromagnetic ordering reveal that dissolving V or Cr into Mn depresses T y, while dissolving Fe or
Ru into Mn raises the Néel temperature of the alloy. The data reveal that the introduction of impurity
atoms into a-Mn does not affect the antiferromagnetic coupling by a simple dilution process. T y
exhibits a striking dependence on both the magnitude and sign of the excess electron concentration in

the alloys.

INTRODUCTION

a-Mn has a cubic structure with lattice constant
8.9135 A and contains 58 atoms per unit cell.
Bradley and Thewlis' showed that the structure
contained four crystallographically nonequivalent
sites. The basis of the whole arrangement is a
simple body-centered-cubic lattice, with each lat-
tice point being associated with a cluster of 29
atoms. Around each type-I atom is an octahedron
of type-IV atoms, the opposite faces of the octahe-
dronbeing of different sizes so that the symmetryis
tetrahedral. The four type-II atoms are somewhat
further from the center of the group and are ar-
ranged tetrahedrally about the center. The twelve
outer-most type-III atoms comprise a polyhedron
having cubic and octahedral faces. The whole clus-
ter has symmetry which is tetrahedral, as is that
of the crystal as a whole.

a-Mn is in many respects analogous to an inter-
metallic compound. In fact, an intermediate phase
generally called the y phase, has a structure iso-
morphous with a-Mn. This y phase has been iden-
tified in several binary®? and ternary alloys. 2~°
Two factors would appear to be in operation in
stabilizing both @~Mn and the y phase. They are
electronic structure and atomic sizes.

The coordination numbers (CN) for the a-Mn
sites are site-I, CN 16; site I, CN 16; site III,
CN 13; and site IV, CN 12,2 There is a striking
difference between interatomic distances within the
Mn structure, as well as coordination numbers

associated with the various sites. The interatomic
distances vary from 2. 21 to 2.96 A% and the coor-
dination numbers vary from the compact icosahe-
dral with CN 12, to sites with CN 16 which oc-
cupy considerably more volume. From considera-
tion of space filling, it would appear that the Mn
atoms in sites I and II would tend to have larger
electronic radii in order to fill the relatively lar-
ger volume of the CN 16 sites. Smaller atoms,

on the other hand, would occupy the sites III and
IV, since there is a smaller volume associated with
the CN 13 and CN 12 sites. From size considera-
tion, it might be expected that Mn exists in dif-
ferent electronic states.

Several neutron-diffraction investigations of the
magnetic structure of a-Mn have been done, #-°
These studies have shown that each of the four non-
equivalent atom sites have different magnetic mo-
ments and established the existence of an antifer-
romagnetic state in a-Mn below a temperature of
approximately 95 K.

From the most recent neutron-diffraction study,
in which a noncollinear-spin model was assumed,
moments of 1.9y, 1.7ug, 0.6up, and 0.2,
were obtained for sites I, II, III, and IV, respec-
tively. This model supported a localized magnetic
moment on each of the a~Mn atoms, as opposed to
a spin-density wave.

From consideration of atom sizes, predictions
can be made with regards to the effects of alloying.
One may expect atoms of relatively smaller sizes,
such as Fe and Cr, to preferentially occupy the



