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Two new inequalities, (i) v’ =28(2—-n)/(d~2+n)+2¢[28/(d—2+n) —v%] and (i) (6-1)/5
=2(2-n)/8(d—2+n) +2¢[2/6(d—2+n) ~p,], are derived among critical-point exponents that
describe the behavior of the two-spin correlation function Cyo(T, H,T) = (s§sf) — (sZ) (s%), sub-
ject to plausible assumptions (rigorous for Ising magnets). Here v§ and p, describe the di-
vergence as T— T, and as H— 07, respectively, of the “‘generalized correlation length” £o(T,H),
defined as the 2 ¢th root of the normalized 2 ¢th spatial moment of Co(T, H, T). Also
derived are the corresponding inequalities among exponents that describe the behavior of the
energy-energy correlation function. Inequality (i) is shown to lead to an inequality between
primed and unprimed exponents., Moreover,. if vy is independent of ¢, then (i) implies that
Vv z2B8/(d—2+m) and ¥’ = (2 —n)v', while if u, is independent of ¢, then (ii) implies u

=2/6(d—2+m) and (6 —1)/6= (2 —n)u.

I. INTRODUCTION

Rigorous inequalities among critical-point expo-
nents! have served to assist in the interpretation
of experimental data and, perhaps more significant
historically, have contributed to the formulation
of the static scaling hypothesis? (which has the fea-
ture that most inequalities are predicted to be
satisfied as equalities).

These inequalities may be classified into two
groups: (i) relations among critical-point exponents
characterizing the behavior of thermodynamic func-
tions, ! and (ii) relations among exponents charac-
terizing the behavior of the static correlation func-

tions. 375

Inequalities belonging to category (i) (e.g., a’
+2B+7v’22) are frequently found to be satisfied as
equalities by experimental results and by calcula-
tions on model systems.® On the other hand, cer-
tain of the inequalities belonging to category (ii)
are almost invariably not obeyed as equalities, with
the notable exceptions of the two-dimensional Ising
model (d = 2) and the three-dimensional spherical
model. Thus, for example, dv22 -« is satisfied
as an equality for the d =2 Ising model (v=1, a=0),
but for the d =3 Ising model, numerical-approxima-
tion methods indicate that dv is about 2% larger
than 2 - a.”
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It has been pointed out® that certain of the category
(ii) inequalities in fact do not become equalities on
making the scaling hypothesis, providing the latter
is formulated in terms of homogeneity assumptions.
This result has motivated us to reexamine the cor-
relation function exponent equalities with the hope
of possibly finding additional inequalities that are
somewhat “tighter” than the original inequalities.
The extent to which this hope has been realized will
be discussed in Sec. IV below—for now suffice it to
say that if the original relations are of the form
A2 B, then certain of our new relations are of the
form A ZB+C, and there is no reason for C not
being positive; here A, B, and C represent differ-
ent combinations of critical-point exponents. It is
in this sense that some of our new inequalities may
be logically stronger than certain of the old inequal-
ities.

II. INEQUALITIES AMONG SPIN-SPIN CORRELATION

FUNCTION EXPONENTS

In order to state the main results of this work we
must define certain additional critical-point expo-
nents, and in order to do this we first define the
two-spin correlation function

Co(T, H, T)=Ty(T, H, ¥)-T{T, H)
:rz(T, H’ ?)—Mz(Ty H) ) (1)

where Ty (7, H)=(s&)=M(T, H) and T')(T, H, T)
=(sfsf). We have used Ising-model notation in our
definitions because the inequalities that we shall
discuss necessitate for their proof certain postu-
lates which, although plausible for a wide class of
magnetic systems, have thus far been proved® only
for the Ising model:

(a) Positivity. For all finite T and H >0, I'y(T, H)
20 and C(T, H, T)20.

(b) Monotonicity. Ty and T'y are monotonic in-
creasing functions of H for fixed T and monotonic
decveasing functions of T for fixed H.

Near the critical point the correlation function
becomes long range, and this is reflected, for
example, in the behavior of its moments. Of
particular interest in this work are the quantities
£,(T, H), defined by the relation

[£(T, H)I*=25|F|* CAT, H, F)/25CAT, H, T).

(2

We note that the quantity £,(T, H) defined in (2) has
the dimension of length, and hence we shall call it
the “generalized correlation length”; it reduces
to previous definitions of the correlation length &
for the special case ¢p=1.°

As the critical point is approached the generalized
correlation length diverges to infinity, and we ac-
cordingly define the critical-point exponents v,,
vy, and p, to describe these divergences:
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ENT, 0)~(T=-T,)", T-T;

£ (T, O~ (T, - T)"%, T-T; )
and

£,(T,, H~H™e, H-0". (3p)

Various authors have presented derivations of

certain inequalities for the case ¢ =1. These are
the Josephson inequalities®

dv22-a, dv'22-a’, (4)
the Buckingham-Gunton-Stell (BGS) inequalities*

dv'/(28+7v")22-n (5a)
and

dd-1)/(6+1)22 -7, (5b)
and the Fisher inequalities®

da’22-ng, (6a)

da,/(1+¢+a)22 -1z, (6b)
and

(2=-nv2y, (6c)
where the exponents used are all defined in Ref. 5
(and vy=v).

We shall generalize arguments of the sort used
by Fisher in deriving Eqs. (5) and (6) to discuss
the situation for general ¢. In particular, we
prove the inequalities

.5 28(2=m) 28 )
4 Za'--2+n+2¢)<d—2+1’)-ﬂy° (72)

and

6-1, 22-19) 2
5 ”5(d-2+n)'2¢(5(d—2+n)‘“°>' (7b)

We then proceed to show that the tightness of
Egs. (5a) and (5b) hinges on the condition B(0)= 0,
where B(¢) is the quantity in the large parentheses
on the right-hand sides of Eqgs. (7a) and (7b).

That is, in (7a) we have

__ 28 ,
B(d)):m—v,,, (8a)
while in (7b)
_ 2
B(¢)=m ~lye (8Db)

We begin by introducing a function

X(T, H, ¢, R)= E( CiT, H, T)|F|?°. (9)
IFISR

Since C,(T, H, T) is assumed in postulate (a) to
be a positive function, one may apply Holder’s in-
equality'® to prove that £,(7, H) is a monotonic in-
creasing function of ¢.° One can thereby derive
the following two lemmas'!:



Lemma I. If x2y and xy #0, then v, 2v, , v, 2},
and [y 2 phy.

Lemma II. m,=7n providing ¢ 237 —1 and 227
22 -d. Here the exponent 7, is defined by means
of the relation

X(T,, H=0, ¢, R)~R®™M*2® R o, (10)

Lemma II is proved in Appendix A.
Combining Egs. (2) and (9) with postulate (a)
(positivity) yields

X(T, H)&(T, M]**2X(T, H, ¢, R), 11)

where X(T, H)=3:Cy(T, H, ¥)=X(T, H, 0, =) is
the reduced isothermal susceptibility related to
Xr by X= (ks T/g%u3)xr. Similarly, Egs. (1) and
(9) can be combined with postulate (b) (monotoni-
city) to show that for T< T,

X(7T, H, ¢, R)
Z){(Tc’ 07 ¢: R) -N(¢, R)MB(T, H) 3 (12)

where N(¢, R)=Y z1<r |71 2% Equations (11) and
(12) then imply that for all T<T,, H20, ¢, and R

X(T, H)tT, H)]?®
2x(T,, 0, ¢, R)-N(¢, RMXT, H). (13)

We next derive a generalization of inequality
(5a), and we accordingly set H=0 and allow 7~ T}
in (13). We shall consider R, which hitherto has
been an arbitrary number, to depend upon tempera-
ture and to vary with 7 such that R(T)~« as
T- T;. Following Fisher’s derivation of (5a), we
choose the function R(T) such that

M(T, 0)=2"[X(T,, 0, ¢, R(T))/N(¢, R(T)]'/2.

(14a)

Since M(T, 0)~(T,-T) and N~R% ®for large R,
we can combine (10) and (14a) to obtain

R(T)~ (T, - T) 28/ @-2+m) (15a)

Finally, we can substitute (14a) into (12) and utilize
(10), (15a), (3a), and the definition X~ (T, - T)™"'
to obtain the exponent inequality (7a). Note that
when ¢ =0, (7a) reduces to (5a). 2

To obtain a generalization of inequality (5b), we
approach the critical point along the perpendicular
path T=T,, H- 0*. We choose R =R(H) such that

M(T,, H)=2"X(T,, 0, ¢, R(H))/N(¢, R(H))]'?.

(14p)

Since M(T,, H)~H", it follows from (10) and (14b)
that

R(H) =H =2/6(d=-2+n) . (1 5b)

Finally, we substitute (14b) into (13) and utilize
(10), (15b), (3b), and the definition X~ (aM /8H)r
~H "D/ t5 obtain (7b).
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We are now in a position to discuss the possible
“weakness” of Fgs. (5). Since our new inequali-
ties, Eqgs. (7), are nothing but Eqs. (5) plus a
“correction term” 2¢ B(¢), we observe that (5)
is in a sense weaker than (7) if there exists some
value of ¢, ¢ =y, such that the correction term
is positive [2¢, B(¢,) >0]. Now the only case in
which we cannot find such a ¢, is if

B(¢)20 for ¢ <0
and
B(¢)20 for ¢ >0 . (16b)

Thus we conclude that unless B(0)=0, Egs. (5)
are in some sense weaker than Egs. (7). We may
improve the weakness and get optimum inequalities
by setting ¢ = ¢ ., in (7), where 2¢,,., B(d ) is the
absolute maximum value of the correction term
(in the range $7 -1 ¢ <),

It is interesting to note with Fisher® that (6a)
may be generalized to

(2-m)ve2v. ')

Hence from (17) and (7a) we have an inequality
between primed (subcritical) and unprimed (super-
critical) exponents,

(18a)

20v5+7 " | 20ve+Y
28 T dve-v

(18)

III. INEQUALITIES AMONG ENERGY-ENERGY
CORRELATION FUNCTION EXPONENTS
For the energy-energy correlation function,
Fisher?® derived (6a) and (6b) by extending postu-
lates (a) and (b) to include, respectively, I'y and
C,, where

T,(T, H, Ty, T, Ty)=(sfsisf,sf) (19a)

and
C4(T$ H? i71’ FZ’ i:3)51—‘4(7" H} .fls sz -f's)
—rz(T, H, F,_)I‘z(T, H, F3 "Fa) . (lgb)

We find that inequalities (6b) and (6c) are weaker
than they need be, a fact pointed out by Fisher.®

We may proceed in exactly the same fashion as
our previous discussion, Egs. (9)-(15), to obtain
results analogous to Egs. (7a) and (7b):

1-a’ l-a’
1> (2 - —-e 2=a N\,
a2 nE)(d—2+"lE )+2¢[(d'2+71r;> VE“] ’

(20a)

1 1
a°2(2—n3)(d—;ing )+2¢[<d—+2§+n3) —6““] ’

(20b)
where 7z, vi4 and pg, are defined precisely as
were 7, v, and y, in Egs. (3) and (10), but with
C, replaced by C4. Here ¢ and ¢, are defined by
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U~M*
Cy~M e,

(21a)
(21b)

It then follows (in analogy with the discussion in
Sec. II) that (6a) and (6b) are, in general, weak
inequalities, except for the special cases when the
square brackets on the right-hand sides of (20a)
and (20b) are zero for ¢ =0.

IV. DISCUSSION

Although we have indicated the possible weakness
of inequalities (5a), (5b), (6a), and (6b), we have
not proved that they are weak. In fact, we have
only demonstrated that their possible weakness
depends upon whether the correction terms may
be positive, and we cannot assess this in general.
However, our new inequalities can furnish other
information.

For example, consider the d= 2 Ising model,
for which v{=1, B=%, =%, and y'= % Equation
(5a) is obeyed as an equality. Now in the discus-
sion following (16), we saw that (5a) is an equality
only if B(0)=0. Thus we have

d-2+n 0
=V§.’ (22)

AND STANLEY 6

where the first equality follows from (8a) and the
second from the numerical values of the expo-
nents. Hence from Lemma I we have

r_ ZB - : P
YeTa =2 7
for 02 ¢ <1. Equation (23) has hitherto been ob-

tained only by making the scaling hypothesis (cf.
Appendix B), which leads to the prediction that
vg is independent of ¢.

If v’ is finite, then by letting ¢ -~ « in (7a) we
have
>_28

’
YeTd-2in

(24)
If v} is independent of ¢ (as predicted by scaling),
Eq. (24) becomes

> 2B

vz d-2+mn "
Now (25) may or may not be obeyed as an equality.
If it is, then the correction term in (7a) is always
zero, and hence one may expect (5a) to be obeyed
as an equality. However, if (25) is not an equality,
then the optimum inequality is obtained by setting
¢ = dnax= 1 =1 in (7a), with the result

y2v'(2-1). (26)

(25)

TABLE I. Summary of general results and some special cases. Also shown are the simplified forms one obtains if the
exponents vy, i, are independent of ¢.

Path 1: H=0, T—T;

Path 2: T=T,, H—0

Two-spin correlation function exponents

General result:

282 -1) ( 26 )

’ — ’

¥ 2d"2+‘() +2¢ d—2+1 Vel .
In particular

o2
®Td-2+n

Y= @=nvn/n.1

vp=v' e yl= -,

Two-spin correlation function exponents

General result:

8—=1_ _2(2—n) 2 _
6 osld-2+n) +2¢(5(d—2+n) “°’) ’

In particular

2/8
- 2/6
HoZT o0y

-1
§—5—2 (2—71)“(7,/2) -1

-1
uﬁﬂ*gé—z(z—n)u-

Four-spin correlation function exponents

General result:

1—-af 1-q’
’ - e —_ ) .
= nE>(d_2+nE>‘z¢ [(d_zﬂw) m] .

In particular
I Ll
B = d—2+ng ?
o'z R2=np V', (/-1 *

Vee=VE> ' Z (2 —1g)vg.

Four-spin correlation function exponents

General result:

1+¢ 1+¢
acz(z—nE)(m) +2¢[ <m) —lwm] .

In particular
1+¢
>t
ép'E:o d-2+nE ’
.=2=ng kg, (njn-1

KEe=Hp™> =2 -ngdug .
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Note that inequality (26) is similar to (6c), but the
direction of the inequality sign is reversed! Of
course, (26) is far from rigorous—but the above
conditions are at least plausible.

In summary, then, by considering Egs. (2) and
(11) for general ¢, we have derived certain addi-
tional inequalities among the critical-point expo-
nents describing the spin-spin and energy-energy
correlation functions: (7a) and (7b), (17), (18),
(20a), (20b), and (24). If we further make the as-
sumption that v j=v' for all ¢, then the inequality
y’>p’(2 - 1) is obtained. The new inequalities
are summarized in Table 1.
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APPENDIX A: PROOF OF n4=n

To show 7, is independent of ¢, we need to use
postulate (a) of the text,

C,.(F)=Cy(T,, H=0, ¥)20, (A1)

and we need to assume that the exponent 7, defined
in Eq. (10) has meaning,
X, (¢, R)= 20 [F[2°Cq (F)~RE™2.  (A2)
IFISR

We begin by considering two values of ¢, a and
b, and we define ¢ =a - b, which we take to be
positive. First we show 7,27, and then we shall
show 7, 217,.

From (Al) we have

X,(a, R)= I‘E |F]22%2° Cy o(F)

FI<R
< 25 |F|?Co(FIR%.  (A3)
ITI<R
Thus
X.(a, R)SR*X,(b, R) (A4)
and we have, from (A2), that
N 21 « (A5)

To obtain 7,2 17,, we use (Al) to write

Xc(b’ R)Exc(by R0)+ Z;

2 |IT| 2a—2c02c('{.)
Ry SIFISR

<X,(b, Ro)+R*X.(a, R). (A6)
Since (A6) holds for any value of R in the range

12R,=R, we let Ry~ « with R by means of the
relation

X,(b, R)=2X,(b, Ry) . (A7)

Note that since C,.(r) is positive definite, Ry<R
and R,~R as R—~. Hence on substituting (A7)
into (A6), we obtain

X,(b, Ro)<Ry*°X,(a, R) . (A8)
Since Ry~ R, (A8) leads to

2-7,+2bS=2c+2=7,+2a, (A9)
which simplifies to

My 2, - (A10)
Combining (A5) and (A10), we have

Ma =T > (A11)

and the proof is complete.
It is now clear from (A2) that Lemma II is
meaningful only for 2-7+2¢ 20 or

¢2%n-1. (A12)

APPENDIX B: PROOF THAT THE HOMOGENEITY
HYPOTHESIS IMPLIES »,=v FOR ALL ¢

The following proof, while straightforward,
appears nowhere in the literature. Accordingly,
we feel it might be worthwhile including it here.

Let us assume that C,(T, H, T) is asymptotically
a generalized homogeneous function—i.e., that we
can find three numbers b,, by, and b, such that for
all positive A

C,(\r 7, XHH, X’rF)=)Cy(1, H, T), (B1)

where here we measure temperature in the units
7=T-T,. Then it follows from simple properties
of generalized homogeneous functions that the
generalized correlation length of Eq. (2) obeys the
functional equation®

07, NEH) =27 £,(1, H), (B2)
and one sees that

ve==b,/b;, (B3a)

Y= =D, /by, (B3b)

completing the proof.
Similarly, from (9) and (10) we have

d-2+n=-1/b,. (B4)

Now (B1) implies that the spatial Fourier transform
of C4t, H, ¥) obeys™

C,(N77, AHH, Nag)=21"®eCy(r, H, §), (BS)

with b = —b,. Since X(1, H)=Cy(t, H, ¢=0), we
have

-y '=(1+db,)/b, (B6a)
and
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-(6~-1)/6=(1+db,)/by . (B6b)

Combining (B3), (B4), and (B6), we obtain

LIU, JOSEPH, AND STANLEY 6

(B7a)
(B7b)

y'= Vo(z—n) ’
(6-1)/8=p42-n).
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A neutron-diffraction study of polycrystalline LiFe,F; was performed. This compound is
of the trirutile structure (D}} — P4,/mnm) and is paramagnetic at room temperature. The
previously reported transition to antiferromagnetism at Ty ~105°K is confirmed. The mag-
netic structure was found to be collinear, with the spins parallel to the tetragonal axis.
Nearest and next-nearest neighbors are coupled ferro and antiferromagnetically, respec-
tively. The magnetic space group is P4{/mnm’. It is argued that this structure is to be
expected on the basis of known data for the rutiles: MnF,, FeF,, and Fe-doped MnF,. It
was also found that at low temperatures the iron and fluorine ions are shifted from their

room-temperature positions.

I. INTRODUCTION

The compound LiFe,Fg is a member of the family
of compounds whose chemical formula can be writ-
ten as LiA*2B*3F, (A, B, =transition metals). Sev-
eral compounds of this family were investigated by
Viebahn et al. 2 and were found to be of the tri-
rutile structure. This structure belongs to the

tetragonal space group D} — P4, /mnm. X-ray
studies by Portier et al.® showed that also LiFe,F,
is of the trirutile structure with a=4.673 A and
¢=9.290 A. Susceptibility measurements® showed
that this compound undergoes a para to anti-ferro-
magnetic transition at 7~ 105 °K. In the present
work we report on the low-temperature magnetic
structure and crystallographic distortion in



