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Using high temperature series expansions, we have studied an Ising model
with nearest-neighbor antiferromagnetic interaction (J;<0) and next nearest
neighbor ferromagnetic interaction (J, >0), which is thought to exhibit a tricritical
point (TCP).

Assuming that tricritical exponents are mean-field like, we locate TCPs for
several values of the exchange coupling parameter J,/J; by the method of log-
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Padé analysis.

Recently, several authors!'® have studied
an Ising model with nearest-neighbor antifer-
romagnetic interaction (J;=—1) and next-
nearest neighbor ferromagnetic interaction
(J,=+1/2) (NNN model), which has been
assumed to exhibit tricritical behavior.

By analyzing high-temperature series expan-
sions, Harbus and Stanley suggested that the
direct susceptibility diverges at the tricritical
point with an exponent y=1/4.

This contradicts the value y=1/2, obtained
by renormalization group techniques.® In
a further analysis of the same model, Wortis
et al.¥ pointed out that if the true tricritical
temperature were actually somewhat lower
than the Harbus-Stanley value, then standard
ratio analysis would give tricritical exponents
consistent with the Gaussian-tricritical-fixed-
point values of Riedel-Wegner.>

An analysis using renormalization group
techniques (Fisher and Nelson®) has demon-
strated that the NNN model displays the same
values for tricritical exponents mean field,
with logarithmic corrections as does the
‘meta-model’, in which 2-dimensional planes
of ferromganetically-coupled spins are linked
by antiferromagnetic interactions.

Furthermore, Landau’s® recent Monte
Carlo data provide experimental verification
that the simple cubic Ising antiferromagnet

with next-nearest neighbor ferromagnetic in-
teraction does have mean-field tricritical ex-
ponents.

Kincaid and Cohen” have shown that dif-
ferent types of critical behavior can be expected
for such next-nearest neighbor (NNN model).
In particular, for |J,/J,| sufficiently small, no
tricritical point is anticipated. Instead, the
second order line is thought to terminate at a
critical end point, where 2 phases become
critical in the presence of 2 other coexisting
phases.

Therefore, it is of interest to study the
problem for other values of the next-nearest
neighbor exchange coupling parameter J,,
first to test whether the predictions of Kincaid
and Cohen can be confirmed and second to
attempt to resolve the actual values of 7.

In this note we focus our attention on the
simple cubic, spin=1/2 Ising antiferromagnet
with fixed values of the ratio of coupling
parameters |J,/J,].

The Hamiltonian for our system can be
written as

nnn

H = le Z S,~SJ-—J2 Z S,»Sj—uHZ S, (D)
iJ iJ i

nn
where S;=+1, on each lattice site i; ). and
nnn

Y denote sums over nearest-neighbor and
next-nearest neighbors, respectively.
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Our analysis is based on the high-tempera-
ture series for the direct (y) and the staggered
(xs0) susceptibility.?) The coefficients in these
series are obtained from the renormalized linked
cluster expansion up to eighth order in the
inverse temperature, and for arbitrary field
values. Full original data of the coefficients are
available on request.

First we point out that the results from
standard ratio analysis and log-Padé analysis®
for |J,/J,|=1/2 do agree very well, as can be
seen in Table I.

We therefore analyzed the y and ,, for other
values of the ratio of the exchange coupling
parameter |J,/J,|, using the same log-Padé
method and standard ratio analysis. The pole
of the P.A. to the logarithmic derivative of the
series which give a TCP exponent that agrees
best with the renormalization group results
is taken to be an estimate for the TCP. The
results of this analysis are shown in Table II.

Next, we examine the Padé approximants
to the direct susceptibility series raised to the
power 2 for some values of the parameter
|J,/Jl. We may expect the tricritical sus-

Table I. Estimates of exponents ys, and critical
temperatures T, for various h=puH/kyT, values by
ratio method (R) and log-Padé approximant (LP).

JolJy=—1/2

h kpT% kTe® 75 Ve
0.00 10.17 10.16 1.23 1.23
0.10 10.09 10.09 1.23 1.23
0.20 9.86 9.85 1.22 1.23
0.30 9.50 9.50 1.21 1.22
0.40 9.03 9.02 1.20 1.21
0.50 8.49 8.48 1.18 1.19
0.60 7.90 7.89 1.15 1.16
0.70 7.29 7.29 1.12 1.12
0.80 6.69 6.69 1.07 1.07
0.84 6.45 6.46 1.05 1.05
0.90 6.10 6.11 1.02 1.02
0.94 5.88 5.89 1.00 0.99

Table II. Estimates of critical fields (h.=uH/kgT:)

and critical temperatures 7. for various |J2/J:]
values with an uncertainty of at most 0.02.

|J2/7;] 03 04 045 0.5 0.55 0.60 0.8 1.0
hy 1.18 1.00 0.96 0.94 0.88 0.74 0.56 0.36
ksT: 4.78 5.55 5.80 5.88 6.22 7.27 9.22 12.65
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Table IU. Padé tables for the leading singularity of
s
XZ at h=1.00 for IJz/J1I=04
D/N 3 4 5
3 5.17 5.26 4.81
4 5.24 5.17
5 5.39
Xz at h=0.74 for ‘Jz/.’ll =0.6
D/N 3 4 5
3 6.46 6.65 6.72
4 7.04 6.78
5 : 6.77
2% at h=0.56 for |J,/J,|=0.8
D/N 3 4 5
3 7.84 8.27 8.53
4 6.38 8.79
5 8.76

ceptibility exponent to be y=1/2 with error
bars less than or about 109, as is given in
Table III.
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