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One hypothesized explanation for water’s anomalies imagines the existence of a liquid-liquid (LL) phase
transition line separating two liquid phases and terminating at a LL critical point. We simulate the classic
ST2 model of water for times up to 1000 ns and system size up to N 5 729. We find that for state points near
the LL transition line, the entire system flips rapidly between liquid states of high and low density. Our
finite-size scaling analysis accurately locates both the LL transition line and its associated LL critical point.
We test the stability of the two liquids with respect to the crystal and find that of the 350 systems simulated,
only 3 of them crystallize and these 3 for the relatively small system size N5343 while for all other
simulations the incipient crystallites vanish on a time scales smaller than < 100 ns.

W
e perform extensive molecular dynamics (MD) simulations of ST2-water in the constant-temperature,
constant-pressure ensemble. We equilibrate the system for < 1000 ns for 127 state points in the
supercooled liquid region of water. Pressure P ranges from 190 MPa to 240 MPa, while temperature

T is as low as T 5 230 K at high P, and 244 K at low P. We make 624 different simulations, 341 as long as 1000 ns,
and for four system sizes, N 5 216 (80 state points), 343 (75 state points), 512 (44 state points), and 729 molecules
(46 state points). For the majority of state points studied we average our results over several (# 11) independent
runs. We interpolate our data along isobars using the histogram reweighting method1. For P *> 200 MPa, we find
that the density r decreases sharply within a narrow temperature range, while at lower P it falls off with T
continuously. This behavior is consistent with a discontinuous phase transition at high-P between a high-density
liquid (HDL) and a low-density liquid (LDL) ending in a liquid-liquid (LL) critical point at lower P (Fig. 1a).

This LL critical point was hypothesized2 based on studies of the ST2 model, and subsequently studied in detail by
many others using, in addition to ST23,4, TIP5P5, TIP4P6, TIP4P-Ew7 and TIP4P/20058 as well as coarse-grained
models9–11. The existence of the LL critical point allows one to understand X-ray spectroscopy results12–14,26,
and explains the increasing correlation length in bulk water upon cooling as found experimentally15 and the
hysteresis effects16. Holten et al.17,18 reviews available experimental information and shows that the assumption of
a LL critical point in supercooled water provides an accurate account on the experimental thermodynamic
properties.

Abrupt changes in the global density r are related to the appearance of different local structures. Among
various parameters describing the local structures we identify d3

19 and y3, defined in the Methods Section, as good
quantities to distinguish the LDL and the HDL phase and the best quantities to distinguish them from ice. The
average values of y3 of the two phases differ by about 50%, the LDL phase being characterized by greater order in
the second shell than in the HDL phase.

Liu et al.4, using histogram reweighed Monte Carlo methods in the grand canonical ensemble for only one but
quite large system size, find an order parameter distribution function consistent with a critical point belonging to
the universality class of a 3 dimensional (3d) Ising model. In Ref.31 Limmer and Chandler question this result
using the umbrella sampling method to evaluate the free energy landscape of the ST2 model near a single state
point and for a single system size (N 5 216). They find two minima in the free energy landscape: one for liquids
and one for crystalline structure. They do not find a third minimum corresponding to the LDL and conclude that
the LDL does not exist as a metastable state, but only as a transitional state from HDL to crystal. However,
Sciortino et al. in33 show, with an implementation of the umbrella sampling with variable number of particles
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200 # N # 327 of the umbrella sampling that guarantees very
high resolution in the exploration of the free energy landscape, the
presence of the minimum corresponding to the LDL state meta-
stable with respect to the crystal, reconfirming the results of Ref.4
and at variance with Ref.31, 32. To contribute to the discussion,
we present here a finite size scaling analysis of results from extre-
mely long (1ms) MD simulations. We find that 1) LDL is a genu-
ine liquid state, metastable with respect to the crystal, 2) LDL and
HDL are separated by a first-order phase transition line ending in
a critical point, 3) Close to the LLCP, LDL has relaxation times of
the order of 100 ns, which show that 1000 ns runs are sufficient to
equilibrate LDL, 4) the results are robust with respect to the finite
size scaling analysis and show that the LDL-HDL critical point
belongs to the 3 dimensional Ising model.

Results
To show that the LL phase transition exists in the thermodynamic
limit, we perform a finite-size analysis along isobars within the super-
cooled liquid region. For this purpose, we calculate the Challa-
Landau-Binder parameter P ; 12Ær4æ/3Ær2æ2 for the bimodality of
the density distribution function,D rð Þ20,21. WhenD rð Þ is unimodal,
P adopts the value 2/3 in the thermodynamic limit N R ‘, while P
, 2/3 when D rð Þ is bimodal, since two phases coexist (Fig. 1b).

However, for a finite system P , 2/3 whenever D rð Þ deviates
from a delta function. This occurs in the region of the phase diagram
where, for a finite system, the isothermal compressibility, KT, has a
maximum, i.e., along a locus in the P–T plane that includes (i) the
discontinuous (in the thermodynamic limit) phase transition at P .
Pc, the LL critical pressure, (ii) the effective LL critical point at Pc(N),

where the discontinuity vanishes, and (iii) a line for P , Pc that
emanates from the LL critical point into the supercritical region.
Near Pc this line follows the locus of maxima of the correlation
length, known as the Widom line22, and deviates from it at lower P23.

The finite-size behavior of P allows us to distinguish whether an
isobar is above or below Pc

20,21 (Fig. 1b). When isobars cross the
Widom line (P , Pc), P displays a minimum Pmin (inset in
Fig. 1b) that in leading order approaches 2/3 linearly with 1/N.
When D rð Þ consists of two Gaussians of equal weight, i.e. at the
coexistence line for P *> Pc, Pmin approaches, also linearly with 1/
N, another limiting value P?2=3{ r2
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where rH 5 rH(P) and rL 5 rL(P) are the densities of the two coex-
isting phases20. This limiting value progressively decreases as P increase
above Pc, since rH2rL increases at coexistence as (P2Pc)b, where b <
0.3 is the critical exponent of the 3d Ising universality class17.

To ensure that the system is in thermal equilibrium, we calculate
the correlation time for the first maximum k1 of the oxygen-oxygen
intermediate scattering function SOO(k, t), as used in Refs.24 and 25
and defined in the Methods Section. While correlation times in the
HDL phase are very short (< 0.01 ns), they become of the order of
100 ns in the LDL phase, implying that simulations of less than 1 ms
are likely affected by poor statistical sampling (Fig. 2). For tempera-
tures above the line Tg in Fig. 1a, correlation times are smaller than
100 ns and we can equilibrate the system within our simulation time.

Figure 3a shows a typical example of a simulation near the critical
point for N 5 343 molecules at P 5 215 MPa and T 5 244 K. Here the
system exhibits phase flipping between LDL and HDL, with the life-
time of each phase distributed from < 20 ns to < 300 ns. This nanos-
cale phase flipping results in a bimodal density distribution (Fig. 3b)

Figure 1 | Phase diagram and finite size scaling analysis to locate the line of liquid-liquid (LL) phase transitions. (a) State points in the P–T diagram
simulated. Different symbols correspond to different sizes N. The high-T (red) region exhibits HDL-like states and the low-T (blue) region LDL-like
states. In the intermediate (violet) region we observe flipping between HDL-like and LDL-like states. Below the black line Tg correlation times are larger
than 100 ns, while above they are smaller and thus equilibrium is attained within reasonable simulation times. The white region, denoted CP, is our
estimate of the location of the LL critical point in the thermodynamic limit. (b) Finite-size analysis of Pmin along isobars crossing the discontinuous LL
phase transition (violet at high P in (a)) and the Widom line (within the violet region at low P in (a)). At P 5 190 MPa,Pmin approaches 2/3 when N R ‘,
indicating that the density distribution is unimodal and that one crosses the Widom line, and not the line of discontinuous phase transition. At P 5
200 MPa, Pmin approaches < 2/3 2 0.001, consistent within its error bar with the value expected at coexistence20. At P 5 210 MPa, Pmin tends to a
smaller value clearly excluding 2/3 and therefore the distribution D rð Þ is bimodal, that is the fingerprint of a discontinuous LL phase transition. Pmin

depends linearly on 1/N to the leading order, displaying deviations only for the smallest size N 5 216. The inset shows P along the isobar at P 5 200 MPa
as a function of T for all four system sizes (from bottom to top: N 5 216, 343, 512, 729) displaying a clear minimum Pmin. Lines are interpolations
obtained using histogram reweighting for up to eleven independent simulations of length 1000 ns.
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and is observed for all temperatures and pressures around the LL phase
transition in a region that shrinks with growing system size.

Discussion
To estimate the critical exponents of the LL critical point we next
investigate the distribution of the order parameter M of the LL phase
transition. As for the liquid-gas phase transition27, the order para-
meter is not simply the density, but a linear combination of the
density with another observable28. Here we choose the linear com-
bination of density and energy M ; r 1 sE27 and find that it follows,
as expected, the behavior of a liquid in the universality class of the 3d
Ising model, as is also the case for the liquid-gas transition (Fig. 4). At
P 5 205 MPa the difference between the maxima and the central
minimum of the order parameter distribution is smaller than for the
3d Ising case. At P 5 210 MPa it is larger and the critical point
therefore seems to be in between, consistent with the conclusion
obtained from the analysis of P. We get the best fit of the order
parameter distribution function at a pressure of P 5 206 6 3 MPa
and a temperature of T 5 246 6 1 K.

The same analysis for N 5 512 and 729 yields estimates, consistent
with N 5 343, of the LL critical point to be Pc 5 208 6 3 MPa and Tc
5 246 6 1 K (Fig. 4b, c). The finite size scaling of the amplitudes of
the order parameter distribution A , Lb/v is consistent with the
behavior predicted for the 3d Ising universality class with b/v <
0.51827 and strong corrections to scaling for N 343 (Fig. 4d).

Finally, we investigate also the possibility of spontaneous crystal
nucleation in the LDL phase using the structural order parameter
d3

19. At temperatures below the region of phase flipping, the samples
sometimes form large crystallites filling up to 10% of the system
volume. Their structure exhibits a mixture of cubic and hexagonal
symmetry. However, in approximately 99% of simulations these

unstable crystallites vanish within the simulation time of 1000 ns,
showing that the free-energy barrier for the crystallization process is
significantly larger than kBT in the LDL phase (Fig. 5). We observe
irreversible crystallization in only 3 out of 350 (1 ms)–runs, for only N
5 343 and all corresponding to state points near the LL critical point
(Fig. 1a). This is consistent with the general result that a metastable
fluid-fluid phase transition favors the crystallization process in its
vicinity29. We did not observe any crystallization events for N 5 512
and N 5 729 although the total simulation time for these systems is
comparable to that of N 5 343. The fact that the crystallization rate is
not increasing with system size is evidence that LDL is the genuine
metastable phase with respect to the stable crystal phase.

In conclusion, we use new methods to investigate both the statics
and dynamics of deeply supercooled ST2-water. Specifically, we ana-
lyze static quantities (density and potential energy) using the frame-
work of finite-size scaling theory, and we analyze the dynamic
structure factor over three orders of magnitude of time scales, from
1 to 1000 ns. We find definitive evidence of a first order LL phase
transition line between two genuine phases that are each metastable
with respect to crystal. The phase transition line terminates in a LL
critical point, and the exponents associated with this LL critical point
are indistinguishable from those expected for a three-dimensional
lattice-gas model which is used to describe the liquid-vapor critical
point.

Methods
We performed MD simulations in the NPT ensemble using the Stillinger and
Rahman34 five-point water model ST2, consisting of five particles interacting through
electrostatic and Lennard-Jones forces with a cutoff of 7.8 Å. The pressure was not
adjusted to correct for the effects of the Lennard-Jones cutoff, since it would originate
from mean field calculations, which become rather poor near a critical point.

We apply the Shake algorithm to constrain the particles inside each molecule. The
constant pressure is imposed by a Berendsen barostat, and a Nosé-Hoover thermostat
is applied to ensure constant temperature35. Periodic boundary conditions have been
implemented and reaction field method with a cutoff of 0.78 nm is used for the
Coulomb’s interactions.

For the simulations we used the following protocol consisting of three steps: (1) For
any given density, a constant volume simulation is performed at T 5 300 K during
1 ns (first pre-run). (2) The ensemble is then changed to NPT by adding the
Berendsen barostat with the desired pressure and the temperature is reduced to T 5
265 K, ensuring that the system reaches the HDL phase after 1 ns of equilibration
(second pre-run). (3) After these two preruns the system is quenched to the desired
temperature, from which the first 100–200 ns are removed as thermalization time.
The choice of the thermalization time will be discussed next.

Figure 3 | Phase flipping between LDL and HDL at coexistence. (a) The 1
ms time series shows how frequently, at constant P 5 215 MPa and T 5
244 K, N 5 343 ST2-water molecules switch from LDL-like to HDL-like
states. (b) The histogram for the sampled density values, in arbitrary units,
after discarding the first 100 ns of the 1 ms time series. For LDL-like states
r < (0.89 6 0.01) g/cm3 and for HDL-like states r < (1.02 6 0.03) g/cm3

corresponding to a difference of < 13% in density. Dashed lines are
Gaussian best fits of the histogram around the two maxima.

Figure 2 | Definition of the correlation time t0 using the intermediate
scattering function. The correlation time t0 is calculated using the
correlation function COO(k, t) of the intermediate scattering function of
the oxygen atoms SOO(k, t). For the k vectors corresponding to the first
three maxima k1, k2 and k3 (marked in red, blue and green in the inset), we
calculate the evolution of the correlation function COO(ki, t). We then
define the correlation time as the time for which COO(ki, t) decreases to 1/e
for the slowest of the ki vectors. For nearly all the state points k1 has been the
vector for which this decrease has been the slowest. We find t510–100 ns
for the LDL phase, so we can equilibrate this phase in our simulations of
about 1000 ns. Data are for a system of N 5 343 molecules at pressure P 5
210 MPa and temperatures (from left to right) T 5 244 K, 243 K, in the
LDL phase, and 242 K below the Tg line of Fig. 1a.
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To decide whether the equilibration time is sufficient, we perform two steps. First,
we inspect the time series of energy and density to discard the possibility of spon-
taneous crystallization. In all our NPT simulations we observed only three crystal-
lization events (< 1% of total number of runs) all of them in systems with N 5 343
molecules. We use them as a reference for the crystal. In a second step we measure the
correlation time using the intermediate scattering function.

MD simulations are performed for a finite numbers of state points (Fig. 1a). We use
the histogram reweighting method1 to complement the statistics of each state point
with the information from nearby state points. Histogram reweighting30 is a method
that combines the overlapping histograms of quantities calculated at close-enough
state points, reweighting them with an appropriate factor that takes into account the
difference in thermodynamic parameters. It is a powerful method that allows to
calculate the observables for a continuous range of thermodynamic parameters
within those directly simulated.

The order parameter M ; r 1 sE is obtained from the distribution in the density–
energy plane (Fig. 4e), by integrating it with a delta-function d(M2r2sE). We select
the value of s for which the distribution of M best fits the distribution of the order
parameter for the 3d Ising universality class. The main effect found when changing s is
a small shift in the estimated critical temperature TC of about 0.1 K, which is less than
the error of 0.5 K originating from the histogram reweighting.

The oxygen-oxygen intermediate scattering function SOO (k, t) can be used to
distinguish between phases of different structure, such as LDL and HDL. We also use
it to estimate the correlation time. It is defined as

SOO k,tð Þ: 1
N

XN

‘,m

exp ik: r‘ t0ð Þ{rm t0ztð Þ½ $ð Þ

* +

t0

, ð1Þ

Figure 4 | The liquid-liquid critical point falls into the same universality class as the liquid-gas critical point. (a) The distribution function of the

rescaled order parameter x ; A(M2Mc) where M ; r 1 sE with s~27:6
g=cm3

KJ=mol
, follows for P 5 (206 6 3) MPa and T 5 (246 6 1) K (triangles) the order

parameter distribution function of the 3d Ising model (solid line)36. The data are from histogram reweighting of N 5 343 molecules at P 5 205 MPa and T

5 246.6 K (squares), P 5 206 MPa and T 5 246 K (triangles) and P 5 210 MPa and T 5 245.1 K (circles). We repeat the analysis for (b) N 5 512 and (c)
N 5 729. (d) For large sizes the amplitude A (triangles) scales as A , Lb/v, where b/v < 0.52, as in the 3d Ising universality class27. For N 343 corrections to
scaling are strong. (e) Contour plot of the distribution of states in the density-energy plane, with red corresponding to the highest values and blue to the
lowest. The distribution of the order parameter M ; r 1 sE is obtained from this two-dimensional distribution by integrating it with a delta-function
d(M2r2sE). We select the value of s for which the distribution of M best fits the distribution of the order parameter for the 3d Ising universality class.

Figure 5 | Example of a simulation where the largest crystallite grows up to
35 molecules and then vanishes in a system having N 5 343 molecules at a
pressure of P 5 200 MPa and T 5 246 K. A molecule i is considered to
belong to a crystal if d3(i, j) # dc 5 20.87 for three out of its four bonds with
nearest neighbors j.

www.nature.com/scientificreports
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where Æ…æt9 denotes averaging over the simulation time t9, r‘ t0ð Þ is the position vector
of the oxygen of molecule l at time t9, k is the wave vector and k is its magnitude jkj.
SOO(k, t) describes the time evolution of the spatial correlation along the wave vector
k. Since the system has periodic boundaries, the components of k have discrete values
2pj/L, where L is the length of the simulation box and j 5 1, 2, .... We define SOO(k, t)
; ÆS(k, t)æj, where average is taken over all vectors k with magnitude k belonging to jth
spherical bin p(j21/2)/L # k , p(j 1 1/2)/L, for j 5 2, 3, …300.

The temporal decay of SOO(k,t) is characterized by two relaxation times: (i) a short
time, tb, after which SOO(k,t) reaches a plateau SOO(k, tb) corresponding to the

bouncing of the particles inside the cages formed by their neighbors, and (ii) a long
time, ta, corresponding to a particle escaping from its cage and diffusing away from its
initial position. We define the correlation time t 5 ta as the time for which COO(k, t)
; SOO(k, t)/SOO(k, tb) 5 1/e, where COO(k, t) is the structural correlation function
(Fig. 2).

We define the bond order parameter d3 following Ref.19. The quantity d3(i, j)
characterizes the bond between molecules i and j and is designed to distinguish
between a fluid and a diamond structure. It uses the Ym

3 spherical harmonics to
identify the tetrahedral symmetry of the diamond structure. In general, each molecule
is characterized by a vector qi

‘ in the (4‘z2)2dimensional Euclidean space with
components Re qi

‘,m

# $
and Im qi

‘,m

# $
(m~{‘, . . . ,{1,0,1, . . . :,‘), with

qi
‘,m:

1
4

X

j[ni

Ym
‘ wij,qij

# $
, {‘ƒmƒ‘:

If molecule j belongs to the first coordination shell ni (shell of four nearest neighbors)
of molecule i, we define d3(i, j) as the cosine of the angle between two vectors qi

3 and qj
3

characterizing the first coordination shells of molecules j and i, respectively:

d3 i,jð Þ:
qi

3
:qj
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# $
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3
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3
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3ð Þ
p

.
In a perfect diamond crystal d3(i, j) 5 21 for all bonds, while for a graphite crystal

d3(i, j) 5 21 only for bonds connecting atoms in the same layer. For bonds con-
necting atoms in different layers d3(i, j) 5 21/9. Thus in graphite each atom has three
out of four bonds having d3(i, j) 5 21. In our simulations, the spontaneously grown
crystals have many defects, with different parts of the crystals following diamond or
graphite patterns (Fig. 6a). Therefore, we consider a molecule in a crystal to have
either three or four bonds with d3(i, j) , dc 5 20.87, where the value of dc 5 20.87 is
selected as two standard deviations from the peak of the crystal histogram corres-
ponding to d3 5 21. This is exactly the same criterion to specify molecules in the
crystal state as in Ref.19. We find separate crystallites using the percolation criterion,
i.e., two molecules satisfying the crystalline criterion belong to the same crystallite if
they belong to the first coordination shell of each other (Fig. 5).

We finally observe that by defining y3 ið Þ: 1
4

X
4
j~1d3 i,jð Þ as the average of d3

over the four bonds of each molecule, we introduce a single-molecule structural
parameter that also can be used to distinguish among the HDL, the LDL and the
crystal phase (Fig. 6b).
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