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We introduce the space-dependent correlation function CQ(r) and
time-dependent autocorrelation function CQ(t) of the local tetrahe-
dral order parameter Q ≡ Q(r, t). By using computer simulations of
512 waterlike particles interacting through the transferable inter-
action potential with five points (TIP5 potential), we investigate
CQ(r) in a broad region of the phase diagram. We find that at
low temperatures CQ(t) exhibits a two-step time-dependent decay
similar to the self-intermediate scattering function and that the
corresponding correlation time τQ displays a dynamic cross-over
from non-Arrhenius behavior for T > TW to Arrhenius behavior
for T < TW , where TW denotes the Widom temperature where
the correlation length has a maximum as T is decreased along a
constant-pressure path. We define a tetrahedral entropy SQ asso-
ciated with the local tetrahedral order of water molecules and find
that it produces a major contribution to the specific heat maximum
at the Widom line. Finally, we show that τQ can be extracted from
SQ by using an analog of the Adam–Gibbs relation.
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I t has long been appreciated that the local structure around a
molecule of liquid water arising from the vertices formed by four

nearest neighbors is approximately tetrahedral at ambient pres-
sure and that the degree of tetrahedrality increases when water
is cooled (1–5). An important advance occurred in the past 10
years when computer simulations allowed the quantification of
the degree of tetrahedrality (6–10) by assigning to each molecule
a local tetrahedral order parameter Q (11–16). At high temper-
atures, the probability distribution P(Q, T) is bimodal, with one
peak corresponding to a high degree of tetrahedrality and the
other to a less tetrahedral environment (Fig. 1). Upon decreasing
temperature, the peak associated with a high degree of tetrahe-
drality grows, suggesting that the local structure of water becomes
much more tetrahedral at lower temperatures (13, 14, 17).

Introduction
Water has been hypothesized to belong to the class of polymor-
phic liquids, phase separating—at sufficiently low temperatures
and high pressures—into two distinct liquid phases: a high density
liquid (HDL) with smaller Q and a low density liquid (LDL) with
larger Q (18). The coexistence line separating these two phases
may terminate at a liquid–liquid (LL) critical point, above which
(in the LL supercritical region) appears a line of correlation length
maximum in the pressure–temperature plane. The locus of max-
imum correlation length in the one-phase region is called the
Widom line TW ≡ TW (P) (19), near which different response func-
tions, such as isobaric specific heat CP and isothermal compress-
ibility KT , display maxima. Recent neutron-scattering experiments
(20) and computer simulations (19) show that the dynamics of
water gradually cross over from being non-Arrhenius for T > TW
to Arrhenius for T < TW .

Although dynamic heterogeneities have received considerable
attention (21, 22), static heterogeneities have attracted less inter-
est. In this paper, we ask how the tetrahedral order and its spa-
tiotemporal correlations change upon crossing the Widom line.
To this end, we introduce three quantities of physical interest:
(i) the space-dependent correlation function CQ(r), (ii) the time-
dependent autocorrelation function CQ(t), and (iii) the tetrahe-
dral entropy SQ. These functions can also be usefully applied to

study other locally tetrahedral liquids, such as silicon (23–25),
silica (26), and phosphorus (27).

Model
We perform molecular dynamics (MD) simulations of N = 512
water-like molecules interacting via the transferable interaction
potential with five points (TIP5 potential), (28), which exhibits a
LL critical point at TC ≈ 217 K and PC ≈ 340 MPa (29, 30). We
carry out simulations in the NPT ensemble at atmospheric pres-
sure (P = 1 atm) for temperatures ranging from 320 K down to
230 K.

Results
Space- and Time-Dependent Correlations of the Tetrahedral Order
Parameter. To quantify the local degree of tetrahedrality, we
calculate the local tetrahedral order parameter (13)

Qk ≡ 1 − 3
8

3∑

i

4∑

j=i+1

[
cos ψikj + 1

3

]2

, [1]

where ψikj is the angle formed by the molecule k and its nearest
neighbors i and j. The average value 〈Q〉 ≡ (1/N)

∑
k Qk increases

with decreasing T and saturates at lower T , whereas |d〈Q〉/dT | has
a maximum at the Widom line TW ≈ 250 K (31–33).

To characterize the space-dependent correlations of the local
order parameter, we find all the pairs of molecules i and j whose
oxygens are separated by distances belonging to the interval
[r − ∆r/2, r + ∆r/2]. The number of such pairs is

N(r, ∆r) =
∑

ij

δ(rij − r, ∆r), [2]

where rij is the distance between the oxygens of molecules i and j.
The sum is taken over all molecules in the system and

δ(rij − r, ∆r) =
{

1 if |r − rij| < ∆r/2,
0 otherwise. [3]

For ∆r → 0, δ(rij − r, ∆r) → δ(rij − r)∆r where δ(rij − r) is the
Dirac δ-function. N(r, ∆r) can be approximated as

N(r, ∆r) = 4πr2NgOO(r)ρ∆r, [4]

where N is the total number of molecules in the system, gOO(r) is
the oxygen–oxygen-pair correlation function, and ρ is the number
density.

Next, we find the local order parameters Qk and Ql for all such
pairs of molecules and compute their mean,

Q(r) ≡ 〈Q〉r ≡
∑

kl Qkδ(rkl − r, ∆r)
N(rkl − r, ∆r)

, [5]
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Fig. 1. Dependence on Q of the probability density function P(Q, T ) for nine
values of T . At high T , P(Q, T ) is bimodal with peaks at high and low values
of Q. The magnitude of the high Q value peak grows as it shifts toward the
larger values of Q upon decreasing temperature whereas the magnitude of
the low Q value peak decreases and, at sufficiently low temperatures, P(Q, T )
becomes unimodal. Analogous plots are shown for TIP4P and TIP5P models,
respectively, in refs. 13 and 17. Error bars are shown in green.

their variance,

σ2
Q(r) ≡ 〈Q2〉r − 〈Q〉2

r ≡
∑

kl

Q2
kδ(rkl − r, ∆r)

N(rkl − r, ∆r)
− 〈Q〉2

r , [6]

and covariance,

〈Q(r)Q(0)〉r ≡
∑

kl

QkQlδ(rkl − r, ∆r)
N(rkl − r, ∆r)

. [7]

Finally, we introduce the space-dependent correlation function of
the local tetrahedrality Q,

CQ(r) ≡ 〈QkQl〉r − 〈Q〉r〈Q〉r

σ2
Q(r)

. [8]

In Figs. 2A and 2B, we show Q(r) and σ2
Q(r) for different tem-

peratures and atmospheric pressures. The behavior of Q(r) and
its variance σ2

Q(r) as a function of the distance r has a clear
physical meaning. For molecules separated by 0.32 nm, Q(r)
has a deep minimum characterizing the distortion of the first
tetrahedral coordination shell of the four nearest neighbors by
the intrusion of a “fifth neighbor” (34). Conversely, the quan-
tity σ2

Q(r = 0.32nm) − σ2
Q(∞) for such molecules dramatically

increases upon decreasing temperature (see Fig. 2C), and has a
maximum at T ≈ 246 K, which is approximately equal to the
ambient pressure value of TW (≈ 250 K for the TIP5P model)
reported in refs. 19 and 31–33. A measure qualitatively similar to
Q(r) has been studied in case of solvation structure of water around
carbohydrate molecules (35). In Fig. 2D, we show CQ(r) for dif-
ferent temperatures for P = 1 atm. CQ(r) has positive maxima at
positions of the first and second peaks in the oxygen–oxygen pair
correlation function. Water molecules separated by r ≈ 0.32 nm
exhibit weak anticorrelation in local tetrahedral order at high tem-
peratures, which changes to positive correlation upon decreasing
the temperature below TW .

To study the time development of the local tetrahedral order
parameter, we introduce the time-dependent autocorrelation
function

CQ(t) ≡ 〈Qi(t)Qi(0)〉 − 〈Q〉2

〈Q2〉 − 〈Qi〉2 , [9]

where Qi(t) is the tetrahedral order parameter of each molecule
in the system and 〈Qi〉 is the ensemble average. In Fig. 3A we
show CQ(t) for different temperatures. The decay of CQ(t) is rem-
iniscent of the decay of the self-intermediate scattering function.
The long-time behavior of CQ(t) is exponential at high T but at
low T can be fit with a stretched exponential exp[−(t/τ)β], where
0 < β < 1 (36).

For simplicity, we define the correlation time τQ as the time
required for CQ(t) to decay by a factor e. Fig. 3B shows the val-
ues of τQ as function of 1/T on an Arrhenius plot. The behavior
of τQ is non-Arrehenius at high temperatures and can be fit by a
power law B(T − TMCT)−γ where B = 25.39, the mode coupling
temperature (37) TMCT ≈ 246.186, and γ = 1.17722 are the fit-
ting parameters. At low T , τQ deviates from the power-law fit and
becomes Arrhenius. This cross-over in relaxation of local tetra-
hedral order occurs near TW , similar to the cross-over found in
density relaxation (19, 20, 38).

Tetrahedral Entropy and Tetrahedral Specific Heat. Because Q mea-
sures the local tetrahedral order, it must contribute to the entropy
of the system. We next derive an expression for this “tetrahedral
entropy” S(Q1, Q2, . . . , QN ), which we define to be the logarithm
of the number of states corresponding to the interval between
(Q1, Q2, . . . ., QN ) and (Q1+∆Q1, Q2+∆Q2, . . . , QN +∆QN ) in the
hypercubic space formed by Qs. According to Eq. 1, 8

3 (1 − Qk) =
const defines a surface of a six-dimensional hypersphere of radius√

8
3 (1 − Qk) in the space defined by the cosines of the six tetra-

hedral angles ψikj of Eq. 1. Hence we assume that the number
of states between Qk and Qk + ∆Qk of molecule k scales as

Fig. 2. Average tetrahedral order parameter, its variance and spatial cor-
relations as functions of separation between water molecules for different
temperatures. (A and B) The average order parameter Q(r) (A) and its vari-
ance, σ2

Q(r) (B), as a function of the distance r. (C) Temperature dependence of
σ2

Q(r = 0.32nm) − σ2
Q(∞) shows a maximum at the Widom temperature, sug-

gesting that the local fluctuations in Q at the fifth-neighbor distance increase
upon decreasing temperature and have a maximum at the Widom line. (D)
Spatial correlation function CQ(r) of the tetrahedral order parameter Q (Eq.
1) at various temperatures for pressure P = 1 atm. CQ(r) has positive peaks
at the positions of the nearest-neighbor peaks in oxygen–oxygen pair corre-
lation function gOO(r) at high T . Although the position of the first maximum
of CQ(r) remains fixed for all the temperatures, the position of the second
maximum moves slightly to the smaller r as the temperature decreases. A neg-
ative minimum at the fifth-neighbor distance r ≈ 0.32 nm for high T implies
that the local tetrahedral order parameters of a central molecule and its fifth
neighbor are anticorrelated at T > 250 K. Interestingly, the anticorrelation
at r = 0.32 nm changes to positive correlation below the TW ≈ 250 K.
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Fig. 3. Temperature dependence of time autocorrelation function of local
tetrahedral order parameter and relaxation times. (A) Autocorrelation func-
tion CQ(t) of tetrahedral order parameter Q at various temperatures. CQ(t) is
exponential at high temperatures but displays a visible two-step decay at low
temperatures. (B) Correlation time τQ extracted from CQ(t) (circles). The solid
line is the fit using the Adam–Gibbs relation (Eq. 13) between the tetrahedral
entropy SQ(T ), and the tetrahedral relaxation time τQ. The dotted lines in B
show the power-law fit B(T − TMCT)−γ with the fitting parameters B = 25.39,
TMCT = 246.18, and γ = 1.17. The behavior of τQ deviates from the power-
law fit for the temperatures below the Widom-line temperature (indicated
by a vertical arrow) TW where a cross-over to Arrhenius behavior at lower
temperature occurs.

(1 − Qk)3/2∆Qk because the number of independent dimensions
is 5. We further assume that the order parameters of each mole-
cule are independent, an assumption justified by the small value
of CQ(r) (see Fig. 2C). Thus we can define the number of states
Ω(Q1, Q2, . . . ., QN ) in the interval between (Q1, Q2, . . . .QN ) and
(Q1 + ∆Q1, Q2 + ∆Q2, . . . , QN + ∆QN ) as the product

Ω(Q1, Q2, . . . ., QN ) ≡ ΩN
0

N∏

k=1

[
8
3

(1 − Qk)
] 3

2
, [10]

where Ω0 = const. Hence the tetrahedral entropy of the entire
system is given by

S(Q1, Q2, . . . , QN ) ≡ NS0 + 3
2

kB

N∑

k=1

ln(1 − Qk), [11]

where kB is the Boltzmann constant and S0 = kB[ln Ω0 + 3
2 ln( 8

3 )].
If P(Q, T) is the distribution of Q at a given temperature T , then

the tetrahedral entropy SQ(T) per particle at temperature T can
be written as

SQ(T) ≡ S0 + 3
2

kB

∫ Qmax

Qmin

ln(1 − Q)P(Q, T)dQ. [12]

In Fig. 4A, we show that SQ(T) − S0 decreases with decreasing
temperature as expected.

We further define a measure of “tetrahedral specific heat” as
CQ

P ≡ T(∂SQ(T)/∂T)P . Fig. 4B shows the temperature depen-
dence of CQ

P and total specific heat CTotal
P for P = 1 atm. CQ

P shows
a maximum at T ≈ 250±10 K ≈ TW , where the total specific heat
CTotal

P also has a maximum (19, 31–33), suggesting that the fluctua-
tions in tetrahedral order reach a maximum at TW (P). Moreover,
comparing the tetrahedral specific heat in Fig. 4B with the total
specific heat, we find that the CQ

P is a major contribution to the
CTotal

P and, particularly, the difference∆CP of the two specific heats
remains a constant within the error bar for all temperatures stud-
ied, hence suggesting that CQ

P is responsible for the Widom-line
transformations.

To relate the tetrahedral entropy SQ(T) to the tetrahedral relax-
ation time τQ(T) associated with the local tetrahedral ordering,

Fig. 4. Temperature dependence of tetrahedral entropy SQ(T ) (A), defined
in Eq. 11, (the red solid line is a guide to the eye) and tetrahedral specific heat
CQ

P = T (∂SQ/∂T )P (B), which has a maximum around the same temperature,
T ≈ 250 ± 10 K ≈ TW , where the total specific heat CTotal

P has a maximum.
Moreover, the difference ∆CP of the two specific heats is a constant within the
error bars for all the temperatures, hence suggesting that CQ

P is responsible
for the Widom-line transformations.
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Fig. 5. Relation of tetrahedral entropy to tetrahedral order parameter and
contribution of two-point translational correlations to entropy S2 for tem-
peratures T = 230, 240, 245, 250, 260, 270, 280, 290, 300, 320 K. (A) Test of the
relation of Eq. 16 for the relation between the tetrahedral entropy SQ and the
tetrahedral order parameter Q̄, assuming F = −0.40 independent of temper-
ature. (B) SQ as a function of t∗ shows that SQ decreases linearly with t∗. The
dashed line is a linear fit through the data. (C) Fig. 5 A and B are consistent
with the possibility that the average translational order parameter t∗ varies
as log(1− Q̄). (D) Dependence of SQ on Sex. SQ changes linearly with S2 at low
temperatures, but the linearity begins to break down for T > TW ≈ 250 K.

we propose the following generalization of the Adam–Gibbs rela-
tion between the translational relaxation time and configurational
entropy (39, 40),

τQ(T) = τQ(0) exp[A/TSQ(T)], [13]

where τQ(0) is the tetrahedral relaxation time at very large T , and
A is a parameter playing the role of activation energy. Accordingly,
we calculate τQ(T) (Fig. 3B) from SQ(T) by using Eq. 13 with three
free parameters: A, τ(0), and S0. We find that S0 ≈ 4.21kB. The
values of τQ(T) calculated by using Eq. 13 are within error bars of
the values of τQ(T) calculated from the autocorrelation function
(see Fig. 3B).

Fig. 3B is an Arrhenius plot of τQ, calculated from Eq. 13. The
temperature dependence of τQ is different at low and high tem-
peratures, changing from non-Arrhenius (a T-dependent slope on
the Arrhenius plot), which can be fit by a power law at high tem-
peratures, to Arrhenius (a constant slope) at low temperatures
(19, 20, 31–33).

Relation of Tetrahedral Entropy to Translational Order Parameter and
Translational Entropy. In this section, we investigate the relation
of SQ with (i) the translational order parameter t∗ (41) defined as

t∗ ≡
∫

|g(r) − 1|dr [14]

and (ii) the translational entropy S2 (42, 43) obtained from the
two-point translational correlations, which is defined as

S2 ≡ −2πρkB

∫
[g(r)log(g(r)) − (g(r) − 1)]r2dr, [15]

where ρ is density and g(r) is the oxygen–oxygen radial distribution
function.

The excess entropy S2 describes the contribution of two-point
correlations to the total entropy of the system. It has been found
that S2 agrees very well with the total entropy in different systems
including some models of water (43, 44).

In Fig. 5A, we show SQ as a function of average tetrahedral
order parameter Q̄ for different temperatures and atmospheric
pressure. SQ varies approximately as log(1 − Q̄) for the range of
temperature studied. To justify this dependence of SQ on Q̄, we
expand Eq. 12,

SQ(T) − S0 = 3
2

kB
[
log(1 − Q̄) + F

]
, [16]

where F is a function of moments of the fluctuations (Q − Q̄).
Hence, if we ignore F compared with the first term, then SQ ∼
log(1 − Q̄). In Fig. 5A, we plot the above function (dashed line),
assuming a constant F = −0.40 for all temperatures studied (230–
320 K) and find that it agrees well with the values of SQ computed
by using Eq. 12 at low T but deviates slightly at high T .

Furthermore, Fig. 5B shows that SQ varies linearly with t∗. Com-
bining the results of Figs. 5 A and B, we form Fig. 5C, which
demonstrates s simple relation between tetrahedral and transla-
tional oder parameters. We next find that, at low T , SQ changes
linearly with S2; however it is nonlinear for high T . Note that a
simple nonlinear relation between Q and t∗ was found for the
SPC/E model of water in the structurally anomalous region (13).
Moreover, Fig. 5D shows that the temperature where this change
in behavior occurs roughly coincides with the temperature of the
Widom line TW .

Discussion and Summary
In summary, we have studied the space and time correlations of
local tetrahedral order Q, presumably related to local tetrahe-
dral heterogeneities. We find that the space-dependent correla-
tion of the the local tetrahedral order is anticorrelated for the
molecules separated by 3.2 Å at high temperatures. This nega-
tive correlation changes to positive correlation upon decreasing
T below the Widom temperature TW (P). Further, we define a
measure of the tetrahedral entropy SQ and find that the specific
heat associated with the tetrahedral ordering is responsible for
the Widom-line transformations. Finally, we find that SQ well
describes tetrahedral relaxation using the Adam–Gibbs relation.
Moreover, we find a simple approximate relation between tetrahe-
dral and translational order parameters Q̄ and t∗. On the comple-
tion of this work, we were made aware by a referee that Lazardis
and Karplus have studied the orientational entropy calculated
from the two-point angular correlation function (45). Although
they find that the orientational entropy of water has a major con-
tribution to the total entropy, a contribution of orientational fluc-
tuations to the total specific heat was not studied. The tetrahedral
entropy S(Q) defined in this paper captures the two-point orien-
tational correlations but is much easier to compute in contrast
to the computation of orientational entropy from the two-point
angular correlation function and hence offers a rather simpler
way to investigate the entropy associated with local structures.
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