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Introduction 

Oil reservoirs are very complex having heterogeneities on all length scales from microns 
to tens of kilometres. These heterogeneities affect all aspects of the flow and have to be 
modelled to make reliable predictions of future performance. However, we have very 
few direct measurements of the flow properties. Core plugs directly measure the 
permeability but they represent a volume of roughly 10-13 of a typical reservoir. Well 
logs and well tests measure large volumes (10-4 and 10-7 respectively) but the results 
have to be interpreted to infer flow properties. The flow itself takes place on the scale of 
the pores which are typically around 10-21 of the volume of the reservoir. So there is a 
great deal of uncertainty about the spatial distribution of the heterogeneities which 
influence the flow. 

The conventional approach to this is to build "detailed" reservoir models (note that the 
largest of these has around 107 grid blocks so they fall very short of the actual level 
heterogeneity that we know about), "upscale" or "coarse grain" them to around 104 or 
105 grid blocks and then run flow simulations. These models need to be taken from a 
whole range of possible models with a suitable probability attached to each to determine 
the uncertainty in performance. The problem with this approach is that it is 
computationally very expensive. Therefore, there is a great incentive to produce much 
simpler models which can predict the uncertainty in performance. These models must 
be based on the dominant physics that control the displacement process. 

It has long been understood that flow in heterogeneous porous media is largely 
controlled by continuity of permeability contrasts – flow barriers e.g. shales or high 
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permeability streaks or faults. Although there are other influences these are the 
predominant features affecting flow. With this in mind we look to ways of modeling 
reservoir flow which concentrate on the connectivity of permeability contrasts. The basic 
mathematical model of connectivity is called percolation theory. Whilst there is a very 
extensive literature on percolation theory in both the mathematical and physics literature 
it is mostly not very accessible to the general geoscientist. The aim of this article is to 
attempt to redress this balance (see also King et al. 2001). 

Percolation theory 

Percolation theory is a general mathematical theory of connectivity and transport in 
geometrically complex systems. The remarkable thing is that many results can often be 
encapsulated in a small number of simple algebraic relationships. First let us describe 
what percolation theory is. There are many different variants which turn out to be 
identical in almost all important aspects so we shall describe the simplest version. 

Take a square grid and occupy sites on this grid with a probability p. For small values of 
this probability we see mostly isolated occupied sites with occasional pairs of 
neighboring sites that are both occupied. If neighboring sites are both occupied we call it 
a cluster. As the occupancy probability increases we get more isolated clusters, some 
clusters grow and some merge. So the clusters on the whole get larger (see Figures). 
Then at a particular value of the occupancy probability one cluster dominates and 
becomes (infinitely) large. Above this the other clusters become absorbed into this one 
until at p=1 every site is occupied. 
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In these figures the different colours simply label the different clusters and have no other 
significance. Note that a very peculiar thing happens at one particular value of the 
occupancy probability. Suddenly one cluster becomes infinitely large (for these 
purposes we are discussing infinitely big lattices, we shall discuss what happens on 
finite size lattices later). This is called the spanning cluster as it spans the entire lattice. 
This sudden onset of a spanning cluster occurs at a particular value of the occupancy 
probability known as the percolation threshold (pc) and is the fundamental characteristic 
of percolation theory. The exact value of the threshold depends on which kind of grid is 
used and strongly on the dimensionality of the grid. A table of approximate values is 
given below (more accurate values can be found in the book by Stauffer & Aharony). 

 Lattice Site Bond 
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Note that we have described the connectivity of sites on the lattice, so this is known as 
site percolation. Instead we could have occupied the edges of the sites (or the bonds), 
this problem is known as bond percolation. Again this affects the percolation threshold, 
but not the other fundamental properties, we shall return to this point later. 

Sudden changes like this are common in other branches of physics. For example a 
magnet, when heated, looses its magnetisation at a particular temperature (the Curie 
Temperature). In general these are known as phase transitions (or critical phenomena) 
and the percolation threshold is just another of these. It turns out that many of the 
properties close to this transition can be described in very simple terms. 

Not all occupied sites are in the infinite (or spanning) cluster. If we look at the probability 
that an occupied site is in the infinite cluster (P(p)) then clearly this must be zero (since 
there is no spanning cluster) below the percolation threshold. Note that lower case p is 
the occupancy probability, whereas upper case P is the fraction of occupied sites 
belonging to the percolating cluster. This may be slightly confusing but is the standard 
nomenclature used throughout percolation literature and so we adopt it here also. 
Above the threshold it can be described in very simple analytical terms 

 

2D Hexagonal 0.692 0.653 

2D Square 0.593 0.500 

2D Triangular 0.500 0.347 

2D Diamond 0.430 0.388 

3D Simple 
Cubic 0.312 0.249 

3D
Body 

Centred 
Cubic 

0.246 0.180 

3D
Face 

Centred 
Cubic 

0.198 0.119 
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This is known as a power law or scaling law and the exponent b is known as a critical 
exponent. This has the remarkable feature that it is entirely independent of the kind of 
lattice being studied or whether it is bond or site percolation, it only depends on the 
dimensionality of space (i.e. 2D or 3D). This is known as universality and is an important 
aspect of percolation theory (and indeed critical phenomena in general). Broadly 
speaking it means that the large scale behaviour of these systems can be described by 
(relatively) simple mathematical relationships which are entirely independent of the 
small scale construction. Clearly this is a very powerful concept as it enables us to study 
and understand the behaviour of a very wide range of systems without needing to worry 
too much over much of the detail. One key factor which is not universal however is the 
percolation threshold. But the scaling laws and critical exponents are. A table of values 
for this exponent b is given below. 

Note that in two dimensions it is often possible to determine exact values for the 
exponents, whereas in three dimensions there are only approximate results or 
numerical estimates. This is explains why in the table above the two dimensional result 
is an exact fraction whereas in three dimensions the result is a numerical estimate (it is 
not even known if the result should be a rational number in three dimensions). There are 
many other critical exponents that can be defined which describe the properties of the 
percolating system at or near the threshold. There are too many to describe in an 
introductory article like this and the literature should be consulted for a more complete 
description (Stauffer & Aharony). Here we shall describe only the most useful for the 
application described above. Consider first the size of the clusters. First we have to be a 
bit careful by what we mean by cluster size. For these purposes we start with the two 
point correlation function g(r). This is the probability that if one point is in a cluster then 
another point a distance r away is in the same cluster. Then this typically has an 
exponential decay given by a correlation length (

���
 

 

Clearly at a low value of p these are small (typically clusters of size one or two), this 

 2D 3D 

�
 5/36 0.41 
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increases until the threshold when the spanning cluster dominates and is infinite in size, 
so the cluster size diverges. What about above the threshold? Well we have to remove 
the infinite cluster from our calculation otherwise it will always dominate and only 
consider the other clusters. As the clusters get absorbed into the spanning cluster the 
"typical" size of those left goes back down again. So we have a cluster size which 
increases, diverges at the threshold and then decreases again. This can be described in 
a mathematical form as 

 

Here �  is another critical exponent. As with the connectivity exponent (b) it is universal 
(independent of details of the lattice) but does depend on the dimension of the system. 
A table of values is given below. 

There is a huge literature on percolation theory which defines and calculates a large 
number of critical exponents. The intention (even were it possible) is not to review all of 
this material but to focus on the issues pertinent to the questions asked in the 
introduction. Before we do this there are two issues that must be covered. Everything so 
far has been defined for an infinite lattice. What happens if a) the lattice is finite and b) 
there is no lattice at all. 

Finite size scaling 

The problem of how to deal with finite size lattices is known as finite size scaling. It is a 
useful introduction to the style of theoretical argument that is often used in percolation 
theory. We shall look at the connectivity, P. 

Consider a lattice of size L. For the sake of argument we shall assume it is square so 
the number of cells is Ld in d dimensions (physicists like to consider the general case 
wherever possible, although many of our illustrations will be in 2D where it easier to 
visualise things). The main thing to notice is that things are less clear cut. Consider the 
following configurations on a 5x5 grid (notice that this is very small and one doesn’t 
really expect these kind of scaling arguments to apply but these give useful insights into 
the real problems). 

 2D 3D 

�  4/3 0.88 

Page 6 of 14Article Template

10/11/2002http://www.lps.org.uk/dialogweb/current_articles/king_percolation_theory/precolation_th...



 

The thing to notice is that you can get connectivity (here defined as connectivity from left 
to right) at very much less than the percolation threshold (pc~0.592... for a square lattice 
in 2D infinite system) (0.2 for Figure a) but not get it at a much higher occupancy (0.8 for 
Figure b) for a different realisation. Also if we look at some realisations at exactly the 
same occupancy we can find very different connected fractions (fraction of occupied 
sites belonging to the connected cluster). This is a consequence of the fact that a finite 
size system can only sample from the entire distribution of possible configurations and 
so there is a sample size uncertainty. If we plotted the connected fraction as a function 
of the occupancy sampled over a large number of configurations we would get a scatter 
of points. As the size of the system got larger the scatter would reduce until we return to 
the plot for the infinite system shown earlier. 

 

Instead of considering the whole scatter we can look at the average connectivity (that is 
averaged over all realisations at the same occupancy fraction). Now we get the 
following curve. Notice that there is no longer a sharp transition, it gets "smeared out". 
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As we increase the size of the system the smearing gets less. 

 

This phenomenon is again familiar from other thermodynamic phase transitions where 
small size systems have "smeared" transitions. We can describe this smearing in simple 
mathematical terms. First we look at the length scales in the problem. There are only 
two the system size and the correlation length. Clearly if the system is much larger than 
the correlation length (which we recall represents the "typical" size of the clusters) then 
the clusters don’t really notice the finite boundaries and the system must behave like the 
infinite system. On the other hand when the cluster size "sees" the boundaries a new 
behaviour must be introduced. So the important parameter must be the dimensionless 
ratio of these two lengths, 

� �
/L (in fact for later convenience we use an equivalent 

dimensionless parameter z = (
���

/L)1/ � = (p-pc)L1/ �  ). Then at a given value of the system 

size the connected fraction must be a function of the form 

 

where fL is some function. Now consider how the behaviour of the system changes 

under an arbitrary change in size. Let . Under this change of scale we expect 

the essential percolation behaviour to be unaltered, that is . The 
only function that has this property is the power so we can write 

 

where F is a universal function and A is a power to be determined. To do this we 
consider the asymptotic behaviour of P. As  we must recover the infinite system 

critical law. Hence  for large L. To cancel the L dependence we must have 
A=-b/n. So the finite size scaling law for the connectivity can be written. 
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If we plot L
�
/ � P against (p-pc)L1/ �  all the curves found previously should lie on top of 

each other to form a single universal curve. We can then use this to great effect 
because if we want to know the finite size connectivity for any system that we haven’t 
performed simulations of we can "unscramble" the result we require from this universal 
curve. 

 

Continuum percolation 

This is very straightforward because of the universality principle. There is no reason why 
we need to use a grid at all. We can place geometrical objects randomly and 
independently (formally this is called a Poisson process) in a continuum space. 
Connectivity is defined as the overlap of the objects. In place of the occupancy 
probability p we have the volume fraction of objects (or the probability that a point 
chosen at random lies within one of the objects). For the sake of clarity we give this the 
same letter, p. We get the same threshold phenomenon of a single cluster growing and 
dominating the system. The percolation threshold depends only on the shape of the 
objects, but for circles it is 0.678 and for squares it is 0.668 (similarly in 3D for spheres it 
is 0.28 and for cubes 0.276) so the difference is not very large and numerical 
experiments indicate that for reasonable convex (i.e. not very spiky) objects the 
threshold is around the same value. This is known as continuum percolation. 

Then the principle of universality applies (and has been extensively demonstrated by 
numerical experiments) that the same scaling laws (e.g. finite size scaling) with the 
same critical exponents (with the same numerical values). This is a remarkable result 
and a very powerful one that we can now use. 

Application to reservoir modelling 

Imagine a typical reservoir model constructed with an object based technique. That is 
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geometrical objects (representing geological entities, e.g. shales, fractures, sand bodies 
etc.) are placed randomly in space. Then the connectivity can be estimated directly by 
percolation theory. Take a concrete example of sand bodies in an otherwise 
impermeable (or low permeability) background. The net to gross ratio is the volume 
fraction of the good sand and is, therefore, identical to the occupancy probability p. 
Suppose we have a reservoir of size L and a pair of wells separated by a Euclidean 
distance r. We can ask question about the probability that the two wells are connected, 
or in percolation language, in the same cluster. This is just the two point correlation 
function defined previously. Suppose we want to know what fraction of the sand in 
contact with the wells is connected to both wells. This is just the connectivity function P 
defined earlier. We can use finite size scaling to estimate this fraction. Also we can use 
related scaling laws to estimate the uncertainty. Note that these are algebraic laws with 
no spare parameters. The percolation threshold is defined by the shape of the objects, 
but it is largely unimportant whether we model the sand units as rectangles or ellipsoids 
or other shapes (provided they are not too exotic). The scaling laws and exponents are 
determined from lattice models (and this has been done very extensively in the 
literature) and can be straightforwardly applied. 

As the expressions are simple algebraic they are very rapid to calculate. Compare this 
with the building of a typical 3D reservoir model which can be computationally very 
expensive. Here we show results for a North Sea fluvial system of intermediate net to 
gross. A conventional cross sectional model was built to determine the connected sand 
fraction. The sand bodies were very long which is why a cross sectional rather than a 
full 3D model was built. The sand bodies had typical dimensions of 300mx2m and the 
reservoir interval was 100m thick. Well spacing was taken as 1km. Sensitivities to the 
net to gross ration were considered as this was uncertain. These results were compared 
with the predictions from percolation theory. It can be seen that the two are in good 
agreement. In particular the percolation approach is able to estimate the uncertainty 
which is not possible for the single realisation reservoir models. The percolation 
calculations were done in a fraction of a second in a spreadsheet. 

  

Percolation can do more than predict static connectivity. There are scaling laws for the 
effective permeability. It may be noted that percolation clusters have dead ends which 
cannot be swept. Only oil in the so called "backbone" can be swept. This is a fractal 
object of known dimensions and so obeys a scaling law and can be estimated. We shall 
describe in more detail how breakthrough time can be estimated. 

Net to Gross 
ratio

Connected sand 
fraction 

(conventional model) 

Connected sand 
fraction 

(percolation 
prediction) 

25% 6% 2.7 ±4 %

35% 10% 10 ±8 %
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Estimation of breakthrough time 

For simplicity we consider a pair of wells (one injector, one producer) separated by a 
distance r. we shall also only consider transport of a passive tracer (or a unit mobility 
ratio miscible flood). We can then determine the probability distribution (over different 
realisations of the sandbody locations). This is the conditional probability that the 
breakthrough time is tbr given that the reservoir size (measured in dimensionless units 
of sandbody length) is L and the net to gross is p, i.e. P(tbr|r,L,p). In previous studies 
(Dokholyan et al., 1998; Lee et al., 1999) we have shown that this distribution obeys the 
following scaling 

 

Currently the best estimates of the various coefficients and powers (as found from 
detailed numerical experiments on lattices and theory, see Andrade et al. 2000) in this 
are: 

dt = 1.33±0.05 ; gt = 1.90±0.03 ; a = 1.1 ; b = 5.0 ; c = 1.6(p<pc) 2.6(p>pc)
 

�
 = 3.0 ; �  = 3.0 ; �  = 1.0 and 

�
 = |p - pc|- �  �  = 4/3 ; pc = 0.668±0.003 (for continuum 

percolation). 

In this paper we will not discuss the background to this scaling relationship but 
concentrate on how well it succeeds in predicting the breakthrough time for a realistic 
permeability field. However, it is sufficient to mention that this is typical of the kind of 
scaling result that percolation is able to provide. However, it is worth spending some 
time describing the motivation behind the form of the various functions. The first 
expression (f1) is an extension to the expression developed by others (see Havlin & 

Ben-Avrahim, 1987 for a detailed discussion) for the shortest path length in a 
percolating cluster between two points. The breakthrough time is strongly correlated 
with the shortest path length (or chemical path). 

To this there are some corrections for real systems. In a finite size system very large 
excursions of the streamlines are not permitted because of the boundaries so there is a 
maximum length permitted (and also a maximum to the minimum transit time). This cut-
off is given by the expression f2. Away from the percolation threshold the clusters of 

connected bodies have a "typical" size (given by the percolation correlation length, 
�

) 
which also truncates the excursion of the streamlines. This leads to the cut-off given by 
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the expression f3. The multiplication together of these three expressions is an 

assumption that has been tested by Dokholyan et al. (1998). Also a more detailed 
derivation of this form is given there and the references therein. Here we shall 
concentrate on using this scaling form to make predictions about the distribution of 
breakthrough times for a realistic data set. 

Rather than considering the theoretical aspects we shall look at an application to real 
field data. We took as an example a deep water turbidite reservoir. The field is 
approximately 10km long by 1.5km wide by 150m thick. The turbidite channels, which 
make up most of the net pay (permeable sand) in the reservoir, are typically 8km long 
by 200m wide by 15m thick. These channels have their long axes aligned with that of 
the reservoir. The net to gross ratio (percolation occupancy probability, p) is 50%. The 
typical well spacing was around 1.5km either aligned or perpendicular to the long axis of 
the field. In order to account for the anisotropy in the shape of the sand bodies and the 
field we first make all length units dimensionless by scaling with the dimension of the 
sand body in the appropriate direction (so the field dimensions are then Lx, Ly and Lz in 
the appropriate directions). Then scaling law for the breakthrough time can be applied 
with the minimum of these three values (L=min(Lx, Ly, Lz) ). The validity of using just 
the minimum length has been previously tested (Andrade et al., 2000). 

The real field is rather more complex than this, and a more realistic reservoir description 
was made and put into a conventional flow simulator. We could then enter these 
dimensions into the scaling formula. It should be noted that first the dimensionless units 
were converted into real field units to compare with the conventional simulation results. 
Using these data we find breakthrough times of around one year. The full probability 
distribution of breakthrough times from the scaling law is given by the solid curve in the 
figure below. 

 

In addition conventional numerical simulations were carried out for the field. We could 
then collect the statistics for breakthrough times for the various well pairs to compare 
with this theoretical prediction. Not all pairs exhibited breakthrough in the timescale over 
which the simulations were run and there were only three injectors so there were only 9 
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samples. The histogram of breakthrough times is also shown on the figure. Clearly with 
such a small sample these results cannot be taken as conclusive however, certainly 
they are indicative that the percolation prediction from the simple model is consistent 
with the results of the numerical simulation of the more complex reservoir model. The 
agreement with the predictions is certainly good enough for engineering purposes. We 
would hope that if the simulation had been run for longer and more well pairs had 
broken through that better statistics could have been collected. The main point being 
that the scaling predictions took a fraction of a second of cpu time (and could be carried 
out on a simple spreadsheet) compared with the hours required for the conventional 
simulation approach. This makes this a practical tool to be used for making engineering 
and management decisions. 

Conclusions 

In this article we have introduced many of the concepts of percolation theory and 
described the simplest of the scaling laws used to describe the behaviour. We have also 
demonstrated that it can be a practical tool for answering many of the questions that 
arise when considering geometrically complex systems where connectivity is the 
primary issue, such as hydrocarbon recovery from oil reservoirs. 

There are many issues which we have not considered. suppose the bodies are not 
placed independently of each other (so called correlated percolation) such as may be 
found for stacking patterns of particular sand units, or the distribution of faults. Does this 
alter the percolation properties? Well essentially no, the same scaling formalism applies. 
If the spatial correlation between the bodies is of a finite range then this doesn’t alter 
any of the previous discussion. If the spatial correlation has no finite range (such as a 
power law correlation function) then some of the critical exponents may change their 
numerical value. 

If the permeability cannot be simply split into good and bad then again the approach has 
to be modified slightly but if the permeability distribution is very broad we can apply a 
cutoff to the permeability such that we are sitting just at the percolation threshold. This 
cutoff value then dominates the flow. 

These issues, and other, extensions to the simple predictions described here (such as 
post breakthrough behaviour) are the subjects of our current research into applying 
percolation theory to oil recovery problems. 
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