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Abstract. We investigate scaling and memory effects in return intervals between price volatilities above
a certain threshold q for the Japanese stock market using daily and intraday data sets. We find that
the distribution of return intervals can be approximated by a scaling function that depends only on the
ratio between the return interval τ and its mean 〈τ 〉. We also find memory effects such that a large (or
small) return interval follows a large (or small) interval by investigating the conditional distribution and
mean return interval. The results are similar to previous studies of other markets and indicate that similar
statistical features appear in different financial markets. We also compare our results between the period
before and after the big crash at the end of 1989. We find that scaling and memory effects of the return
intervals show similar features although the statistical properties of the returns are different.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 89.75.Da Sys-
tems obeying scaling laws – 05.45.Tp Time series analysis

1 Introduction

In recent years, financial markets have been studied us-
ing statistical physics approaches [1–8] and some stylized
facts have been observed including (i) the probability den-
sity function (pdf) of the logarithmic stock price changes
(log-returns) has a power-law tail [9–13]; (ii) the abso-
lute value of log-returns are long-term power-law corre-
lated [10,14–20]. Statistical properties of price fluctuations
are important to understand market dynamics, and are
related to practical applications [21]. In particular, the
volatility of stocks attracted much attention because it is
a key input of option pricing models such as the Black-
Scholes [22–25].

Yamasaki et al. [26] investigated the return intervals
between volatility above a certain threshold in the US
stock and foreign exchange markets. They analyzed daily
data and found scaling and memory effects in return inter-
vals. Wang et al. [27] studied the return intervals in intra-
day data of the US market, and found similar scaling and
memory effects. Weber et al. [28] analyzed the memory in
volatility return intervals. In this manuscript, we further
test the generality of the above findings in the Japanese
stock market data, a representative Asian market, where
we include both daily and intraday data sets. We find that
also in this case the pdf of return intervals mainly depends
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on the scaled parameter; the ratio between the return in-
tervals and their mean. Memory effects also exist in the
return intervals sequences.

In addition, we study scaling and memory effects con-
sidering different type of market dynamic periods. The
Japanese market in recent decades (1977–2004) can be di-
vied into two periods, the inflationary (before 1989) and
the deflationary (after 1989). Kaizoji [29] showed that
some statistical properties of the returns are different in
the two periods. The absolute return distribution in the in-
flationary period behave as a power-law distribution, while
the return distribution in the deflationary period obeys an
exponential law. Here, we find that scaling and memory ef-
fects of the return intervals show similar features in both
periods even though the return distributions have different
features.

2 Scaling and memory properties

In this section, we analyze the statistical properties of the
Japanese stock market using daily and intraday return
intervals. We investigate the daily data of three represen-
tative companies, Nippon Steel, Sony and Toyota Motor
listed on the Tokyo Stock Exchange (TSE) for the 28-
year period from 1977 to 2004, a total of 7288 trading
days. Also, we study the intraday data of 1817 companies
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Fig. 1. (Color online) Distribution and scaling of return intervals using for (a) and (b) Nippon Steel, (c) and (d) Sony, (e) and
(f) Toyota Motor, and (g) and (h) mixture of 1817 Japanese companies. Daily data is used for (a)–(f), and intraday for (g) and
(h). The sampling time for intraday data is 1 min. Symbols represent different threshold q varying from 1 to 2 (for (a)–(f)) and
1 to 5 (for (g) and (h)), respectively.

listed on the TSE from January 1997 to December 1997.
The sampling time is 1 min and the data size is about
9 million.

The logarithmic return G(t) is written as G(t) ≡
ln Y (t + ∆t) − ln Y (t) where Y (t) is the stock price at
time t, and the normalized volatility g(t) is defined as:

g(t) ≡ |G(t)|√
〈G(t)2〉 − 〈G(t)〉2

, (1)

where 〈· · · 〉 means time average. We pick every event of
volatility g(t) above a certain threshold q. The series of
the time intervals between those events, depending on the
threshold q, {τ(q)}, are generated.

We investigate the pdf Pq(τ) to better understand its
behavior and how it depends on the threshold q (the left
panels of Fig. 1). The scaled pdf, Pq(τ) 〈τ〉, as a function
of the scaled return intervals τ/ 〈τ〉 is shown in the right
panels of Figure 1. A previous study [30] showed the dis-
tributions of Pq(τ) are different with different threshold
q, and we find the same result. However, when plotting
Pq(τ) 〈τ〉 as a function of τ/ 〈τ〉, we obtain an approxi-
mate collapse onto a single curve. The mixture data shows
a better collapse because it consists of intraday data, so it
has sufficient data more than other individual stocks con-
sisting of daily data. The collapse means that the distri-
butions can be well approximated by the scaling relation

Pq(τ) =
1
〈τ〉f

(
τ

〈τ〉
)

. (2)

We analyze the collapse using the Kolmogorov-Smirnov
(KS) test, a well-known goodness of fit test [31,32], in
order to determine whether the distributions differ, and
whether the distribution differs from the hypothesized dis-
tributions including exponential and the Weibull distribu-
tions [33,34]. The KS test uses the cumulative distribution
function (CDF) denoted F0 and the empirical function
denoted Fn. As the data are given as an ordered sample
x1, . . . , xN , the theoretical distribution F0 and the empir-
ical Fn at each data point are defined as F0(xi) = P0(X ≤
xi) = CDF(Xi) and Fn(xi) = (number of X ≤ Xi)/n =
i/n where i = 1, . . . , n and n is the data set size. Then,
D+ = Fn − F0, D− = F0 − Fn−1, and D = max(D+, D−)
are defined respectively. When the KS statistic value D
is less than the corresponding value (Critical value, CV),
we can assume that the distributions are not differ. Since
all results coincide (Tables 1 and 2), Pq(τ) 〈τ〉 follows a
stretched exponential form [35].

The scaling function f(τ/ 〈τ〉) of equation (2) does
not depend directly on the threshold q but only through
〈τ〉 ≡ 〈τ(q)〉. Therefore, if Pq(τ) is known for one value
of q, the distribution for other q values can be predicted
using equation (2). Figures 1g and 1h show that the same
features, distribution and scaling of return intervals exist
for intraday data after removing the intraday trends [36].
The size of the intraday data set is basically larger than
that of daily data, and consists of 1817 companies. There-
fore, we are able to extend our study to larger values of
q and get better statistics (less scattering) compared to
those in Figures 1a–1f.



W-S. Jung et al.: Volatility return intervals analysis of the Japanese market 115

Table 1. The Kolmogorov-Simirnov statistic values in order
to determine whether the distributions differ from each other.
Critical value is defined as CV(0.05) = 1.36/

√
N where N is

the data size.

q1 q2 D (CV) q1 q2 D (CV)

Fig. 1b

1.00 1.25 0.0232 (0.0286) 1.00 1.50 0.0232 (0.0334)

1.00 1.75 0.0232 (0.0383) 1.00 2.00 0.0232 (0.0436)

1.25 1.50 0.0191 (0.0334) 1.25 1.75 0.0191 (0.0383)

1.25 2.00 0.0191 (0.0436) 1.50 1.75 0.0138 (0.0383)

1.50 2.00 0.0158 (0.0436) 1.75 2.00 0.0138 (0.0436)

Fig. 1d

1.00 1.25 0.0206 (0.0324) 1.00 1.50 0.0206 (0.0377)

1.00 1.75 0.0206 (0.0444) 1.00 2.00 0.0313 (0.0516)

1.25 1.50 0.0168 (0.0377) 1.25 1.75 0.0168 (0.0444)

1.25 2.00 0.0168 (0.0516) 1.50 1.75 0.0147 (0.0444)

1.50 2.00 0.0147 (0.0516) 1.75 2.00 0.0114 (0.0516)

Fig. 1f

1.00 1.25 0.0220 (0.0317) 1.00 1.50 0.0220 (0.0364)

1.00 1.75 0.0220 (0.0422) 1.00 2.00 0.0220 (0.0484)

1.25 1.50 0.0185 (0.0364) 1.25 1.75 0.0185 (0.0422)

1.25 2.00 0.0185 (0.0484) 1.50 1.75 0.0152 (0.0422)

1.50 2.00 0.0152 (0.0484) 1.75 2.00 0.0130 (0.0484)

Fig. 1h

1.00 2.00 0.0049 (0.0076) 1.00 3.00 0.0049 (0.0063)

1.00 4.00 0.0067 (0.0109) 1.00 5.00 0.0071 (0.0128)

2.00 3.00 0.0015 (0.0063) 2.00 4.00 0.0035 (0.0109)

2.00 5.00 0.0041 (0.0128) 3.00 4.00 0.0028 (0.0109)

3.00 5.00 0.0033 (0.0128) 4.00 5.00 0.0021 (0.0128)

Table 2. The Kolmogorov-Simirnov statistic values for
Figure 1h in order to determine whether the distribution differs
from the hypothesized distributions.

q CV Dexponential DWeibull

1.00 0.0054 0.0148 0.0183

2.00 0.0076 0.0159 0.0190

3.00 0.0063 0.0159 0.0190

4.00 0.0109 0.0173 0.0196

5.00 0.0128 0.0175 0.0196

Previous similar studies on the US stock and foreign
exchange market [26,27] suggested that there might be
a universal scaling function for the return time intervals
of different financial markets. We observe the same result
also for both daily and intraday data of the Japanese mar-
ket, and it raises the possibility that the scaling function
is universal.

We also test whether the sequence of the return in-
tervals is fully characterized by the distribution Pq(τ). If
the random variables τ are independent and identically
distributed (i.i.d.), then all the finite dimensional distri-

bution functions can be obtained from the knowledge of
the one-point probability density function Pq(τ) by multi-
plication. This is not the case if the τ are not independent.
In order to verify this point, we study the conditional pdf
Pq(τ |τ0) defined as the probability of finding a return in-
terval τ following a return interval τ0. If memory does not
exist, we expect that the conditional pdf will be indepen-
dent of τ0 and identical to Pq(τ). We study Pq(τ |τ0) for
a range of τ0 values. The full data set of {τ} is divided
into eight subsets with return intervals in increasing or-
der. We show P (τ |τ0) for τ0 being in the lowest subset
(full symbols) and, in the largest subset (open symbols)
in Figure 2. The results show that for τ0 in the lowest
subset, the probability of finding τ below 〈τ〉 is enhanced
compared to Pq(τ), while the opposite occurs for τ0 in
the largest subset. The pdfs, Pq(τ |τ0), for all thresholds
collapse onto a single scaling function for each τ0. This
suggests that Pq(τ) does not characterize the sequence of
τ and memory exists in the sequence.

The memory effects are also observed in the mean con-
ditional return interval 〈τ |τ0〉 which is the first moment of
Pq 〈τ |τ0〉 shown in Figure 3, where we plot 〈τ |τ0〉 / 〈τ〉 as
a function of τ0/ 〈τ〉. It is seen clearly that large (or small)
τ tend to follow large (or small) τ0. Note that the shuffled
data (open symbols) exhibit a flat shape, which means τ
is independent on τ0. The above results show that the re-
turn intervals τ strongly depend on the previous return
interval τ0.

We also analyze clusters of short and long return inter-
vals in order to investigate clustering phenomena, which
represent further and longer term correlations compared
to Pq(τ |τ0) and 〈τ |τ0〉. The sequence of return intervals is
divided into two bins by the median of the entire database.
The two bins consist of intervals which are “above” and
“below” the median respectively. A cluster is formed by n
consecutive return intervals that are “above” or “below”
the median. Figure 4 shows the complementary cumula-
tive distribution of clusters of size n for three Japanese
companies and mixture of 1817 companies. Both “above”
and “below” clusters have long tails compared to the sur-
rogate volatility shuffled case.

3 Inflation and deflation

In this section, we investigate the NIKKEI 225 index data
to answer one question: Even the return distributions have
different features, do the return time intervals show similar
features? The NIKKEI 225 index reached the highest posi-
tion on the last trading day of 1989, but declined from the
first trading day of 1990. It has dropped about 63 percent
from 1990 to August of 1992. This is the famous Japanese
market bubble and crash. Therefore, the Japanese market
between 1977 and 2004 can be divided into two parts: the
period of inflation, before December 1989, and the period
of deflation, after January of 1990 (Fig. 5). Kaizoji [29]
showed that the return statistics of those two periods are
clearly different. The return distribution in the inflation-
ary period is approximated by an asymptotic power law,
while the return distribution in the deflationary period
seems to obey an exponential law.
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Fig. 2. (Color online) Scaled conditional distribution Pq(τ |τ0) 〈τ 〉 as a function of τ/ 〈τ 〉 using daily data for (a) Nippon Steel,
(b) Sony, (c) Toyota Motor, and (d) mixture of 1817 companies. Symbols represent different threshold q.

Fig. 3. (Color online) Scaled mean conditional return interval 〈τ |τ0〉 / 〈τ 〉 as a function of τ0/ 〈τ 〉 for (a) Nippon Steel, (b)
Sony, (c) Toyota Motor, and (d) mixture of 1817 companies. Open symbols correspond to shuffled data. The lines serve only as
a guide to the eyes.
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Fig. 4. (Color online) Complementary cumulative distribution of size for return intervals clusters for (a) Nippon Steel, (b)
Sony, (c) Toyota Motor, and (d) mixture of 1817 companies. The distributions consist of consecutive return intervals that are
all above (closed symbols) or below (open symbols) the median of all the interval records. The straight lines show the shuffled
volatility case where memory is removed.

Fig. 5. The time series of NIKKEI 225 (a) index and (b) log
return from January 1984 to December 2004.

Figure 6a represents the scaled pdf, Pq(τ) 〈τ〉, as a
function of the scaled return intervals τ/ 〈τ〉 in the infla-
tionary period (full symbols) and the deflationary period
(open symbols). No significant differences is seen between
these two periods (Tab. 3). Also, conditional mean return
intervals of two periods show that τ depends on τ0 in a
similar way in the two periods (Fig. 6b). It has been sug-

Fig. 6. (Color online) (a) Distribution and scaling of re-
turn intervals and (b) scaled mean conditional return interval
〈τ |τ0〉 / 〈τ 〉 as a function of τ0/ 〈τ 〉. Full symbols correspond
to the inflationary period and open ones the deflationary pe-
riod. Symbols represent different threshold q. The line is only
a guide to the eyes.

gested that the pdf Pq(τ) and the scaled pdf Pq(τ) 〈τ〉 are
universal functions for different financial markets. Here
we observe that even though the return distributions of
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Table 3. The Kolmogorov-Simirnov statistic values for Figure 6 in order to determine whether the distributions differ from
each other. Critical value is defined as CV(0.05) = 1.36/

√
N .

qinflationary qdeflationary D (CV) qinflationary qdeflationary D (CV)

1.00 1.00 0.0364 (0.0715) 1.25 1.00 0.0283 (0.0840)

1.25 0.0364 (0.0715) 1.25 0.0283 (0.0840)

1.50 0.0364 (0.0738) 1.50 0.0283 (0.0840)

1.75 0.0364 (0.0843) 1.75 0.0283 (0.0843)

2.00 0.0364 (0.0974) 2.00 0.0283 (0.0974)

1.50 1.00 0.0605 (0.1011) 1.75 1.00 0.0787 (0.1197)

1.25 0.0605 (0.1011) 1.25 0.0787 (0.1197)

1.50 0.0605 (0.1011) 1.50 0.0787 (0.1197)

1.75 0.0605 (0.1011) 1.75 0.0787 (0.1197)

2.00 0.0605 (0.1011) 2.00 0.0787 (0.1197)

2.00 1.00 0.0878 (0.1154)

1.25 0.0878 (0.1154)

1.50 0.0878 (0.1154)

1.75 0.0878 (0.1154)

2.00 0.0878 (0.1154)

the periods are different, the return intervals show similar
features.

4 Conclusions

We investigated scaling and memory effects in volatility
return intervals for the Japanese stock market using daily
and intraday data sets. For both data sets, we found that
the distribution of return intervals are well approximated
by a single scaling function that depends only on the ratio
τ/ 〈τ〉, and the scaling function is different from the Pois-
son distribution expected for uncorrelated records. Also,
our results for the conditional distribution and mean re-
turn interval support the memory between subsequent re-
turn intervals, such that a large (or small) return interval
is more likely to be followed by a large (or small) interval.
The clustering shown in Figure 4 shows that the mem-
ory exists even between nonsubsequent return intervals.
Our results also support the possibility that the scaling
and memory properties are similar functions for different
financial markets. In addition, we tested scaling and mem-
ory effects in the inflationary and deflationary periods of
the Japanese market. While the return distributions show
different features, the scaling and memory properties of
the return intervals are similar. It should be noted that
similar scaling properties and memory in the return inter-
vals have been found earlier also in climate [37–39] and
earthquakes [40].
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