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Abstract. For percolation the fractal dimension d,, which is identical to the magnetic field 
scaling power yh, has never been calculated for hypercubic lattices of dimension d = 5 .  
Here we study percolation for systems of high dimensionality using the method of large-cell 
Monte Carlo position-space renormalisation group. We obtain the estimate df = y h  = 
3.69f0.02 (d = 5 )  and 3.12i0.02 ( d  =4).  We also calculate the thermal scaling power 
yT = 1/ v where v is the correlation length exponent. We find y;’ = Y = 0.51 f 0.05 ( d  = 5 )  
and v=0.64*0.02 (d  =4). Finally, we compare our results with the E expansions of d,  
and v. 

How does one describe a percolation cluster in systems of high lattice dimensionality 
d ? This question is particularly important since the critical dimensionality in percola- 
tion is given by d , = 6 .  Above d = 6 ,  the cluster structure is now reasonably well 
understood (see, e.g., Alexander et a1 1984, Aharony et a1 1984 and references therein). 
Roughly speaking, loops are irrelevant (i.e. the number of loops of size L drops off 
faster than a power law as L increases). The statistics of these clusters seems well 
described by the nodes and links picture, and the fractal dimension of the incipient 
infinite cluster is known to be given by the equation df = ( y  + p ) /  v, where p = y = 1 
are the order parameter and mean size exponents of a Cayley tree pseudo-lattice, and 
v = is the correlation length exponent. Since hyperscaling breaks down for d > d,, 
conventional definition of the fractal dimension df = d - p /  v no longer holds (see 
Aharony et a1 1984, Alexander et a1 1984). 

For d = 3 and especially for d = 2 there have been a wealth of studies of cluster 
structure (for a recent review, see Stanley and Coniglio 1983). It is by now generally 
accepted that the nodes and links picture of d > 6  must be replaced by a somewhat 
more complex nodes/links/blobs picture where in addition to the link made of singly 
connected bonds there also appear relevant blobs made of multiply connected bonds. 
The blobs appear to be ‘scaling quantities’ whose mass decreases as a power law 
with system size (Hermann and Stanley 1984). 

What happens for d =4,5? Essentially nothing is known-even the numerical 
values of df have not been calculated for d = 5 and the estimate for d = 4 (de Alcantara 
Bomfin et a1 1980) is not very accurate. Our purpose here is to provide this much-needed 
information. We shall use the method of large-cell Monte Carlo PSRG (position-space 
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renormalisation group), which has been demonstrated to provide reliable estimates 
for percolation exponents for d = 2 (Reynolds et al 1980) and d = 3 (Jan et al 1984). 

In this method, a fraction p of the sites on a hypercubic lattice are occupied at 
random. The lattice is partitioned into cells of edge b containing bd sites; the strategy 
is to consider a range of increasing values of b and then to extrapolate results to b = CO. 

In the original PSRG of Reynolds et al, a cell is considered to be occupied if a 
spanning cluster of neighbouring sites exists. Later, Lookman et al (1984) and Jan et 
a1 (1984) treated the cell as occupied when one passes through a maximum in the 
mean cluster size function x. Jan and Stauffer (1984) compared the relative computa- 
tional speed and found that the latter method was roughly five times faster than the 
former, if d = 2 ;  for d > 2 ,  this discrepancy is expected to further increase since the 
directions to be checked for a spanning cluster increases with d. 

In this way we construct a histogram L ( p )  giving the number of realisations that 
‘percolate’ in the interval [ p,  p + dp]. Hence the number of realisations that renormalise 
to occupied cells at concentration p is given by R (  p )  = L( p) dp. The renormalisation 
group is represented by p ’ =  R(  p ) .  The fixed points p* = R (  p ” )  include, in addition 
to the trivial values p *  = 0,1, an additional non-trivial value which is identified with 
the percolation threshold pc .  The thermal scaling power y, is obtained from the usual 
relation y,= In A/ln b, where A = dR/dpl,,,* = L( p * )  is the ‘thermal’ eigenvalue. 

Table 1 shows our calculations for a sequence of increasing cell sizes for d = 43.  
The exponent ratio y / v  is obtained from the finite-size scaling result that ,y - by’” 
(figure l),  from which yh = dr is obtained using dr = f( y /  v +  d )  (table 2). To obtain 
the exponent v = y; ’ ,  we must calculate the eigenvalue A at the fixed point p * .  We 
find that our values p* were indistinguishable from (p,,,), which is the value of p at 
which x ( p )  has a maximum. To facilitate locating (p,,,), we approximate L ( p )  by a 
Gaussian distribution 

(1) U P )  = (2rm2)-1’2 exp[ - f ( p  - ( ~ m a x > ) ~ / m ~ ] ,  

Table 1. Results of the Monte Carlo renormalisation group for four- and five-dimensional 
hypercubic lattice. The symbols are defined in the text. 

Four-dimensional random site percolation 

Cell 
size b Xmax (p , (b ) )  ( ( ~ f ) - ( p ~ ) ‘ ) ’ ’ ~  Trials V 

10 8.70 0.2007 0.010 3021 1000 0.6297 
15 22.11 0.1995 0.005 8384 1000 0.641 1 
20 42.72 0.1985 0.003 6580 1000 0.6385 
25 67.74 0.1982 0.002 5239 1000 0.6358 
30 101.90 0.1979 0.001 9107 1000 0.6368 

Five-dimensional random site percolation 

~ ~~ 

9 9.85 0.1445 0.005 8102 3000 0.5195 
1 1  15.89 0.1443 0.003 5348 1000 0.5074 
13 23.78 0.1430 0.002 6160 1000 0.5102 
14 28.11 0.1426 0.002 3385 1000 0.5135 
15 33.01 0.1425 0.001 9243 1000 0.5076 
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b 

Figure 1. Dependence on cell-size b of xmaX, the maximum value of the mean cluster size. 
By finite size scaling this slope gives y /  v. 

Table 2. Results for y /  v, y, and y, for four and five dimensions. These values are compared 
to the E-expansion results. As figure 1 shows, corrections to scaling cannot be detected 
from our data. 

Dimensionality y /  Y 

6 2 
5 2.38 f 0.02 

4 
2.07b 
2.24 f 0.02 
2.30:::;; 
2.43::::; a 

2.18b 

yh = d , = i ( y / v + d )  y;' = Y 

4 0.5 
3.69 f 0.02 
3.72 f 0.6" 
3.74 f 0.4' 
3.54b 0.56b 
3.12i0.02 0.64f 0.02 
3.21 50.07" 
3.22 f 0.3" 
3 . 0 9 b  0.62b 

0.51 * 0.05 

a Stanley (1977). 
E-expansion. 

where u2 = ( p L a x )  - ( P , , , ~ ~ ) ~ .  This function was found to faithfully represent L( p )  in 
the large b limit for d = 43 just as for d = 2 (Reynolds er a1 1980, Stanley et al 1982). 

Table 2 shows our final results for y /  U, yh = df and v = l /y,  for d = 6,5 and 4. 
Figure 2 displays the variation of y /  v and df with dimensionality and enables a visual 
comparison of our results with those of the E expansion. We note that our data for 
df and v are consistent with the E expansion (Priest and Lubensky 1976, Amit 1976), 
but our values of y /  v differ considerably. However the trend is the same since y /  v 
increases as d decreases just below 6. 
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Figure 2. Dependence on d of d, and y/ Y comparing our results with results of expansion 
in the parameter E = 6 - d. 

We conclude by noting that our estimates of yh and yT are sufficient to obtain 
expressions for the other static critical exponents. For example p =  ( d  - Yh )/yT = 0.67 
(d=.5)  and 0.56 ( d = 4 ) .  Similarly y=(2yh-d)/yT=1.21 ( d = 5 )  and 1.43 ( d = 4 ) ,  
values which are consistent with the recent series estimates (Adler et all984) of y = 1.20 
( d  = 5)  and 1.44 ( d  = 4). Extrapolation of the data p,( b )  to the b + limit leads to 
p,=0.141*0.001 ( d  = 5 )  and 0.197*0.001 ( d  =4) .  These results are consistent with 
values reported by Schulte and Sprenger (1985) and have also been independently 
confirmed by Grassberger (1985). 

Finally, to the extent that dynamic exponents in percolation are possibly related 
to static exponents, we may estimate dynamic exponents as well. For example, the 
Alexander-Orbach (AO) conjecture (Alexander and Orbach 1983) d ,  = idf permits us 
to obtain the conductivity exponent t /  Y = 51 Y + ( d  - 2) where l/ U = d,  - df = idf and 
d ,  is the fractal dimension of a diffusing particle on the percolating cluster. Thus we 
estimate t /  Y = 4.85 ( d  = 5)  and 3.56 ( d  = 4). Our numerical values are fully consistent 
with AO and are also in good agreement with the recent results reported by Adler 
(1985) for f l u :  4.77 ( d  = 5 )  and 3.52 ( d  =4) .  An alternative conjecture, d,= l + d f  
(Alexander 1983, Aharony and Stauffer 1984), is designed only for df<2, fits badly 
for df = 4 (the Cayley tree) and seems also to fail for d = 2 (Havlin 1984, Stanley et al 
1984). The conjecture of Sahimi (1984) t /  Y = Y-' + 2(d - df) leads to 4.58 ( d  = 5) and 
3.32 ( d  = 4). The AO predictions are in best agreement with the series results; however, 
there is recent evidence that the AO conjecture fails by about 3% for d = 2 (Zabolitzky 
1984, Herrmann et al 1984, Hong et al 1984, Lobb and Frank 1984), but may be 
accurate in d > 2.  

In conclusion, we have calculated the critical exponents and fractal dimensionality 
of random site percolation in four- and five-dimensional hypercubic lattices. We find 
agreement with some of the predictions of the E expansion and good agreement with 
the recent results from the series expansion. 
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