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Abstract
Complex systems are composed of mutually interacting components and the output values
of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we
propose a method of characterizing the joint multifractal nature of these long-range cross cor-
relations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the per-
formance of the MFXWT method by performing extensive numerical experiments on the dual
binomial measures with multifractal cross correlations and the bivariate fractional Brownian
motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we
find the empirical joint multifractality of MFXWT to be in approximate agreement with the
theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the
wide spanning range of the multifractal spectrum. We also apply the MFXWT method to
stock market indices, and in pairs of index returns and volatilities we find an intriguing joint
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multifractal behavior. The tests on surrogate series also reveal that the cross correlation behav-
ior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.

Keywords : Joint Multifractal Analysis; Wavelet Analysis; Binomial Measure; Bivariate Frac-
tional Brownian Motion; Bootstrap.

1. INTRODUCTION

In recent years a series of multifractal cross-
correlation analysis methods have been developed
and applied to a number of different fields. The goal
has been to unveil possible multifractal long-range
cross correlations between two time series. Such
long-range cross correlations in pairs of series have
widely applied in financial markets, ranging from
uncovering the facts of cross multifractal nature1–3

in different markets to building trading strategies
to get excess returns,4 from improving the estima-
tion of hedge ratio5 to incorporating the copula-
multifractality into the calculation of volatilities.6
An early method, joint multifractal analysis, was
invented in 1990 to study the relationship between
the dissipation rates of kinetic energy and passive
scalar fluctuations in fully developed turbulence and
to handle the joint partition function of two multi-
fractal measures.7 This method is also referred to as
the multifractal cross-correlation analysis based on
the partition function approach (MFXPF).8 A spe-
cial case of MFXPF, multifractal statistical moment
cross-correlation analysis (MFSMXA), was inde-
pendently invented in 2012 to study volatility time
series in finance.9 In 2015, the main properties of
the joint multifractal nature of binomial measures
were derived and numerically validated.8

Another multifractal cross-correlation analysis
method is multifractal height cross-correlation anal-
ysis (MF-HXA),10 which is a bivariate generaliza-
tion of height–height correlation analysis.11 The
MF-HXA method also has its origin in turbulence
and is an extension of the cross-correlation analysis
of the structure functions of temperature and veloc-
ity dissipation fields in a heated turbulent jet.12
Hence it is also a multifractal cross-correlation anal-
ysis based on structure function (MFXSF).

Other multifractal cross-correlation analysis
methods include multifractal detrended cross-
correlation analysis based on detrended fluc-
tuation analysis (MFXDFA),13 which is a
multifractal version of detrended cross-correlation
analysis (DCCA),14 multifractal detrended

cross-correlation analysis based on detrending
moving-average analysis (MFXDMA)15 based on
multifractal detrending moving-average analysis
(MF-DMA)16 and detrending moving-average anal-
ysis (DMA),17–24 multifractal cross-correlation
analysis (MFCCA),25,26 and multifractal detrended
partial correlation analysis (MFDPXA).27

Wavelet transform has long been applied to the
study of fractals and multifractals28,29 and a parti-
tion function approach based on wavelet transform
has been proposed.30 Here we generalize multifrac-
tal wavelet analysis to the bivariate case and pro-
pose a new joint multifractal analysis based on the
wavelet transform of two time series, which is a mul-
tifractal generalization of the cross wavelet trans-
form.31–33 We thus can also call it multifractal cross
wavelet analysis (MFXWT). Similar to when we use
the MFXPF method, we introduce two orders in
MFXWT. We test the validity of the method by
conducting numerical experiments with two mathe-
matical models and gain explicit analytical results.
Finally we apply the method to an empirical time
series.

The rest of paper is organized as follows. In
Sec. 2, we present a framework of the MFXWT
approach. Extensive numerical experiments using
binomial measures and bivariate fractional Brow-
nian motions (bFBMs) with known analytical mul-
tifracal expressions are conducted in Sec. 3 to check
the validity of MFXWT approach. In Sec. 4, we
apply the MFXWT algorithms to the pair of daily
returns, as well as the pair of daily volatilities. Sta-
tistical tests indicate that the MFXWT method has
the ability to detect the cross multifractality in pairs
of financial series. Section 5 concludes.

2. METHODS

Following Refs. 34 and 35, we define the wavelet
transform of a given time series x(t) as

w(s, i) =
1
s

n∑

t=1

x(t)ψ[(t − i)/s], i = 1, . . . , n,

(1)
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where ψ(x) is the wavelet kernel shifted by i, s is the
scale, and n is the length of x(t). We use the wavelet
transform to decompose the signals in the time-scale
plane. The resulting wavelet coefficients are an indi-
cator of the singular behavior of signals when the
wavelet kernel is

∫
xm+1ψ(s)dx = 0,36 and from this

we approximate the signal trends by polynomials up
to order m. A good choice of ψ(x) is derivative m

of a Gaussian, ψm(x) = dm(e−x2/2)/dxm. Here we
use the “Mexican hat” m = 2.

Using the wavelet-based scaling (or multiscaling)
estimator37,38 and cross correlation (or multifrac-
tal) analysis,8–10,13–15 we propose a new method
for detecting the multifractal cross correlations in
a pair of series x(t) and y(t) based on wavelet anal-
ysis, i.e. a multifractal cross wavelet analysis with
two moment orders (MFXWT (p, q)).

We first perform a wavelet transform of the
two time series and obtain the wavelet coefficients
wx(s, i) and wy(s, i). We then define the joint par-
tition function with moments p and q based on the
obtained wavelet coefficients,

χxy(p, q, s) =
n∑

i=1

|wx(s, i)|p/2|wy(s, i)|q/2. (2)

Because some wavelet coefficients approach 0, the
partition function diverges for p < 0 or q < 0.
When wx = wy and p = q, we use wavelet analysis
to recover the traditional partition function. The
part |wx(s, i)|p/2|wy(s, i)|q/2 is a generalized cross
wavelet spectrum and it recovers the traditional
cross wavelet spectrum when p = 4 and q = 4,39
as the wavelet coefficients are real number. The
cross wavelet spectrum can be used to calculate the
wavelet coherency, which is able to uncover the co-
movement between two series in the time-frequency
domain.40,41 The definition of the partition function
allows us to uncover the more intricate relationship
between the coherency and the scale under different
scopes, which corresponds to the cross multifrac-
tal behaviors. If the underlying processes are jointly
multifractal, the result is a scaling behavior,

χxy(p, q, s) ∼ sTxy(p,q), (3)

where Txy(p, q) is the joint mass exponent function.
Note that we can estimate Txy(p, q) by regressing
lnχxy(p, q, s) against ln s in the scaling range for a
given pair (p, q).

Analogous to the double Legendre transforms in
the joint multifractal analysis based on the parti-
tion function approach MFXPF(p, q),8 we define the

joint singularity strength functions hx and hy

hx(p, q) = 2∂Txy(p, q)/∂p, (4)

hy(p, q) = 2∂Txy(p, q)/∂q, (5)

and the multifractal spectrum Dxy(hx, hy)

Dxy(hx, hy) = phx/2 + qhy/2 − Txy. (6)

The values hx(p, q), hy(p, q), and Dxy(hx, hy)
from the MFXWT(p, q) method differ from the
joint singularity strengths αx(p, q), αy(p, q) and
the joint multifractal spectrum fxy(αx,αy) obtained
from the MFXPF(p, q) method. For example, when
p = 0 and q = 0 the joint partition function in
Eq. (2) is equal to the number of wavelet coef-
ficients and corresponds to the total number of
data points in the original series, which means that
Txy(0, 0) = 0 and that in the MFXPF(p, q) method
τxy(0, 0) = −1. We also find that all the estimated
hx and hy are less than 0. Although this violates
our intuition that the singularity strength should
be positive, these differences in value do not mean
that our method is useless because the joint multi-
fractal quantities obtained from both methods still
share the same physical meanings and geometric
features, which allows us to determine the cross
correlations in the time series pairs. Following the
usual numerical experiments and empirical analy-
sis in which the multifractal analysis based wavelet
estimators are performed on integral series, we also
test our MFXWT(p, q) method on integral series.
The obtained results are not easy to explain, how-
ever, and it is very difficult to link to the theoretical
values in the p-model.42 Thus we focus our investi-
gations on non-cumulative series, e.g. stock returns
rather than stock prices.

Reference 30 found errors in the estimation of
joint singularity strength and joint multifractal
spectrum based on the Legendre transform. They
proposed an alternative method of computing h and
D(h) using the direct estimation canonical method.
Similarly we directly estimate the joint singularity
strength hx and hy and the joint multifractal spec-
trum Dxy(p, q) using

hx(p, q) = lim
s→0

1
ln s

∑

i

µxy(p, q, s, i)ln|wx(s, i)|,

(7)

hy(p, q) = lim
s→0

1
ln s

∑

i

µxy(p, q, s, i)ln|wy(s, i)|,

(8)
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Dxy(p, q) = lim
s→0

1
ln s

∑

i

µxy(p, q, s, i)

× ln µxy(p, q, s, i), (9)

where

µxy(p, q, s, i) = |wx(s, t)|p/2|wy(s, i)|q/2/χxy(p, q, s).

Thus we can directly determine the joint sin-
gularity strength functions hx(p, q) and hy(p, q)
and the joint multifractal function Dxy(p, q) from
Eqs. (7)–(9).

3. NUMERICAL EXPERIMENTS

To test the validity and performance of the pro-
posed MFXWT (p, q) method we conduct two bino-
mial measures generated from (i) the multiplicative
p-model42 and (ii) bFBMs.43–45

3.1. Binomial Measures

We first numerically test the validity of the
MFXWT(p, q) method using two binomial measures
from the p-model with known analytic multifrac-
tal properties: (i) {x(i) : i = 1, 2, . . . , 2k} and (ii)
{y(i) : i = 1, 2, . . . , 2k}.42 Each binomial measure
is generated iteratively. We start with the zeroth
iteration k = 0, where the data set z(i) consists of
one value, z(0)(1) = 1. In iteration k, the data set
{z(k)(i) : i = 1, 2, . . . , 2k} is obtained from

z(k)(2i − 1) = pzz
(k−1)(i),

z(k)(2i) = (1 − pz)z(k−1)(i)
(10)

for i= 1, 2, . . . , 2k−1. When k→∞, z(k)(i) appro-
aches a binomial measure with a scaling expo-
nent function Hzz(q) and a mass exponent function
τzz(q) that have an analytic form42,46

Hzz(q) = 1/q − log2[p
q
z + (1 − pz)q]/q, (11)

τzz(q) = −log2[p
q
z + (1 − pz)q]. (12)

In our numerical experiment, the parameters of
the two binomial measures from the p-model are set
at px = 0.3 for x(i) and py = 0.4 for y(i) with an
iterative step k = 16. The analytic scaling exponent
functions Hxx(q) and Hyy(q) of x and y are shown
in Eq. (11). Because the two series are generated
using the same rule, the two series x and y exhibit
a strong correlation with a coefficient of 0.82.

Xie et al. analytically derived the joint mul-
tifractal properties for two binomial measures
constructed from the p-model.8 The joint mass
exponent function τxy(p, q),

τxy(p, q) =
pγ

2 ln 2
− ln[pQ

y + (1 − py)Q]
ln 2

, (13)

the two joint singularity strength functions αx(p, q)
and αy(p, q),

αx(p, q) =
γ

ln 2
− β

ln 2

× pQ
y ln py + (1 − py)Q ln(1 − py)

pQ
y + (1 − py)Q

,

(14)

αy(p, q) = − 1
ln 2

pQ
y ln py + (1 − py)Q ln(1 − py)

pQ
y + (1 − py)Q

,

(15)

and the joint multifractal spectrum fxy(p, q) is
expressed as

fxy(αx,αy) =
QZQ ln Z + (1 + ZQ) ln(1 + ZQ)

ln 2(1 + ZQ)
,

(16)

where β = ln px−ln(1−px)
ln py−ln(1−py) , γ = β ln(1−py)−ln(1−px),

Q = βp/2 + q/2, and Z = 1−py

py
. These theoreti-

cal formulas have been found to numerically agree
with the empirical results from the MFXPF(p, q)
method,8 and this allows us to check whether these
theoretical formulas can be employed as a bench-
mark test of the performance of the MFXWT(p, q)
algorithm when it is applied to binomial measures.
By comparing the scaling behaviors of the joint
partition functions from both methods, we find
the theoretical formulas of the joint mass exponent
function Txy(p, q), the joint singularity strength
functions hx(p, q) and hy(p, q), and the joint mul-
tifractal spectrum Dxy(hx, hy) for MFXWT(p, q).

Figure 1 shows the scaling behavior of the joint
partition functions obtained from the MFXPF(p, q)
and MFXWT(p, q) methods with different val-
ues of p and q. The joint partition functions of
MFXWT(p, q) are scaled by a factor of sp/2+q/2−1.
We find that there is a slight difference between
the markers of both methods in panel (a) and
such differences disappeared in panels (b) and (c).
This indicates almost the same scaling behavior
between the scaled joint partition functions of
MFXWT(p, q) and the joint partition functions of
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Fig. 1 Comparison of the scaling behaviors of two bino-
mial measures for the joint partition functions obtained from
MFXPF(p, q) and MFXWT(p, q) with different values of p
and q. In the plots, q varies from 0 to 10 with a step of 2.
The joint partition functions of MFXWT(p, q) are scaled by a

factor of sp/2+q/2−1, which results in the almost same scaling
pattern as the joint partition functions of MFXPF(p, q).

MFXPF(p, q), which allow us to connect the theo-
retical joint multifractal formulas of binomial mea-
sures to the empirical joint multifractal features of
MFXWT(p, q) by using

Txy(p, q) + p/2 + q/2 − 1 = τxy(p, q), (17)

hx(p, q) + 1 = αx(p, q), (18)

hy(p, q) + 1 = αy(p, q), (19)

Dxy(hx, hy) + 1 = fxy(αx,αy), (20)

where τxy(p, q), αx(p, q), αy(p, q), and fxy(αx,αy)
are given by Eqs. (13)–(16).

These formulas are an efficient test of the esti-
mation accuracy of the MFXWT(p, q) method in
the joint multifractal analysis of two binomial mea-
sures. Using the partition function approach and
wavelet analysis to detect the multifractal nature
of a single time series, τxx(q) = Txx(q) + q and
αx(q) = hx(q) + 1.47–49

We first examine the case of p = q. Figure 2a
shows the scaling behavior between the joint parti-
tion functions χxy(q, s) and the scale s. Note that
there is a significant power-law dependence over
more than three orders of magnitude. By estimating
the power-law exponents between χxy(q, s) and s for
different q, we find the joint mass exponent func-
tion T (q) (see the plot in Fig. 2d). Figure 2d also
shows the theoretical values of T (q) obtained from
Eq. (17). The two curves closely match, suggesting
that our MFXWT(p, q) algorithm accurately ana-
lyzes the joint multifractal nature in two binomial
measures. As expected, the nonlinear behavior of
T (q) against q also demonstrates the joint multi-
fractality in binomial measures.

Figures 2b and 2c show the power-law scaling
behaviors of two quantities (

∑
µxy ln|wxwy|1/2 and∑

µxy ln µxy) against the scale s, whose power-
law exponents are estimates of the joint singular-
ity strength hxy and the joint multifractal function
D(hxy).

Figure 2e compares the joint singularity strength
hxy(q) obtained using different methods. The solid
line corresponds to theoretical values. The squares
and circles are obtained from the first derivation of
the joint mass exponent Txy(q) and the direct esti-
mating method, respectively. Note that although
the empirical hxy(q) of both methods coincide, both
empirical curves agree with the theoretical values
only when q ≥ 1. We see deviations when q < 1,
and the reason for this is not clear.

Figure 2f shows the corresponding joint multi-
fractal spectra of binomial measures in both theo-
retical values and estimated values. The Dxy(hxy)
values obtained from Eqs. (6) and (9) agree and col-
lapse on the theoretical curves. Our results suggest
that the accuracy of the MFXWT(p, q) is accept-
able for analyzing the joint multifractality in bino-
mial measures.

Releasing the p = q restriction in Fig. 2, Fig. 3a
shows how the joint partition function χxy(2, q, s)
depends on the scale s for different q with fixed
p = 2. We see power-law behaviors. For each pair
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(a) (b) (c)

(d) (e) (f)

Fig. 2 MFXWT of two binomial measures with px = 0.3 and py = 0.4 based on the MFXWT(q) method. (a) Power-law

behaviors between χxy(q, s) and the scale s for different q. (b) Linear relationship of
P

t µxy(q, s, t) ln|wx(s, t)wy(s, t)|1/2

against ln s. (c) Linear relationship of
P

t µxy(q, s, t) ln µxy(q, s, t) with respect to ln s. (d) Joint mass exponent function
Txy(q). (e) Joint singularity strength function hxy(q). (f) Joint multifractal singularity spectrum Dxy(hxy).

of (p, q), the slope of the straight line is an estimate
of the corresponding joint mass exponent Txy(p, q).
Figure 3e shows a plot of the joint mass exponent
function Txy(p, q) with respect to p and q. Note
that again there are nonlinear features between
Txy(p, q) and (p, q), and this verifies joint multi-
fractality in the two binomial measures. Following
Eqs. (4)–(6), if we have the mass exponent Txy(p, q)
we can numerically compute the joint singularity
strength functions hx(p, q) and hy(p, q) and the joint
multifractal function Dxy(p, q). Figures 3f–3h show
the corresponding hx(p, q), hy(p, q), and Dxy(p, q),
respectively. The wide spanning range of hx, hy, and
Dxy further corroborates the joint multifractality in
binomial measures.

The direct estimation method presented in
Eqs. (7)–(9) is an alternative way to estimate the
joint singularity strength hx(p, q) and hy(p, q) and
the joint multifractal function Dxy(p, q). By esti-
mating the three quantities

∑
µxy ln|wx|,

∑
µxy

ln|wy|, and
∑

µxy lnµxy we find power-law scaling
behaviors between these quantities and the scale s,
as shown in Figs. 3b–3d. Their power-law exponents
correspond to the joint singularity strength function

hx(p, q) in Fig. 3i and hy(p, q) in Fig. 3j and the joint
multifractal function Dxy(p, q) in Fig. 3k. Note that
hx(p, q) in Figs. 3f and 3i, hy(p, q) in Figs. 3g and 3j,
and Dxy(p, q) in Figs. 3h and 3k obtained using both
methods agree.

Figure 3l shows that both methods agree,
and this illustrates the joint multifractal spectra
Dxy(hx, hy) of both methods, as well as the theoret-
ical values (magenta curve) expressed in Eq. (16).
Xie et al.8 showed that the joint multifractal spec-
trum fxy(αx,αy) of binomial measures is a univari-
ate function of Q, and thus also of αx or of αy due
to Eqs. (14) and (15), and this means that the joint
multifractal spectrum of MFXWT is also a univari-
ate function of hx or of hy due to Eqs. (18) and (19).
Figure 3l shows that the estimated joint multifrac-
tal spectra from both methods are a curve, not a
surface, verifying the univariate function relation-
ship between Dxy and hx or hy. Both estimated
joint multifractal spectra approximately overlap
with the theoretical multifractal spectrum, sug-
gesting that the MFXWT(p, q) method provides
an accurate joint multifractal analysis of binomial
measures.
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Fig. 4 MFXWT of bFBM with Hxx = 0.1, Hyy = 0.5, and ρ = 0.5. (a) Power-law relationship between χxy(p, q, s) and
scale s for fixed p = 2 and different q. (b) Joint mass exponent function Txy(p, q) obtained from Eq. (3). Using the least
square method, we have Txy = −0.485p− 0.268q +0.135. (c) Joint singularity function hx(p, q). (d) Joint singularity function
hy(p, q). (e) Joint multifractal spectrum Dxy(p, q). (f) Contour plots of joint multifractal spectrum Dxy(hx, hy).

3.2. Bivariate Fractional Brownian
Motions

A bFBM [x(t), y(t)] with parameters {Hxx,Hyy} ∈
(0, 1)2 is a self-similar Gaussian process with sta-
tionary increments, where x(t) and y(t) are two
univariate fractional Brownian motions with Hurst
indices Hxx and Hyy and also are the two com-
ponents of the bFBM.43–45 The basic properties
of multivariate fractional Brownian motions have
been extensively studied.43–45 Extensive numer-
ical experiments of multifractal cross-correlation
analysis algorithms have been performed on
bFBMs.8,15,27 The two Hurst indices Hxx and Hyy of
the two univariate FBMs and their cross-correlation
coefficient ρ are input arguments in the simula-
tion algorithm. By using the simulation procedure
described in Refs. 44 and 45, we generate a realiza-
tion of bFBM in which Hxx = 0.1, Hyy = 0.5, and
ρ = 0.5. The length of the bFBM is 216.

As described in Ref. 8, if the two time series are
monofractal, the joint singularity strengths hx(p, q)
and hy(p, q) are constants, and their joint multi-
fractal spectrum is Dxy(hx, hy) = 0. Note that
Eqs. (17)–(20) obtained from the p-model are no
longer valid because they are derived using conser-
vative measures, and the increments of both compo-
nents x(t) and y(t) in bFBM are not conservative.

Figure 4 shows the results of the joint multi-
fractal analysis of the bFBM using the MFXWT
algorithm. Figure 4a shows how the joint partition
functions χxy(2, q, s) of the wavelet coefficients are
plotted with respect to the scale s for fixed p = 2
and different q. Again we see strong power-law scal-
ing behaviors that allow us to estimate the joint
mass exponents Txy using the least square estima-
tion method. Figure 4b shows the joint mass expo-
nent function against different p and q. Because of
the monofractality of the bFBMs, we see a plane for
T (p, q). The bivariate regression yields

Txy(p, q) = −0.485p − 0.268q + 0.135. (21)
Using Eq. (6), we infer that hx = −0.970, hy =

−0.536, and Dxy = −0.135 deviate from the the-
oretical value Dxy(0, 0) = 0. When p = q = 0,
Eq. (21) gives Txy(0, 0) = 0.135, which also devi-
ates from the theoretical value Txy(0, 0) = 0.

Alternatively, using Eqs. (4) and (5) and a
numerical differentiation of Txy, we can estimate
hx(p, q) and hy(p, q). Figures 4c and 4d plot the esti-
mated joint singularity strength functions hx(p, q)
and hy(p, q) obtained from taking the forward
difference of Txy(p, q). Note that the singularity
strength functions hx(p, q) and hy(p, q) obtained
from the numerical methods vary across a small
range. The corresponding average value is −0.968
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for hx and −0.534 for hy, which agrees with hx and
hy obtained from the plane equation of Txy(p, q)
in Eq. (21). Using the double Legendre transform
in Eq. (6), we further obtain the joint multifrac-
tal function Dxy, which is plotted with respect to p
and q in Fig. 4e and with respect to hx and hy in
Fig. 4f. The average value of Dxy is −0.178, also
close to Dxy = −0.135. However unlike hx and
hy, which span a narrow range, Dxy spans a rel-
atively wide range from 0 to 0.5. This indicates
that the MFXWT method may indicate a spuri-
ous multifractality for bFBM if we determine the
joint multifractality only within the spanning range
of Dxy. This spurious multifractality often occurs
when using the partition function approach and is
usually caused by the finite size effect.50 It suggests
that we need to use bootstrapping to statistically
test for the presence of multifractality.51,52

4. APPLICATION TO STOCK
MARKET INDICES

We now apply the MFXPF(p, q) method to detect
joint multifractality in the daily returns of the Dow
Jones industrial average (DJIA) and the National
Association of Securities Dealers Automated Quo-
tations (NASDAQ) index. To compare our results

with those in Ref. 8, we also conduct a similar anal-
ysis on the volatility time series of the two indices.
The daily return is defined as the logarithmic dif-
ference of daily closing price,

R(t) = ln I(t) − ln I(t − 1), (22)

where I(t) is the closing price of the DJIA index
or the NASDAQ index on day t. Both indices are
retrieved from “Yahoo! Finance”. The spanning
period of both indices is from 5 February 1971 to
17 June 2016 and contains a total of 11,430 data
points. The volatilities are determined by the abso-
lute values of the daily returns.

4.1. Daily Return Time Series

We first analyze the joint multifractality of the daily
returns of both indices using the MFXWT(p, q)
method. Figure 5 shows the results.

Figure 5a plots the joint partition function
χxy(2, q, s) as a function of the scale s for fixed p = 2
and varying q. We see strong power-law behavior in
a scaling range larger than three orders of magni-
tude. The results for other (p, q) pairs are similar.
By regressing lnχxy(p, q, s) with respect to ln s for
a given pair of (p, q), we obtain the joint mass expo-
nents Txy(p, q), which are plotted in Fig. 5b. Note

Fig. 5 MFXWT of the joint multifractality between the daily return series of DJIA index and NASDAQ index using the
MFXWT(p, q) method. (a) Power-law dependence of χxy(p, q, s) on scale s for fixed p = 2 and different q. (b) Joint mass
exponent function T (p, q). (c) Joint singularity strength function hx(p, q). (d) Joint singularity strength function hy(p, q).
(e) Joint multifractal function Dxy(p, q). (f) Joint multifractal singularity spectrum Dxy(hx, hy).
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that the joint mass exponents are a nonlinear func-
tion of p and q, indicating the presence of joint mul-
tifractality in the daily returns of the two indices.

Figures 5c and 5d show the joint singularity
strength functions hx(p, q) and hy(p, q), which are
numerically estimated from T (p, q). We find that
both singularity strength functions are widely dis-
persed with spanning ranges greater than 0.3. In
addition, the joint singularity strength functions are
monotonic with respect to p and q. Figure 5e plots
the joint multifractal function Dxy(p, q) obtained
from the double Legendre transform. Note that
the joint multifractal function is located in the
range of (−1, 0). The maximum point of Dxy(p, q)
is reached at (p, q) = (0, 0). Figure 5f shows the
joint multifractal spectrum Dxy(hx, hy), which does
not collapse into the neighbor of a fixed point. Our
empirical findings indicate that there is joint multi-
fractality in the daily returns of the DJIA and the
NASDAQ.

4.2. Daily Volatility Time Series

We next use the MFXWT(p, q) method to per-
form a MFXWT of the daily volatilities of the two
indices. The results are shown in Fig. 6.

Figure 6a shows a log–log plot of the joint parti-
tion function χxy(2, q, s) with respect to the scale
s for fixed p = 2 and varying q. We see strong
power-law behaviors over two orders of magnitude.

Figure 6b shows the resulting joint mass exponents
Txy(p, q), which are monotonically and nonlinearly
increasing, implying that the cross correlations
between the two index volatilities exhibit joint
multifractality.

Figures 6c and 6d show the numerical cal-
culations of the joint singularity strength func-
tions hx(p, q) and hy(p, q), respectively. Note that
the widths of both singularity strength functions
are significantly larger than 0, further confirming
the existence of joint multifractality in the cross
correlations of the two volatility time series. Fig-
ures 6e and 6f show the joint multifractal func-
tion Dxy(p, q) and the joint multifractal spectrum
Dxy(hx, hy), respectively, which again affirms the
joint multifractal characteristics in the cross cor-
relations between the two index volatilities. Our
results also show that the joint multifractal features
in volatilities are stronger than those in the returns,
because their widths of joint singularity strength
functions and joint multifractal functions are larger.
Our results are in accordance with the results of
the cross multifractal analysis presented in Ref. 53,
because the signs of returns will bring uncorrelated
noise in comparison of pure volatilities.

4.3. Origins of Cross Multifractality

The fat-tailed distribution and linear and non-
linear long memory behaviors in financial series

Fig. 6 MFXWT of the joint multifractality between the daily volatility series of DJIA index and NASDAQ index using the
MFXWT(p, q) method. (a) Power-law dependence of χxy(p, q, s) on scale s for fixed p = 2 and different q. (b) Joint mass
exponent function T (p, q). (c) Joint singularity strength function hx(p, q). (d) Joint singularity strength function hy(p, q).
(e) Joint multifractal function Dxy(p, q). (f) Joint multifractal singularity spectrum Dxy(hx, hy).
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are considered as origins of multifractality.50,54 For
cross multifractality, the memory behaviors may
contain the following two constituents, the auto-
correlation within each series and the cross correla-
tion between series. Thus, it is interesting to inves-
tigate how these two types of correlation behaviors
affect the cross multifractal nature. To implement
the tests, we simply employ the width of multifrac-
tal spectrum for p = q to quantitatively measure the
degree of cross multifractality, which is defined by

∆hxy = max[hxy(p)] − min[hxy(p)]. (23)

Such simplification is reasonable, as the spanning
range of the diagonal line with p = q of the Txy sur-
face approximately equal to the spanning range of
the whole surface, evidenced by the surface plots of
Txy in Figs. 3–6. We first test the effect of cross cor-
relation behavior on the cross multifractality. Fol-
lowing Ref. 25, we shift two series from 1 day to 100
days relative to each other to gradually weaken the
cross correlation between them without changing
the auto-correlation in each series. Such a strategy
also allows us to detect the possible time lags or
asymmetry effects in cross multifractality.

For the DJIA–NASDAQ returns and volatilities,
we estimate the multifractal spectra for three cases
of positioning the time series relative to each other.
The first case corresponds to no shifts between the
two series. The second case is that DJIA is shifted
relative to NASDAQ by nshift days in advance. The
third case is that NASDAQ leads DJIA by nshift

days. By setting nshift = 1, 10, and 80, we plot the
obtained multifractal spectra in Figs. 7a and 7c for
returns and volatilities, respectively. We find that
the pair of returns in which DJIA leads one day
ahead of NASDAQ exhibits the strongest cross mul-
tifractality, as well as the pair of volatilities with
DJIA leading one day ahead.

We further vary nshift from 1 to 100 and estimate
the spectral width ∆hxy. The corresponding results
of returns and volatilities are illustrated in Figs. 7b
and 7d, in which ∆hxy is plotted with respect to
nshift. We find that ∆hxy decreases quickly with
the increasing of nshift, indicating the deteriora-
tion of the cross multifractality. This is due to that
the cross correlation between two series becomes
weaker when their lag increases, supporting that
the cross correlation can be regarded as the origin of
cross multifractality. In panels (b) and (d), another

(a) (b)

(c) (d)

Fig. 7 Results of cross multifractality obtained by gradually decreasing the strength of cross correlations, which is achieved
by shifting two series relative to each other. (a) Cross multifractal spectra of the DJIA–NASDAQ returns with the original
position, with the leading positions (1 day, 20 days and 80 days) for DJIA, and with the leading positions (1 day, 20 days,
and 80 days) for NASDAQ. (b) Plots of the spectral width as a function of the number of shifted positions for returns. The
spectral width of original returns is illustrated as the horizontal line. (c) The same as (a), but for volatilities. (d) The same
as (b), but for volatilities.
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intriguing phenomenon is that for nshift ≤ 30 the
multifractality of DJIA leading case is stronger than
that of NASDAQ leading case, presenting that the
influence of DJIA on NASDAQ in next few days is
stronger than the influence of NASDAQ on DJIA.
Such results also reveal that there is an asymmetry
effect in cross correlation between DJIA and NAS-
DAQ returns. We also find that ∆hxy of volatili-
ties is larger than that of returns, implying that
the cross multifractality of volatilities is stronger
than that of returns. As mentioned above, the sign
of returns will introduce noise that can deteriorate
the cross correlations comparing with volatilities.53

We have shown that destroying the cross corre-
lation between two series can strongly weaken the
cross multifractality, which motivates us to further
test how the auto-correlation in each series affects
the cross multifractality. To conduct the tests, we
generate four pairs of surrogate series, including
(1) the shuffled DJIA and the original NASDAQ,
(2) the original DJIA and the shuffled NASDAQ,
(3) the co-shuffled DJIA and NASDAQ in which
the data points of the two indexes on the same
day are bounded as one single entity in the shuf-
fling procedure, and (4) the shuffled DJIA and
the shuffled NASDAQ in which the data points
of each index are shuffled independently. The first
surrogate pairs (termed as “Srg 1”) only preserve
the auto-correlation in NASDAQ and destroy the
auto-correlation in DJIA and the cross correlation
between DJIA and NASDAQ. The second surrogate
pairs (termed as “Srg 2”) only preserve the auto-
correlation in DJIA and remove the auto-correlation
in NASDAQ and the cross correlation between
DJIA and NASDAQ. The third surrogate pairs
(termed as “Srg 3”) remove the auto-correlation
and cross correlation with nonzero lags, but keep
the cross correlation with zero lag unchanged. In
the fourth surrogate pairs (termed as “Srg 4”), all
the possible correlations are removed. We generate
1000 synthetic pairs for each surrogate case, and
perform the same wavelet cross multifractal anal-
ysis on each synthetic pair to estimate its multi-
fractal spectrum width ∆hxy. We also employ two
shifted pairs for comparison, one corresponding to
DJIA leading NASDAQ (termed as “Lead 1”) and
the other corresponding to NASDAQ leading DJIA
(termed as “Lead 2”). As shown in Figs. 7b and 7d,
the width of multifractal spectrum is almost stable
when the shifted position is greater than 80, indicat-
ing that the cross correlation is completely removed
when nshift ≥ 80. Thus, we set nshift varying from

101 to 1100 to generate 1000 pairs of synthetic data
for each shifted pair. The shifted pairs here repre-
sent the surrogate data in which the cross corre-
lation is removed and the auto-correlation remains
unchanged.

Figures 8a and 8b illustrate the distributions of
∆hxy obtained from four surrogate pairs and two
shifted pairs for the DJIA–NASDAQ returns and
volatilities. The vertical black line in both panels
represents the spectral width of original data. Their
average multifractal spectrum widths are reported
in Table 1. For DJIA–NASDAQ returns, we have
the following inequality,

⟨∆hxy⟩Srg 4

< ⟨∆hxy⟩Srg 1 ≈ ⟨∆hxy⟩Srg 2 ≈ ⟨∆hxy⟩Lead 1

≈ ⟨∆hxy⟩Lead 2 < ⟨∆hxy⟩Srg 3 < ⟨∆hxy⟩Original.

(24)

We can observe that the cross multifractal nature is
the weakest if we remove both auto-correlations and
cross correlations (Srg 4), indicating that both auto-
correlation and cross correlation have influences

(a)

(b)

Fig. 8 Distribution of the multifractal spectrum width for
four surrogate pairs (labeled as Srgs 1–4) and two shifted
pairs (labeled as Leads 1 and 2). The spectral width of origi-
nal pairs is shown in vertical black line. (a) DJIA–NASDAQ
returns. (b) DJIA–NASDAQ volatilities.
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Table 1 The Average Multifractal Spectrum Width of Original Pairs, Four Surrogate Pairs, and
Two Shifted Pairs for DJIA–NASDAQ Returns and Volatilities.

DJIA–NASDAQ Original Srg 1 Srg 2 Srg 3 Srg 4 Lead 1 Lead 2

Returns: ⟨∆hxy⟩ 0.31 0.17 ± 0.04 0.17 ± 0.03 0.25 ± 0.03 0.14 ± 0.04 0.17 ± 0.03 0.17 ± 0.03
Volatilities: ⟨∆hxy⟩ 0.48 0.20 ± 0.11 0.26 ± 0.14 0.47 ± 0.12 0.17 ± 0.10 0.22 ± 0.05 0.20 ± 0.04

on the cross multifractality. However, the auto-
correlation has a very small influence, as the widths
of the surrogate pairs, in which one series has
the same auto-correlation as the original series
(Srgs 1 and 2) and both series have the same auto-
correlation as the original series (Leads 1 and 2),
are only slightly larger than the width of Srg 4.
The distribution curves of ∆hxy for Srg 1, Srg 2,
Lead 1, and Lead 2 almost overlap with each other
and their average values are all equal to 0.17, far
from the width of the original returns 0.31, implying
that the cross correlation plays a crucial role in the
origin of cross multifractality. The cross correlation
can be further decomposed into cross correlation
with zero lag and with nonzero lag. By keeping the
zero lag cross correlation unchanged and removing
the nonzero lag cross correlation (Srg 3), we find
that the obtained cross multifractal nature is the
strongest in the surrogate experiments, suggesting
that the zero lag cross correlation between returns
contributes a great part on the cross multifractality.
For DJIA–NASDAQ volatilities, we can obtain the
following inequality:

⟨∆hxy⟩Srg 4 < ⟨∆hxy⟩Srg 1 ≈ ⟨∆hxy⟩Srg 2

≈ ⟨∆hxy⟩Lead 1 ≈ ⟨∆hxy⟩Lead 2

< ⟨∆hxy⟩Srg 3 ≈ ⟨∆hxy⟩Original. (25)

Comparing with Eq. (24), the only difference is that
⟨∆hxy⟩Srg 3 ≈ ⟨∆hxy⟩Original in Eq. (25), suggesting
that the zero lag cross correlation between volatili-
ties is the main origin of cross multifractality.

5. CONCLUSION AND
DISCUSSION

We have developed a new method of joint multi-
fractal analysis with two moment orders based on
wavelet transform, which we call MFXWT(p, q).
Because some of the wavelet coefficients approach
0, the values of p and q must be greater than 0.
We check the performance of the MFXWT(p, q)
method using extensive numerical experiments on

time series pairs generated from binomial measures
and bFBMs. We also test the ability of this method
to detect any joint multifractality in return pairs
and volatility pairs in the US stock markets.

Using binomial measures from the p-model, we
derive the theoretical expressions of the joint mul-
tifractality by comparing the scaling behaviors of
the joint partition functions of the MFXWT(p, q)
and the MFXPF(p, q) methods. We find that the
joint multifractality (Txy, hx, hy and Dxy) extracted
using the MFXWT method closely agrees with the-
oretical values. This indicates that the accuracy of
MFXWT(p, q) is sufficient to detect joint multifrac-
tality in binomial measures.

For bFBMs, we find that the joint mass expo-
nent function Txy of the cross correlations is lin-
early dependent on the orders p and q, and this is
a hallmark of monofractality. This clearly indicates
the inherent monofractality in bFMBs. We find that
the singularity strength functions hx and hy are in
an extremely narrow range, which again confirms
that bFMBs are monofractal. On the other hand,
we are wary of the multifractality determined using
the multifractal function Dxy given by the MFXWT
algorithm because it may indicate spurious multi-
fractality, especially when we do not know a priori
the underlying fractal properties. We can compen-
sate for these shortcomings by performing statisti-
cal tests using the bootstrap method.

Unlike the MFXPF(p, q) method, which can be
applied only to conservative measures (volatility),
the MFXWT(p, q) method can analyze both con-
servative and non-conservative measures. We thus
use it to analyze joint multifractality in the returns
and volatilities of two US stock market indices. We
find joint multifractality both in the returns and in
the volatilities, and find that the joint multifractal-
ity in the volatilities is stronger than in the returns.
We also find that the cross correlated behavior, par-
ticularly the zero lag cross correlation, is the main
origin of cross multifractality.

The well-known shortcoming of the wavelet anal-
ysis of multifractals is that the moment order
must be positive due to the presence of small
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wavelet coefficients, and thus because all the mod-
ulus maxima are significantly larger than 0 we
must use the wavelet transform modulus max-
ima (WTMM) method.30,36,38,55 Unfortunately the
WTMM method cannot be generalized to bivariate
cases, because at each scale s the number of modu-
lus maxima of the two time series usually differ.
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Detrended fluctuation analysis made flexible to
detect range of cross-correlated fluctuations, Phys.
Rev. E 92 (2015) 052815.

1750054-14



November 10, 2017 13:54 0218-348X
1750054

MFXWT

27. X.-Y. Qian et al., Detrended partial cross-
correlation analysis of two nonstationary time series
influenced by common external forces, Phys. Rev. E
91 (2015) 062816.

28. M. Holschneider, On the wavelet transformation of
fractal objects, J. Stat. Phys. 50 (1988) 963–993.

29. A. Arneodo, G. Grasseau and M. Holschneider,
Wavelet transform of multifractals, Phys. Rev. Lett.
61 (1988) 2281–2284.

30. J. F. Muzy, E. Bacry and A. Arnéodo, Wavelets and
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versus detrended fluctuation analysis of multifractal
structures, Phys. Rev. E 74 (2006) 016103.

36. E. Bacry, J. F. Muzy and A. Arnéodo, Singular-
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imka, Detrended cross-correlations between returns,
volatility, trading activity, and volume traded for the
stock market companies, EPL 112 (2015) 48001.

54. W.-X. Zhou, The components of empirical multifrac-
tality in financial returns, EPL 88 (2009) 28004.

55. J. F. Muzy, E. Bacry and A. Arnéodo, Multifractal
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