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Forecasting extreme volatility is a central issue in financial risk management. We present a large
volatility predicting method based on the distribution of recurrence intervals between successive
volatilities exceeding a certain threshold Q, which has a one-to-one correspondence with the expected
recurrence time τQ . We find that the recurrence intervals with large τQ are well approximated by
the stretched exponential distribution for all stocks. Thus, an analytical formula for determining the
hazard probability W ("t |t) that a volatility above Q will occur within a short interval "t if the last
volatility exceeding Q happened t periods ago can be directly derived from the stretched exponential
distribution, which is found to be in good agreement with the empirical hazard probability from real
stock data. Using these results, we adopt a decision-making algorithm for triggering the alarm of the
occurrence of the next volatility above Q based on the hazard probability. Using the ‘receiver operator
characteristic’ analysis, we find that this prediction method efficiently forecasts the occurrence of
large volatility events in real stock data. Our analysis may help us better understand reoccurring large
volatilities and quantify more accurately financial risks in stock markets.

Keywords: Extreme volatility; Risk estimation; Recurrence interval; Large volatility forecasting;
Distribution; Hazard probability
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1. Introduction

Predicting extreme volatility events in financial markets is
essential in risk estimation. A standard approach to extreme
event prediction is to find the precursory patterns prior to an
extreme event or to quantify the probability that a given pattern
is a precursor to an extreme event (Hallerberg et al. 2007,
Hallerberg and Kantz 2008). Bogachev and Bunde (2009a,
2011) propose a new method based on the statistics of the
recurrence intervals between events exceeding a threshold to
determine the risk probability W ("t |t) that an extreme event
will occur within the next "t intervals when the last extreme
event occurred t periods ago. They find that when examining
real market data and model data with a low level of noise,
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the predicting method based on recurrence interval analysis
produces better forecasts than the method based on precursor
pattern recognition (Bogachev and Bunde 2009a, 2011).

Understanding the recurrence interval, defined as the waiting
time between consecutive events with values greater than a
predefined threshold Q, is essential in uncovering the under-
lying laws governing extreme events in many fields. Recur-
rence interval analysis has been carried out on many kinds of
time series in predicting the probability that an extreme event
will occur, including records of climate (Bunde et al. 2004,
2005), seismic activities (Corral 2003, Saichev and Sornette
2006), energy dissipation rates of three-dimensional turbulence
(Liu et al. 2009), heartbeat intervals in medical science
(Bogachev et al. 2009), precipitation and river run-off
(Bogachev and Bunde 2012), Internet traffic (Bogachev and
Bunde 2009b, Cai et al. 2009), financial volatilities
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(Yamasaki et al. 2005, Xie et al. 2014), equity returns
(Yamasaki et al. 2006, Bogachev et al. 2007, Bogachev and
Bunde 2008, 2009a, Ren and Zhou 2010a, Ludescher et al.
2011, He and Chen 2011, Meng et al. 2012, Suo et al. 2015), and
trading volumes (Podobnik et al. 2009, Ren and Zhou 2010b,
Li et al. 2011). An improved method for estimating the value
at risk (VaR) in financial markets has been proposed based
on the recurrence interval between the last two returns below
−Q. This method is significantly more accurate than traditional
estimates based on the overall or local return distributions
(Bogachev and Bunde 2009a, Ludescher et al. 2011).

To accurately estimate the risk probability and the VaR based
on recurrence interval analysis, we need the distribution and
memory behaviour of a set of recurrence intervals between
extreme events. It is found that the recurrence intervals of the
time series in many different fields exhibit fat-tailed distri-
butions and long and short range memories, indicating that
extreme events cannot be described by the Poisson process.
Unlike long and short range memory behaviours, which are
easily testable using conditional distribution analysis and the
DFA method, the distribution form of recurrence intervals is
still elusive. For example, in financial markets, the recurrence
intervals of different data types (return, volatility and trad-
ing volume), different data resolutions (minute-by-minute and
daily) and different markets fit different distributions, including
the power-law, stretched exponential and q-exponential. It has
been found that the recurrence interval distribution above a
fixed threshold has a power-law tail for the daily volatilities
in the Japanese market (Kaizoji and Kaizoji 2004, Yamasaki
et al. 2005), the minute-by-minute volatilities in the Korean
market (Lee et al. 2006) and the Italian market (Greco et al.
2008), the daily returns in the US stock markets (Bogachev
et al. 2007, Bogachev and Bunde 2008, 2009a), the minute-by-
minute returns in the Chinese markets (Ren and Zhou 2010a),
and the minute-by-minute trading volume in the US markets
(Li et al. 2011) and the Chinese markets (Ren and Zhou 2010b).
A number of studies ranging from daily to high-frequency data
and from developed to emerging markets (Wang et al. 2006,
2007, Jung et al. 2008, Qiu et al. 2008, Ren et al. 2009a,
2009b, Jeon et al. 2010, Wang and Wang 2012, Xie et al. 2014),
have reported that the distribution of the recurrence intervals
of financial volatility is a stretched exponential. The stretched
exponential distribution is also observed in the recurrence time
between returns above a given positive threshold or below a
negative threshold for the index spot and futures in the Chinese
future markets (Suo et al. 2015), which is in contrast to the
q-exponential distribution observed in the recurrence intervals
between the losses in financial returns (Ludescher et al. 2011,
Ludescher and Bunde 2014).

In this paper, we describe the materials and methods in
section 2, determine the distribution of the recurrence intervals
between large volatilities in section 3 and report the hazard
probability results and predicting algorithm performance in
section 4. In section 5, we summarize our findings.

2. Materials and methods

2.1. Data description
To carry out a detailed recurrence interval analysis of the Chi-
nese stock markets, we include as many Chinese stocks in

our analysing sample as possible. The minute-by-minute price
data of all stocks in the Chinese markets are extracted from
the RESSET financial database. The extracting period is from
26 July 1999 to 30 December 2011, which is the maximum
spanning period allowed in the RESSET database. To ensure
that the recurrent interval results between the top 1% volatili-
ties will have more than 1000 data points, we select only those
stocks that have a minimum of two years of trading records.
The large sample size lowers the error rate when we use a
maximum likelihood estimation (MLE) to fit the distributions.
Finally, we have 1820 stocks in our sample, including 799 A-
shares, 54 B-shares and 51 ChiNext shares in the Shenzhen
market, and 862 A-shares and 54 B-shares in the Shanghai
market.

2.2. Definition of volatilities and recurrence intervals
Following the review of volatility estimator in Bollen and Inder
(2002), for a given minute-by-minute price series I (t), the
minute-by-minute volatility ω(t) can be estimated using

ω(t) = | ln I (t) − ln I (t − 1)|. (1)

Such definition is also widely used in the reference on
recurrence interval analysis of financial volatilities (Yamasaki
et al. 2005, Wang et al. 2006, 2008, 2009, Xie et al. 2014).
Using absolute return as financial volatility not only has the
advantage of considering the extreme negative and positive
returns at the same time, but also allows us to directly compare
our results with the results reported in the literature.

In order to eliminate the influence of the daily periodic
patterns, we remove the intraday patterns from the volatility
series ω(t) on each trading day,

ω′(s) = ω(s)/G(s), (2)

where G(s) = ∑N
i ω(i, s)/N . Here, ω(i, s) represents the

volatility at time s on day i . The normalized volatility series
v(t) is then obtained by dividing ω′(t) by its standard deviation,

v(t) = ω′(t)
√

[⟨ω′(t)2⟩ − ⟨ω′(t)⟩2]
, (3)

where ⟨z⟩ means the average value of z.
The focus of our study is the recurrence interval between the

normalized volatilities exceeding a predefined threshold Q. To
compare the results between different stocks, we quantify Q
by its mean recurrence time τQ . There is a one-to-one corre-
spondence between Q and τQ , such that (Podobnik et al. 2009)

1
τQ

=
∫ ∞

Q
pv(v)dv, (4)

where pv(v) is the probability distribution of the volatility.
Using copula, Chicheportiche and Chakraborti (2014) also prove
this equation and state that this equation is universal no matter
what the underlying dependence structure in the analysing
series is. Here, we restrict τQ to a range of [20, 100]. This
range corresponds to the extreme volatilities from a top value
of 5–1%, which is often considered in risk estimation.
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3. Distribution of recurrence intervals between large
volatilities

The distributions of recurrence intervals are found to exhibit a
scaling behaviour for the large volatilities filtered by different
thresholds (Yamasaki et al. 2005, Wang et al. 2006), which
means that the interval distribution is independent of the thresh-
olds and thus the distribution of recurrence intervals between
extreme events can be inferred from the distribution of recur-
rence intervals between non-extreme events. However, such
scaling behaviours are rejected by follow-up analysis (Wang
et al. 2008, 2009, Ren and Zhou 2008), which states that the
extreme event filtering threshold should have an influence on
the recurrence interval distribution. This behaviour is corrobo-
rated by the fact that the estimated distributional parameters are
found to have a strong dependence on the thresholds when the
recurrence intervals are fitted by given distribution functions,
such as stretched exponential distribution (Xie et al. 2014, Suo
et al. 2015) and q-exponential distribution (Ludescher et al.
2011, Chicheportiche and Chakraborti 2014). More interest-
ingly, Ludescher et al. (2011) and Ludescher and Bunde (2014)
argue that the distribution of recurrence intervals depends only
on the mean recurrence interval τQ , and not on a specific
asset or on the time resolution of the data. According to their
analysis, the distribution of recurrence intervals from different
financial series should overlap on the same curve for the same
threshold. The above discussions motivate us to understand the
following three problems for the recurrence interval between
large volatilities in the Chinese stock markets: (1) whether there
is a scaling behaviour for the recurrence intervals between the
large volatilities with different thresholds for individual stocks;
(2) whether the recurrence intervals between large volatilities
with the same threshold exhibit the same distribution for dif-
ferent stocks; and (3) whether the market dynamics have any
influence on the distribution of recurrence intervals.

In order to have an overview of the distribution of the re-
currence intervals between large volatilities, we firstly plot the
recurrence interval distribution of randomly chosen stocks in
log–log scale in figure 1. As shown in figure 1(a), the dis-
tributions of the recurrence interval between large volatilities
obtained from different thresholds are scaled by their τQ . The
distribution of different stocks is shifted vertically for better
visibility. One can see that the scaled recurrence interval distri-
butions corresponding to different thresholds are overlapping
on the same curve for the five stocks. Obviously, the appear-
ance of the collapsing behaviours indicates that the recurrence
interval distributions possess scaling behaviours for the five
randomly chosen stocks. Figure 1(b) illustrates the collapsing
behaviours of the recurrence interval distributions obtained
from the same τQ for different stocks. Ten stocks are randomly
chosen to present the distribution overlapping behaviour. In
order to increase visibility, the distribution curves of different
τQ values are transformed by a factor. It is found that for the
same τQ value, the recurrence time distributions of different
stocks are overlapping on the same curve. This means that the
return intervals between volatilities that exceed a threshold Q
may exhibit a universal distribution for different stocks when
τQ is fixed. The results in figure 1 provide an amazing picture
that the scaled recurrence interval distribution is independent
of the τQ for individual stocks and the recurrence intervals

with the same τQ have the same distribution across different
stocks, which leads to the hypothesis that the distribution of
scaled recurrence interval between large volatilities is univer-
sal, depends neither on the value of τQ nor on specific stocks.

To quantitatively test the hypothesis, the best strategy is to
find a suitable distribution function to fit the recurrence interval
distribution. This allows us to verify the above hypothesis by
comparing with the estimated distributional parameters corre-
sponding to different stocks and thresholds. It is well known
that the memory behaviour in the underlying process plays a
very important role in the distribution form of the recurrence in-
tervals. The memory-less process always results in an exponen-
tial distribution of recurrence time. For the process with long
memory, the situation is much more complicated. If only linear
long memory is incorporated, the stretched exponential and
Weibull distribution of recurrence intervals are supported both
in theoretical derivations (Santhanam and Kantz 2008, Olla
2007) and numerical experiments (Altmann and Kantz 2005,
Pennetta 2006, Eichner et al. 2007). Furthermore, power-law
distributions of recurrence time are uncovered in synthetic pro-
cesses with non-linear long memory behaviours (multifractal
processes) (Bogachev et al. 2007, 2008a, Bogachev and Bunde
2008). As with the synthetic processes, the recurrence interval
analysis on the realistic processes, for example the empirical
analysis in financial markets, also provides inconsistent results,
such that the recurrence time is found to follow a stretched
exponential distribution (Wang et al. 2006, 2007, Jung et al.
2008, Qiu et al. 2008, Jeon et al. 2010, Wang and Wang 2012,
Suo et al. 2015), a power-law distribution with an exponen-
tial cut-off (Kaizoji and Kaizoji 2004, Yamasaki et al. 2005,
Lee et al. 2006, Greco et al. 2008), and a q-exponential dis-
tribution (Ludescher et al. 2011, Ludescher and Bunde 2014).
The q-exponential distribution is also reported to nicely fit the
inter-trade time, which is the waiting time between consecutive
trades (Politi and Scalas 2008, Scalas et al. 2004, Jiang et al.
2008). Here, we propose to use four candidate distributions
to fit the recurrence intervals between large volatilities in the
Chinese stock markets. Our purpose is to find the best fits out
of the four distributions for the following predicting analysis.
The following are four candidate distributions: the stretched
exponential distribution,

ps(τ ) = a exp[−(bτ )µ], (5)

the power law distribution with an exponential cut-off,

pp(τ ) = cτ−γ−1 exp(−kτ ), (6)

the q-exponential distribution,

pq(τ ) = (2 − q)λ[1 + (q − 1)λτ ]−
1

q−1 , (7)

and the Weibull distribution,

pw(τ ) = ζ

d
( τ

d
)ζ−1

exp
[
−

( τ

d
)ζ

]
. (8)

We have the following two equations
∫ ∞

0 p(τ )dτ = 1 and∫ ∞
0 τp(τ )dτ = τQ for any distribution formula of p(τ ), which

allow us to reduce the number of estimated parameters for the
four candidate distributions. The second equation is univer-
sal, independent of any memory structure of the underlying
process (Chicheportiche and Chakraborti 2014, 2013). With
the two equations, we have a = µ'(2/µ)

'(1/µ)2τQ
and b = '(2/µ)

'(1/µ)τQ
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(a) (b)

Figure 1. Collapsing behaviours of the recurrence interval distributions. (a) Collapsing behaviours of the distributions of the scaled recurrence
intervals for five randomly chosen stocks. The distribution of stocks 200002, 300002, 600220 and 900901 is shifted vertically by a factor of
10, 100, 1000 and 10 000, respectively. (b) Collapsing behaviours of the distributions of recurrence intervals for 10 randomly chosen stocks
with the same τQ . The distribution curve of τQ = 25, 40, 60, 80 and 100 is shifted vertically by a factor of 10, 100, 1000, 10 000 and
100 000, respectively.

for the stretched exponential distribution, k = −γ
τQ and

b = (−γ
τQ )−γ 1

'(−γ ) for the power-law distribution with an

exponential cut-off, λ = 1
τQ(3−2q) for the q-exponential distri-

bution and d = τQ
'(1+1/ζ ) for the Weibull distribution.

Obviously, we have only one parameter to estimate for the four
candidate distributions. We use the MLE method to estimate
the distributional parameters. Because it is very hard to obtain
the equation analytically by taking a derivative of the loga-
rithmic likelihood function with the corresponding estimated
parameters, we discretize the estimating parameters in their
fitting range with a step of 10−6 (µ ∈ (0, 1), γ ∈ (−1, 0),
q ∈ (1, 1.5), and ζ ∈ (0, 1)) and evaluate the logarithmic
likelihood function ln L of these discrete values. The discrete
value associated with the maximum ln L is took as the final
solution for the estimated parameter.

Figure 2 shows the empirical distributions and the fitting
results of the four candidate distributions of the recurrence
intervals for two stocks, 000001 and 900956. One can see that
in the central regions of the distributions, all four candidates
agree with the empirical data. The q-exponential distribution
better fits the distribution for small τQ and the stretched ex-
ponential distribution gives better fits in the tail for large τQ .
To determine which distribution has the best performance, we
utilize likelihoods and KS statistics to assess the validity of the
estimates. As we known, KS statistic measures the distance
between the fitting cumulative distribution and the empirical
cumulative distribution. Here, we have four candidate distri-
butions to fit the recurrence intervals. If one distribution gives
the minimum KS statistic, this distribution can be regarded as
the closest to the empirical distribution, which indicates the
best fit. This is applied in finding the best truncated boundary
when fitting to the left-truncated distributions (Clauset et al.
2009, Jiang et al. 2013). Therefore, the candidate distribution
giving the maximum likelihood or the minimum KS statistic
is considered to fit the recurrence intervals best.

Taking stock 000001 as an example, figure 3(a) highlights
the candidate distribution which has the maximum likelihood
when it is fitted to the recurrence intervals for each τQ . Figure
3(b) is the same as (a), except that we highlight the distributions
on the basis of the minimum KS statistics. The symbols ‘s’,
‘p’, ‘q’ and ‘w’ correspond to stretched exponential distri-
bution, power-law distribution with an exponential cut-off,

q-exponential distribution and Weibull distribution, respec-
tively. Both panels indicate that the q-exponential distribution
gives the best fits when τQ is not large and the stretched ex-
ponential distribution performs the best for large values of τQ .
However, the transition point is different for the two validity
measurements. The transition point from q-exponential distri-
bution to stretched exponential distribution is close to τQ = 90
for KS statistics, which is much larger than that for likelihoods,
τQ = 60. Such results allow us to further classify the stocks
into one group for each τQ if the same distribution fits their
recurrence intervals best.

We count the number of stocks in each group for each τQ
and each validity measurement and report the results in table 1.
One can observe that more than 90% of stocks are in
q-exponential and stretched exponential groups for all values
of τQ and both validity measurements favour the q-exponential
distribution (respectively, stretched exponential distribution)
when τQ approaches 20 (100). However, the classification of
stocks based on likelihoods and KS statistics does not tell
us anything about the significance of the fits. Following the
methods (Jiang et al. 2013), we employ both KS tests and CvM
tests to check the goodness of the fits in each group for each τQ .
The null hypothesis H x

0 for both tests is that the data are drawn
from a testing distribution. The testing distribution for a given
group corresponds to the distribution that fits the recurrence
intervals best for the stocks in that group. The stocks whose
recurrence intervals cannot reject the hypothesis H x

0 at the
significant level of 0.01 for either of the two tests are labelled
as passing the statistical tests.

We also list the number of stocks passing the statistical tests
in table 1. We find that only a small number of stocks are found
to be in the group of power-law distribution with an exponential
cut-off and Weibull distribution. However, most of them do
not fail the statistical tests. It is also observed that only a small
number of stocks in q-exponential group pass the statistical
tests for all τQ . This means that q-exponential distribution is
not suitable to fit the recurrence intervals between extreme
volatilities in the Chinese stock markets, although the validity
measurements favour it for small τQ . In contrast, the number
of stocks passing the tests in stretched exponential group keeps
increasing with the increment of τQ . The percentage of stocks
out of the Chinese markets whose recurrence intervals cannot
reject the stretched exponential distribution is more than 60%
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(a) (b)

Figure 2. Plots of distribution fits to recurrence intervals for two stocks. The open markers are the empirical distributions and the solid lines
are the fits to the four candidate distributions. For better visibility, the curves of τQ = 25, 40, 60, 80 and 100 are shifted vertically by a factor
of 10, 100, 1000, 10 000 and 100 000, respectively. (a) Stock 000001. (b) Stock 900956.

(a) (b)

Figure 3. Validity of the fits to the four candidate distributions. (a) Assessing the validity of the candidate distributions with the likelihoods
for stock 0000001. The symbols ‘s’, ‘p’, ‘q’ and ‘w’ represent stretched exponential distribution, power-law distribution with an exponential
cut-off, q-exponential distribution and Weibull distribution, respectively. The distribution that has the maximum likelihood is highlighted by
a marker for each τQ . (b) The same as (a), but the distribution is highlighted based on the minimum KS statistics.

(respectively, 56%) for the validity measurements of likeli-
hoods (respectively, KS statistics) when τQ = 100. The results
indicate that the stretched exponential distribution is a good
candidate to fit the recurrence intervals with large τQ in the
Chinese stock markets. Another intriguing observation in table
1 is that very few stocks pass the statistical tests for small τQ .
It could be attributed to that the parameter estimating methods
are based on the continuous distribution formula. Low τQ will
lead to a sample of recurrence intervals containing many small
discrete values, which makes the estimator biased.

Despite the statistical tests for goodness of fits do not give
affirmative results of accepting the null hypothesis H x

0 for all
distributional fits, the four candidate distributions are still a
very good approximation to the empirical recurrence interval
distributions, as evidenced in figure 2. Therefore, it is feasible
to discuss the scaling behaviour for individual stocks with
resort to the dependence between the distribution parameters
and τQ . As stated above, if the recurrence intervals exhibit a
scaling behaviour, the estimated parameters of the four distri-
butions should be independent of τQ , which means that the
slope should be zero if the estimated parameters are regressed
against τQ . We plot the estimate parameters as a function of
τQ in figure 4 for stock 000001 (a) and stock 900956 (b). It
is observed that the four parameters present an asymptotic
horizontal line with respect to τQ for both stocks. The least
linear square fits of µ, γ , q and ζ with respect to τQ give
the four slopes of κµ = −8.84 × 10−4, κγ = 1.1 × 10−3,
κq = 3.43 × 10−4, and κζ = −6.79 × 10−4 (respectively,

−8.87 × 10−4, 1.2 × 10−3, 1.94 × 10−4 and −6.92 × 10−4)
for stock 000001 (900956). One can observe that the slopes
are small but not vanishing, indicating the existence of a weak
trend between the distribution parameters and τQ . Taking the
stretched exponential distribution as an example, the parameter
µ will at least decrease 0.07 when τQ varies from 20 to 100.
Such weak trend is a sign of no scaling behaviour in recurrence
intervals for both stocks.

We further propose a strict statistical test in the spirit of
bootstrapping to check whether there exists a scaling behaviour
in recurrence intervals for individual stocks. The null hypoth-
esis H y

0 is that the distribution parameters (µ, γ , q and ζ )
are independent of τQ . If the null hypothesis H y

0 cannot be
rejected, the recurrence intervals can be argued to possess a
scaling behaviour for a given stock. For a given distribution,
we estimate the slope κ by linearly regressing its parameter
against τQ . We define the statistics as the slope κ . In order to
accumulate an ensemble of such statistic, which allows us to
generate a distribution, the parameter of the given distribution
is reshuffled for 1000 times and the slope κs between shuf-
fled data and τQ is determined. The shuffled procedure can
destroy any dependence between the distribution parameter
and τQ , which gives a quite suitable null model to assess the
significance of the statistical test. For a given distribution, we
perform the statistical test on each stock and find that 1586
stocks reject the hypothesis H y

0 for all four fitting distributions
at the significant level of 0.01. This implies that these stocks
do not exhibit a scaling behaviour in their recurrence intervals.
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Table 1. Number of stocks in each distribution group. For each value of τQ , the stocks are assigned into a given distribution group if the
fitting of their recurrence intervals to that distribution gives the maximum likelihood or the minimum KS statistic. Statistical tests (KS tests
and CvM tests) are performed to check the goodness of fits for each stock in each group. The stocks whose recurrence intervals cannot reject
the hypothesis H x

0 at the significant level of 0.01 for either of the two tests are labelled as passing the statistical tests. ‘total’ means the number
of total stocks and ‘pass’ stands for the number of stocks passing the statistical tests.

Likelihood KS statistic

StrExp PowExp qExp WBL StrExp PowExp qExp WBL

τQ Total Pass Total Pass Total Pass Total Pass Total Pass Total Pass Total Pass Total Pass

20 59 0 0 0 1761 0 0 0 0 0 93 0 1727 0 0 0
25 322 3 0 0 1498 29 0 0 0 0 15 0 1805 18 0 0
30 710 39 0 0 1110 46 0 0 0 0 0 0 1820 52 0 0
35 1040 80 0 0 780 34 0 0 5 0 0 0 1815 60 0 0
40 1266 128 0 0 554 42 0 0 22 9 1 1 1796 92 1 0
45 1427 189 0 0 393 47 0 0 49 28 2 1 1763 108 6 4
50 1525 278 0 0 293 52 2 1 104 54 5 4 1702 112 9 6
55 1581 376 2 2 234 57 3 2 217 72 9 8 1575 99 19 15
60 1628 510 2 2 182 50 8 4 413 94 14 13 1363 97 30 24
65 1658 647 3 3 144 52 15 7 684 183 19 16 1079 93 38 34
70 1662 743 7 7 131 52 20 15 936 337 23 21 817 94 44 39
75 1666 839 8 8 115 48 31 27 1173 524 28 27 564 89 55 50
80 1673 915 14 14 95 41 38 33 1345 693 40 38 381 83 54 49
85 1662 985 20 19 91 39 47 42 1427 824 45 43 281 80 67 62
90 1663 1036 28 27 78 33 51 46 1481 910 53 50 211 69 75 63
95 1650 1060 36 35 67 26 67 57 1535 982 56 53 146 55 83 68
100 1642 1090 42 41 59 24 77 63 1542 1028 67 64 118 50 93 71

Figure 4. Plots of the estimating parameters with respect to τQ for the stretched exponential distribution (µ), the power-law distribution
with exponential cut-off, the q-exponential distribution (q) and the Weibull distribution (ζ ). (a) Stock 000001. (b) Stock 900956.

For the same τQ and a given distribution, we regard the
corresponding estimated parameters of different stocks as one
sample and estimate the mean, standard deviation, skewness
and kurtosis. The results are reported in table 2. It is observed
that the mean value of the distribution parameters exhibit a
weak trend against τQ , which is in agreement with the above
analysis on individual stocks.Another intriguing finding is that
the standard deviation is stable with the increment of τQ for
each candidate distribution. Such narrow standard deviation
implies that the recurrence intervals of different stocks roughly
conform to the same distribution when τQ has the same value
(Ludescher et al. 2011, Ludescher and Bunde 2014). We also
observe that the skewness does not equal to 0 and the kurtosis is
greater than 3, which indicate that the distributions of estimated
parameters are non-normal. More interesting, the skewness of
µ and ζ decreases from positive to negative with the increase
in τQ , which indicates that the distribution shifts from right-
skewed to left-skewed, while for the skewness of γ and q , the
situation is the opposite.

In order to determine whether the distribution parameters
are influenced by market states, i.e. bull or bear, we use a
moving window analysis to track the evolution of estimating

parameters (µ,γ , q andβ).We fix the window size at 48 months
and exclude stocks with trading periods shorter than 97 months.
We are left with 948 stocks as subject for our rolling window
analysis. The window (ending time) varies from 2003 to 2011
with a step of one year. We also discard first-month trading data
for the remaining because first-month records tend to be partial
(i.e. do not span an entire month) and the volatilities for new
IPOs are excessively large (Guo et al. 2013), which is caused by
the existence of information asymmetry for IPO firms and the
incomplete knowledge about IPO firms for investors (Hussein
and Zhou 2014).

For each stock, we perform the same analysis in each win-
dow as for in the entire period. The recurrence intervals
associated with different values of τQ are fitted by the four
candidate distributions, which give the corresponding distri-
bution parameters (µ, γ , q and ζ ). As stated above, the distri-
bution parameters are universal across different stocks when
τQ has the same value. We estimate the average and standard
deviations of the estimated parameters of different stocks for
the same τQ in each window. The results are listed in table 3.
Generally speaking, the distribution parameters estimated from
the moving windows and the entire period share the same
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Table 2. The basic statistics of the distribution parameters. µ, γ , q and ζ correspond to the parameters of stretched exponential distribution,
power-law distribution with an exponential cut-off, q-exponential distribution and Weibull distribution. We list the mean, standard deviation,

skewness and kurtosis for the sample of the parameters from different stocks with the same τQ .

µ γ q ζ

τQ Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

20 0.62 0.08 −0.25 3.95 −0.80 0.08 0.66 4.57 1.25 0.06 0.07 3.69 0.83 0.06 −0.77 4.87
25 0.60 0.08 −0.13 4.26 −0.77 0.08 0.61 4.91 1.26 0.06 −0.08 3.95 0.82 0.05 −0.73 5.23
30 0.59 0.08 −0.01 4.45 −0.75 0.07 0.55 5.11 1.26 0.06 −0.24 4.12 0.81 0.05 −0.67 5.45
35 0.58 0.08 0.10 4.51 −0.74 0.07 0.46 5.16 1.27 0.06 −0.37 4.17 0.80 0.05 −0.58 5.50
40 0.57 0.08 0.22 4.58 −0.73 0.07 0.38 5.15 1.27 0.06 −0.49 4.27 0.79 0.05 −0.50 5.50
45 0.56 0.08 0.34 4.66 −0.72 0.07 0.29 5.12 1.28 0.06 −0.61 4.41 0.79 0.05 −0.41 5.46
50 0.55 0.08 0.46 4.81 −0.71 0.07 0.20 5.13 1.28 0.06 −0.72 4.59 0.78 0.05 −0.32 5.46
55 0.55 0.08 0.55 4.94 −0.70 0.07 0.12 5.12 1.28 0.06 −0.81 4.70 0.78 0.05 −0.25 5.44
60 0.54 0.08 0.64 5.06 −0.70 0.07 0.06 5.09 1.28 0.06 −0.88 4.80 0.77 0.05 −0.18 5.41
65 0.54 0.08 0.70 5.11 −0.69 0.07 0.00 5.09 1.28 0.06 −0.93 4.84 0.77 0.06 −0.13 5.39
70 0.53 0.09 0.77 5.18 −0.69 0.07 −0.06 5.05 1.28 0.06 −0.98 4.91 0.77 0.06 −0.08 5.35
75 0.53 0.09 0.78 5.14 −0.68 0.07 −0.07 5.00 1.28 0.06 −1.00 4.89 0.76 0.06 −0.07 5.30
80 0.53 0.09 0.86 5.34 −0.68 0.07 −0.13 5.05 1.28 0.06 −1.06 5.04 0.76 0.06 −0.01 5.32
85 0.53 0.09 0.90 5.39 −0.68 0.07 −0.16 5.03 1.29 0.06 −1.08 5.06 0.76 0.06 0.02 5.29
90 0.52 0.09 0.94 5.44 −0.67 0.07 −0.19 5.00 1.29 0.06 −1.12 5.12 0.76 0.06 0.05 5.25
95 0.52 0.09 0.95 5.44 −0.67 0.07 −0.20 4.94 1.29 0.06 −1.13 5.12 0.76 0.06 0.07 5.19
100 0.52 0.09 0.99 5.47 −0.67 0.07 −0.23 4.89 1.29 0.07 −1.17 5.22 0.76 0.06 0.10 5.14

pattern with respect to τQ , corresponding to the decreasing
trends for µ and ζ and the increasing trends for γ and q . For
the same τQ , we again observe that with the evolving of time,
µ and ζ decrease and γ and q increase. Such results can be
linked to the inefficiency of the Chinese stock markets in recent
years, that two market crashes are observed in October 2007
and August 2009 (Jiang et al. 2010). Market crashes will result
in price synchronicity for different stocks (Song et al. 2011,
Meng et al. 2014, Dai et al. Forthcoming) and enhance the
memory behaviour for individual stocks (Jiang et al. 2014).The
stretched exponential parameter µ is found to be the correlation
exponent of underlying process (Bunde et al. 2005, Bogachev
et al. 2008b). The increase in memory behaviour will lead to
a decrease in µ, which is consistent with our results.

4. Predicting large volatilities

We use the hazard probability W ("t |t) to forecast the occur-
rence of large volatility events. The W ("t |t) is the probability
that there will be additional waiting time "t before another
large volatility event occurs when the previous large volatility
event occurred t time ago, which can be formulated as (Sornette
and Knopoff 1997, Bogachev et al. 2007),

W ("t |t) =
∫ t+"t

t p(t)dt
∫ ∞

t p(t)dt , (9)

where p(t) is the probability distribution of the recurrence
intervals between extreme events. This probability is the key
early warning measurement for the occurrence of extreme
volatilities. The early warning is triggered when the probability
W ("t |t) is greater than a predefined hazard threshold. We
can theoretically derive this hazard probability if we have the
distribution of the recurrence intervals between consecutive
extreme volatilities.

If we designate the top 1% of volatility values (correspond-
ing to the mean recurrence time τQ = 100) to be extreme

events, we can estimate the hazard probability Wq("t, t) in t
when fixing "t . The recurrence intervals between volatilities
with τQ = 100 are well approximated by the stretched expo-
nential distribution for most stocks, as evidenced in table 1.
This allows us to approach the theoretical hazard probability
Wq("t, t) in terms of the stretched exponential distribution.
By substituting equation (5) into equation (9), we obtain

WSE("t |t) =
bµ
a − 'l

(
1
µ, (bt)µ

)
− 'u

(
1
µ, [b(t + "t)]µ

)

'u
(

1
µ, (bt)µ

) ,

(10)
where 'l(s, x) and 'u(s, x) are lower and upper incomplete
gamma functions and a and b are dependent on µ. On the other
hand, the empirical hazard function Wemp can be evaluated as
follows,

Wemp("t |t) = #(t < τ ≤ t + "t)
#(τ > t) , (11)

where the denominator #(τ > t) is the number of recurrence
intervals whose values are greater than t , and the numerator
#(t < τ ≤ t +"t) is the number of recurrence intervals which
locates in the range of (t, t + "t].

Figure 5 shows the hazard probability for two stocks when
"t = 1, 5 and 10. The solid curves stand for the analytical solu-
tion WSE in equation (10) and the markers represent the empiri-
cal hazard probability in equation (11). One can see that in each
panel, the curve and the markers decrease slowly and are in
good agreement. The decreasing trend of W ("t |t) means that
the probability of observing another following large volatility
decreases with the elapsing t if an extreme volatility occurs.
This implies the existence of potential dependent structures in
triggering the large volatilities, which is inconsistent with the
clustering behaviour in the volatility series. The oscillations of
Wemp in panels (e) and (f) are attributed to the poor statistics of
recurrence time in the sampling interval of (t, t +"t]. Besides
stock volatilities, the general formula of hazard probability



1720 Z.-Q. Jiang et al.
Ta

bl
e

3.
R

es
ul

ts
of

th
e

ro
lli

ng
w

in
do

w
an

al
ys

is
.µ

,γ
,q

an
d

ζ
co

rr
es

po
nd

to
th

e
pa

ra
m

et
er

s
of

st
re

tc
he

d
ex

po
ne

nt
ia

ld
is

tr
ib

ut
io

n,
po

w
er

-l
aw

di
st

ri
bu

tio
n

w
ith

an
ex

po
ne

nt
ia

lc
ut

-o
ff

,q
-e

xp
on

en
tia

l
di

st
ri

bu
tio

n
an

d
W

ei
bu

ll
di

st
ri

bu
tio

n.
W

e
lis

tt
he

m
ea

n
fo

rt
he

sa
m

pl
e

of
th

e
pa

ra
m

et
er

s
fr

om
di

ff
er

en
ts

to
ck

s
in

th
e

sa
m

e
w

in
do

w
w

ith
th

e
sa

m
e

τ
Q,

as
w

el
la

s
th

e
st

an
da

rd
de

vi
at

io
n

in
pa

re
nt

he
se

s.

M
ov

in
g

τ
Q

w
in

do
w

20
30

40
50

60
70

80
90

10
0

Pa
ne

lA
:S

tr
et

ch
ed

ex
po

ne
nt

ia
ld

is
tr

ib
ut

io
n

(µ
)

20
03

0.
70

(0
.0

7)
0.

66
(0

.0
7)

0.
64

(0
.0

7)
0.

62
(0

.0
8)

0.
62

(0
.0

8)
0.

61
(0

.0
9)

0.
61

(0
.0

9)
0.

61
(0

.0
9)

0.
62

(0
.1

0)
20

04
0.

73
(0

.0
9)

0.
70

(0
.0

8)
0.

69
(0

.0
8)

0.
69

(0
.0

9)
0.

69
(0

.0
9)

0.
69

(0
.0

9)
0.

69
(0

.1
0)

0.
69

(0
.1

0)
0.

70
(0

.1
0)

20
05

0.
64

(0
.1

1)
0.

62
(0

.1
1)

0.
61

(0
.1

1)
0.

61
(0

.1
1)

0.
61

(0
.1

2)
0.

61
(0

.1
2)

0.
61

(0
.1

2)
0.

61
(0

.1
2)

0.
61

(0
.1

2)
20

06
0.

64
(0

.1
2)

0.
63

(0
.1

2)
0.

63
(0

.1
2)

0.
63

(0
.1

1)
0.

63
(0

.1
1)

0.
63

(0
.1

1)
0.

63
(0

.1
1)

0.
64

(0
.1

1)
0.

64
(0

.1
1)

20
07

0.
67

(0
.1

0)
0.

66
(0

.1
0)

0.
65

(0
.1

0)
0.

65
(0

.1
0)

0.
65

(0
.1

0)
0.

65
(0

.1
0)

0.
65

(0
.1

0)
0.

65
(0

.1
0)

0.
66

(0
.1

0)
20

08
0.

65
(0

.0
8)

0.
63

(0
.0

8)
0.

61
(0

.0
8)

0.
61

(0
.0

8)
0.

60
(0

.0
8)

0.
60

(0
.0

8)
0.

60
(0

.0
9)

0.
60

(0
.0

9)
0.

60
(0

.0
9)

20
09

0.
66

(0
.0

8)
0.

63
(0

.0
8)

0.
61

(0
.0

7)
0.

60
(0

.0
7)

0.
59

(0
.0

7)
0.

58
(0

.0
7)

0.
58

(0
.0

8)
0.

57
(0

.0
8)

0.
57

(0
.0

8)
20

10
0.

65
(0

.0
7)

0.
62

(0
.0

7)
0.

59
(0

.0
7)

0.
58

(0
.0

7)
0.

57
(0

.0
7)

0.
57

(0
.0

7)
0.

57
(0

.0
7)

0.
56

(0
.0

7)
0.

56
(0

.0
8)

20
11

0.
61

(0
.0

8)
0.

57
(0

.0
8)

0.
54

(0
.0

7)
0.

52
(0

.0
7)

0.
51

(0
.0

7)
0.

51
(0

.0
7)

0.
50

(0
.0

7)
0.

50
(0

.0
8)

0.
49

(0
.0

8)

Pa
ne

lB
:P

ow
er

-l
aw

di
st

ri
bu

tio
n

w
ith

an
ex

po
ne

nt
ia

lc
ut

of
f(

γ
)

20
03

−0
.8

7(
0.

07
)

−0
.8

1(
0.

07
)

−0
.7

9(
0.

07
)

−0
.7

7(
0.

08
)

−0
.7

6(
0.

08
)

−0
.7

5(
0.

09
)

−0
.7

4(
0.

09
)

−0
.7

4(
0.

09
)

−0
.7

4(
0.

10
)

20
04

−0
.9

0(
0.

09
)

−0
.8

5(
0.

08
)

−0
.8

3(
0.

08
)

−0
.8

2(
0.

09
)

−0
.8

1(
0.

09
)

−0
.8

0(
0.

09
)

−0
.8

0(
0.

10
)

−0
.8

0(
0.

10
)

−0
.7

9(
0.

10
)

20
05

−0
.8

0(
0.

11
)

−0
.7

7(
0.

11
)

−0
.7

6(
0.

11
)

−0
.7

5(
0.

11
)

−0
.7

4(
0.

12
)

−0
.7

4(
0.

12
)

−0
.7

4(
0.

12
)

−0
.7

4(
0.

12
)

−0
.7

3(
0.

12
)

20
06

−0
.8

0(
0.

12
)

−0
.7

8(
0.

12
)

−0
.7

7(
0.

12
)

−0
.7

7(
0.

11
)

−0
.7

6(
0.

11
)

−0
.7

6(
0.

11
)

−0
.7

6(
0.

11
)

−0
.7

5(
0.

11
)

−0
.7

5(
0.

11
)

20
07

−0
.8

3(
0.

10
)

−0
.8

1(
0.

10
)

−0
.7

9(
0.

10
)

−0
.7

8(
0.

10
)

−0
.7

8(
0.

10
)

−0
.7

7(
0.

10
)

−0
.7

7(
0.

10
)

−0
.7

6(
0.

10
)

−0
.7

6(
0.

10
)

20
08

−0
.8

2(
0.

08
)

−0
.7

9(
0.

08
)

−0
.7

7(
0.

08
)

−0
.7

5(
0.

08
)

−0
.7

5(
0.

08
)

−0
.7

4(
0.

08
)

−0
.7

3(
0.

09
)

−0
.7

3(
0.

09
)

−0
.7

3(
0.

09
)

20
09

−0
.8

4(
0.

08
)

−0
.7

9(
0.

08
)

−0
.7

7(
0.

07
)

−0
.7

5(
0.

07
)

−0
.7

4(
0.

07
)

−0
.7

3(
0.

07
)

−0
.7

2(
0.

08
)

−0
.7

1(
0.

08
)

−0
.7

1(
0.

08
)

20
10

−0
.8

3(
0.

07
)

−0
.7

8(
0.

07
)

−0
.7

6(
0.

07
)

−0
.7

4(
0.

07
)

−0
.7

3(
0.

07
)

−0
.7

2(
0.

07
)

−0
.7

1(
0.

07
)

−0
.7

1(
0.

07
)

−0
.7

1(
0.

08
)

20
11

−0
.7

9(
0.

08
)

−0
.7

4(
0.

08
)

−0
.7

1(
0.

07
)

−0
.6

9(
0.

07
)

−0
.6

7(
0.

07
)

−0
.6

7(
0.

07
)

−0
.6

6(
0.

07
)

−0
.6

5(
0.

08
)

−0
.6

5(
0.

08
)

Pa
ne

lC
:q

-e
xp

on
en

tia
ld

is
tr

ib
ut

io
n

(q
)

20
03

1.
20

(0
.0

7)
1.

22
(0

.0
7)

1.
22

(0
.0

7)
1.

23
(0

.0
8)

1.
23

(0
.0

8)
1.

22
(0

.0
9)

1.
22

(0
.0

9)
1.

21
(0

.0
9)

1.
21

(0
.1

0)
20

04
1.

17
(0

.0
9)

1.
18

(0
.0

8)
1.

18
(0

.0
8)

1.
18

(0
.0

9)
1.

18
(0

.0
9)

1.
17

(0
.0

9)
1.

16
(0

.1
0)

1.
16

(0
.1

0)
1.

15
(0

.1
0)

20
05

1.
23

(0
.1

1)
1.

23
(0

.1
1)

1.
23

(0
.1

1)
1.

23
(0

.1
1)

1.
23

(0
.1

2)
1.

22
(0

.1
2)

1.
22

(0
.1

2)
1.

22
(0

.1
2)

1.
21

(0
.1

2)
20

06
1.

23
(0

.1
2)

1.
23

(0
.1

2)
1.

22
(0

.1
2)

1.
21

(0
.1

1)
1.

21
(0

.1
1)

1.
21

(0
.1

1)
1.

20
(0

.1
1)

1.
20

(0
.1

1)
1.

19
(0

.1
1)

20
07

1.
21

(0
.1

0)
1.

21
(0

.1
0)

1.
21

(0
.1

0)
1.

20
(0

.1
0)

1.
20

(0
.1

0)
1.

19
(0

.1
0)

1.
19

(0
.1

0)
1.

18
(0

.1
0)

1.
18

(0
.1

0)
20

08
1.

23
(0

.0
8)

1.
23

(0
.0

8)
1.

24
(0

.0
8)

1.
23

(0
.0

8)
1.

23
(0

.0
8)

1.
23

(0
.0

8)
1.

23
(0

.0
9)

1.
23

(0
.0

9)
1.

22
(0

.0
9)

20
09

1.
22

(0
.0

8)
1.

23
(0

.0
8)

1.
24

(0
.0

7)
1.

24
(0

.0
7)

1.
24

(0
.0

7)
1.

24
(0

.0
7)

1.
24

(0
.0

8)
1.

24
(0

.0
8)

1.
24

(0
.0

8)
20

10
1.

23
(0

.0
7)

1.
25

(0
.0

7)
1.

25
(0

.0
7)

1.
26

(0
.0

7)
1.

26
(0

.0
7)

1.
26

(0
.0

7)
1.

26
(0

.0
7)

1.
26

(0
.0

7)
1.

26
(0

.0
8)

20
11

1.
26

(0
.0

8)
1.

28
(0

.0
8)

1.
29

(0
.0

7)
1.

30
(0

.0
7)

1.
31

(0
.0

7)
1.

31
(0

.0
7)

1.
31

(0
.0

7)
1.

31
(0

.0
8)

1.
31

(0
.0

8)

Pa
ne

lD
:W

ei
bu

ll
di

st
ri

bu
tio

n
(ζ

)
20

03
0.

88
(0

.0
7)

0.
85

(0
.0

7)
0.

84
(0

.0
7)

0.
83

(0
.0

8)
0.

82
(0

.0
8)

0.
82

(0
.0

9)
0.

82
(0

.0
9)

0.
81

(0
.0

9)
0.

81
(0

.1
0)

20
04

0.
90

(0
.0

9)
0.

88
(0

.0
8)

0.
87

(0
.0

8)
0.

86
(0

.0
9)

0.
86

(0
.0

9)
0.

86
(0

.0
9)

0.
86

(0
.1

0)
0.

86
(0

.1
0)

0.
86

(0
.1

0)
20

05
0.

84
(0

.1
1)

0.
82

(0
.1

1)
0.

82
(0

.1
1)

0.
81

(0
.1

1)
0.

81
(0

.1
2)

0.
81

(0
.1

2)
0.

81
(0

.1
2)

0.
81

(0
.1

2)
0.

81
(0

.1
2)

20
06

0.
84

(0
.1

2)
0.

83
(0

.1
2)

0.
83

(0
.1

2)
0.

83
(0

.1
1)

0.
82

(0
.1

1)
0.

82
(0

.1
1)

0.
82

(0
.1

1)
0.

82
(0

.1
1)

0.
82

(0
.1

1)
20

07
0.

86
(0

.1
0)

0.
85

(0
.1

0)
0.

84
(0

.1
0)

0.
84

(0
.1

0)
0.

84
(0

.1
0)

0.
83

(0
.1

0)
0.

83
(0

.1
0)

0.
83

(0
.1

0)
0.

83
(0

.1
0)

20
08

0.
85

(0
.0

8)
0.

83
(0

.0
8)

0.
82

(0
.0

8)
0.

82
(0

.0
8)

0.
81

(0
.0

8)
0.

81
(0

.0
8)

0.
81

(0
.0

9)
0.

81
(0

.0
9)

0.
81

(0
.0

9)
20

09
0.

86
(0

.0
8)

0.
84

(0
.0

8)
0.

82
(0

.0
7)

0.
81

(0
.0

7)
0.

81
(0

.0
7)

0.
80

(0
.0

7)
0.

80
(0

.0
8)

0.
79

(0
.0

8)
0.

79
(0

.0
8)

20
10

0.
85

(0
.0

7)
0.

83
(0

.0
7)

0.
81

(0
.0

7)
0.

80
(0

.0
7)

0.
80

(0
.0

7)
0.

79
(0

.0
7)

0.
79

(0
.0

7)
0.

79
(0

.0
7)

0.
79

(0
.0

8)
20

11
0.

83
(0

.0
8)

0.
79

(0
.0

8)
0.

77
(0

.0
7)

0.
76

(0
.0

7)
0.

75
(0

.0
7)

0.
75

(0
.0

7)
0.

74
(0

.0
7)

0.
74

(0
.0

8)
0.

74
(0

.0
8)



Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets 1721

W ("t |t) in equation (9) can be also applied to estimate the
risk probability of coming extreme events in climate, seismic
activities, stock returns, floods and so on.

Based on equation (10), we can estimate the risk probability
of an incoming extreme event in the following period of "t . If
one sets "t = 1, we will immediately have the information of
hazard probability in next unit of time (minute here). Using a
decision-making algorithm, we are allowed to predict whether
there is a large volatility in the next minute (Bogachev and
Bunde 2011). Specifically, we need to set a threshold Q p for
the hazard probability to trigger early warnings that a large
volatility is about to occur. When the hazard probability ex-
ceeds Q p, an alarm that a large volatility will occur during
the next time point is activated. By comparing with actual
extreme events, we can estimate the correct prediction and false
alarm rates to evaluate the predicting performance. Instead
of choosing a specific value of the hazard threshold, Q p is
varied in the range of [0, 1]. Such a strategy could avoid the
situation of considering only one hazard threshold value: that
a large value will increase the number of missing events and
a small value will increase the number of false alarms. The
plots of correct prediction rates with respect to false alarm
rates from all possible hazard thresholds Q p will give rise
to the famous ‘receiver operator characteristic’ (ROC) curve
(Bogachev and Bunde 2009a, 2009b, 2011, Bogachev et al.
2009), which graphically displays the forecasting efficiency.

To estimate the correct prediction and false alarm rates, we
generate for a given Q p two forecasting signals—alarms and
non-alarms—at each time point. By comparing the forecasting
signals with the real data, we obtain one of the four outcomes
at each time point (Bogachev and Bunde 2011), (1) a correct
prediction of a large volatility event, (2) a correct prediction of
a non-large volatility event, (3) a missed event and (4) a false
alarm. By recording in our testing records how many times
each outcome occurs, we can estimate the correct prediction
rate D and the false alarm rate A using

D = n11

n01 + n11
, A = n10

n00 + n10
, (12)

where n11 is the number of large volatility events that are cor-
rectly predicted, n00 the number of non-large volatility events
that are correctly predicted, n01 the number of missed events
and n10 the number of false alarms.All possible pairs of (D, A)

will be obtained if we vary the Q p range from 0 to 1.
By definition, the ROC curve will be D = A = 1 if Q p = 0

and D = A = 0 if Q p = 1. The ROC curve joins the point
(0, 0) in the left bottom corner to the point (1, 1) in the right top
corner. For the random guess outcome, D = A, a straight line
is observed between the two corners. This occurs when there
is no memory in the data. The area under the ROC curve is a
measurement of predicting performance. In practical applica-
tion, people are more interested in the predicting model with
less false alarms. Hence, we define the following performance
statistics to evaluate the predicting power,

AUCm =
∫ 0.3

0
D(A)d A, (13)

where AUCm is nothing but the area below the ROC curve in
the range of 0 ≤ A ≤ 0.3. Focusing A in this range is that the
predictions are commonly useless if the false alarms are large.
From this definition, the statistic AUCm locates in the range

of [0.045, 0.3]. The bottom limit corresponds to the random
guess and the up limit is associated with the perfect prediction.

We estimate the volatility series v(t) for each stock and
regard the last year as an out-of-sample predicting period.
The data not in the last year are considered as the in-sample
training set, which is used to calibrate the model parameters.
The forecasting of large volatilities is implemented as follows:

• The stretched exponential distribution parameter µ is es-
timated through fitting the recurrence intervals between
large volatilities above a threshold Q associated with
τQ = 100 for the data in the in-sample training set.

• The events of large volatilities are identified in the out-
of-sample predicting period based on the threshold Q in
the in-sample calibrating period.

• The hazard probability W ("t |t) in the out-of-sample
predicting period is determined based on the in-sample
distribution parameter µ and the out-of-sample large
volatilities.

• The correct prediction rates D and the false alarm rates A
are calculated by comparing the predicting large volatil-
ities with the actual out-of-sample large volatilities. The
predicting large volatilities are obtained through making
comparisons of the hazard probability W ("t |t) and the
hazard threshold Q p, which is varying from 0 to 1.

• The ROC curve is obtained through plotting D with
respect A. The performance statistic AUCm is estimated
based on equation (13).

Figure 6(a) plots a subseries of the volatility in the out-of-
sample predicting period and highlights events above threshold
Q in the top panel. The risk probability W (1|t) is shown in the
bottom panel. Note that W (1|t) decreases as time t elapsed
from the last large volatility event increases. Threshold Q p
is plotted as a horizontal line to show the activating alarm
process. By varying Q p within a [0, 1] range, we obtain all
pairs of (A, D). Figure 6(b) shows the ROC curves for two
stocks. The two curves are above the dashed line D = A,
indicating that our prediction is not random. The two curves
do not overlap, indicating that the accuracy of this prediction
algorithm varies for different stocks. We can observe that the
AUCm of stock 000001 is greater than that of stock 900956,
which means that this model offers a relative better forecasting
performance for stock 000001. We also calculate AUCm for all
stocks. Figure 6(c) shows the frequency plots of AUCm . Note
that the peak is centred at ≈ 0.08, about two times of a random
prediction.We also find there are 22 stocks with AUCm > 0.15.
The top three values are 0.2130, 0.2088 and 0.1993 for stocks
000557, 000529 and 000628, indicating that our forecasting
algorithm can accurately predict the large volatilities of these
three stocks. Previous research has indicated that the efficiency
of the algorithm is primarily influenced by the linear and non-
linear memory behaviour in the original volatilities (Bogachev
and Bunde 2011). Our results could be explained by that the
behaviour of stocks with stronger memory behaviours, such
as volatility clustering and multifactality, could be more accu-
rately predicted using our algorithm. Our algorithm only takes
into consideration the probability distribution of recurrence
intervals; if the memory behaviour of recurrence intervals is
also included, we believe that its predictive accuracy would be
greatly enhanced.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of the empirical hazard probability Wemp and the analytical hazard probability WSE based on stretched exponential
distribution for two stocks and "t = 1, 5, and 10. (a)–(c) Stock 000001. (d)–(f) Stock 900956.

(a) (b) (c)

Figure 6. Prediction of large volatilities. (a) Plots of a representative volatility series in the top panels and hazard probability W (1|"t) in
the bottom panels. (b) Plots of ROC curves for stock 000001 and stock 900956. (c) Distribution plots of AUCm .

5. Conclusion

In this work, we have utilized a decision-making algorithm to
forecast the occurrence of large volatilities in the Chinese stock
markets based on the hazard probability, which is derived from
the distribution of recurrence intervals between the volatilities
exceeding a threshold Q. By fitting the volatility recurrence
intervals by means of four candidate distributions and assessing
the fitting validity by means of likelihoods and KS statistics,
we have found that the volatility recurrence intervals are well
approximated by a stretched exponential distribution. All the
four distribution parameters (µ, γ , q and ζ ) are found to be
dependent of the mean recurrence time τQ , which has a one-to-
one correspondence with the threshold Q, for all the stocks in
our sample. Using a moving window analysis, we have found
that the parameters are influenced by market status and exhibit
a monotonic trend with the evolution of time, that µ and ζ

decrease and γ and q increase. These behaviours are consistent
with the inefficiency of the Chinese stock markets from 2007
to 2011.

Using the stretched exponential distribution formula, we
have derived an analytical solution of the hazard probability
W ("t |t) of the next large volatility event above the threshold
Q within a short time interval "t after an elapsed time t
from the last large volatility above Q. This analytical solution
W ("t |t) is in good agreement with the empirical risk probabil-
ity estimated from real stock data. Based on a decision-marking

algorithm, we have used the hazard probability to forecast large
volatilities in the out-of-sample predicting period. We have
found that the average statistic AUCm , which corresponds to
the area below the ROC curve in the range of 0 ≤ A ≤ 0.3,
is 0.091 for all stocks. We have also found that there are
two stocks with AUCm > 0.2, indicating that our predicting
algorithm is accurate in forecasting the large volatilities. Our
findings may shed new light on our understanding of extreme
volatility behaviour and may have potential applications in
managing stock market risk.
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