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not be detected. We therefore infer that when the substrate is
heated, the nanotube and onion structures disintegrate on impact
far more efficiently and to a greater extent.

Tetrahedral amorphous carbon has been the hardest form of
non-diamond carbon thin film obtained to date. The hardness and
elastic recovery measured from indentation curves (with a 5mN
maximum loading) on similar-thickness films—500 nm—of nano-
particle carbon (NC) and tetrahedral amorphous carbon are
shown in Table 1. A typical indentation characteristic of an NC
film deposited at 350 °C is shown in Fig. 3. The absence of large
nanotube regions in this film, compared to the films deposited at
room temperature, and the fact that it has a high hardness and
elastic recovery, suggest that a qualitatively new form of carbon
thin film is obtained.

Considering the difference between the NC films deposited at

room temperature and high temperature in terms of mechanical
properties, it is possible that breakup of the large nanotube
regions results in a denser structure without the weak interplanar
coupling of the curved hexagonal planes. It seems reasonable to
suppose that by heating the substrate the C atoms become more
mobile, and thus interlinking becomes more prevalent as the tubes
break up into smaller fragments. In the resulting film, fine
structure would not be easily distinguishable from the surrounding
amorphous matrix (spectrum d in Fig. 2). Although insight into
the detailed structure of superhard and superelastic nanoparticle
carbon nanoparticle carbon films requires further experimental
and theoretical study, their relative ease of deposition makes them
particularly suitable for evaluation as protective coatings in
applications ranging from computer memory disks to surgical
implants. |
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BioLocicAL time-series analysis is used to identify hidden dyna-
mical patterns which could yield important insights into under-
lying physiological mechanisms. Such analysis is complicated
by the fact that biological signals are typically both highly
irregular and non-stationary, that is, their statistical character
changes slowly or intermittently as a result of variations in
background influences'. Previous statistical analyses of heart-
beat dynamics*® have identified long-range correlations and
power-law scaling in the normal heartbeat, but not the phase
interactions between the different frequency components of the
signal. Here we introduce a new approach, based on the wavelet
transform and an analytic signal approach, which can charac-
terize non-stationary behaviour and elucidate such phase inter-
actions. We find that, when suitably rescaled, the distributions of
the variations in the beat-to-beat intervals for all healthy subjects
are described by a single function stable over a wide range of
timescales. However, a similar scaling function does not exist for
a group with cardiopulmonary instability caused by sleep apnoea.
We attribute the functional form of the scaling observed in the
healthy subjects to underlying nonlinear dynamics, which seem to
be essential to normal heart function. The approach introduced
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here should be useful in the analysis of other nonstationary
biological signals.

A random process is stationary if its statistical characteristics
are invariant under time shifts, that is, if they remain the same
when ¢ is replaced by ¢ + 4, where 4 is arbitrary. The probability
densities, together with the moment and correlation functions, do
not then depend on the absolute position of the points on the time
axis, but only on their relative configuration. Non-stationarity, an
important aspect of biological variability, can be associated with
patterns of different drifts in the mean value of a given signal, or
with changes in its variance which may be gradual or abrupt. Time
series of beat-to-beat (R-R) heart-rate intervals (Fig. la),
obtained from digitized electrocardiograms, are known to be
non-stationary and exhibit extremely complex behaviour’. A
typical feature of such non-stationary signals is the presence of
‘patchy’ patterns that change over time (Fig. 10). Heterogeneous
properties may be even more strongly expressed in certain cases of
abnormal heart activity. Traditional approaches (such as the
power spectrum and correlation analysis**®) are not suited for
such non-stationary (patchy) sequences, nor do they carry infor-
mation stored in the Fourier phases which is crucial for determin-
ing nonlinear characteristics.

To address these problems, we present an alternative method,
which we call ‘cumulative variation amplitude analysis’, to study
the subtle structure of physiological time series. This method
involves the sequential application of a set of algorithms based on
wavelet and Hilbert transform analysis. First, we apply the wavelet
transform (Fig. 1c), because it does not require stationarity and
preserves the Fourier phase information. The wavelet trans-
form!®'? of a time series s(¢) is defined as

T =5 sou(

— 00

)dt (1)

where the analysing wavelet ¢ has a width of the order of the scale
a, and is centred at time f,. The wavelet transform 7' is sometimes
called a ‘mathematical microscope’ because it allows the study of
properties of the signal on any chosen scale a. For high frequen-
cies (small a), the ¢ functions have good localization (being
effectively non-zero only on small sub-intervals), so short-time
regimes or high-frequency components can be detected by the
wavelet analysis. However, a wavelet with too large a value of scale
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FIG. 1 a, Segment of electrocardiogram showing beat-to-beat (R-R);
intervals. b, Plot of R—R time series against consecutive beat number for
a period of 6h (~ 2.5 x 10* beats). Non-stationarity (patchiness) is evi-
dent over both long and short timescales. Although these patches clearly
differ in the amplitude and frequency of variations, their quantitative
characterization remains an open problem. ¢, Wavelet transform T, (R-R)
of the R-R signal in b. Non-stationarities related to constants and linear
trends have been filtered. The first derivative of the gaussian Yy is
orthogonal to segments of the time series with different constant local
average. This results in fluctuations of the wavelet transform values around
zero, with highest spikes at the positions where a sharp transition in the
constant value in the constant value occurs. Thus the large spikes indicate
the boundaries between patterns with different local average in the signal,
and the smaller fluctuations represent variations of the signal within a given
dynamical regime. Because ' is not orthogonal to linear (non-constant)
trends, the presence of consecutive linear trends in the R—R intervals will
give rise to fluctuations of the wavelet transform values around different
non-zero levels corresponding to the slopes of the linear trends. v and
higher order derivatives can eliminate the influence of linear as well as
nonlinear trends in the fluctuations of the wavelet transform values. d,
Instantaneous amplitudes A(t) of the wavelet transform signal in c; A(t),
calculated using the Hilbert transform, measures the cumulative variations
in the interbeat intervals over an interval proportional to the wavelet scale a.

a (low frequency) will filter out almost the entire frequency
content of the time series, thus losing information about the
intrinsic dynamics of the system. We focus our ‘microscope’ on
scale a = 8 beats, which smoothes locally very high-frequency
variations, and best probes patterns of specific duration (30s to
1min) (see Fig. 2 legend). The wavelet transform can eliminate
local polynomial behaviour (trends) in the non-stationary signal
by an appropriate choice of the analysing wavelet i (ref. 13). In our
study we use derivatives of the gaussian function: ™ = d"/ drre i,

The wavelet transform is thus a cumulative measure of the
variations in the heart-rate signal over a region proportional to the
wavelet scale, so study of the behaviour of the wavelet values can
reveal intrinsic properties of the dynamics that are masked by non-
stationarity.

The next step of the cumulative variation amplitude analysis is
to extract the amplitudes of the variations in the beat-to-beat
signal, by means of an analytic signal approach® that also does
not require stationarity. Let s(f) represent an arbitrary signal. The
analytic signal, a complex function of time, is defined by S(¢) =
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s(t) +i5 (t) = A(t)e?”, where §(¢) is the Hilbert transform® of s(¢),
A(t) = +/s*(t) + §*(¢) is the amplitude, and ¢(¢) = tan™'(5(¢) /s(¢))
is the phase.

We studied the distribution of the amplitudes of the beat-to-
beat variations (Fig. 1d ) for a group of healthy subjects (N = 18,5
males and 13 females; age, 20-50 years, mean 34 years) and a
group of subjects'® with obstructive sleep apnoea'” (N = 16 males;
age, 32-56 years, mean 43 years). To minimize non-stationarity
resulting from changes in the level of activity, we begin by
considering night-phase (0:00 to 6:00) records of interbeat inter-
vals (~10* beats) for both groups. Inspection of the distribution
functions of the amplitudes of the cumulative variations indicates
marked differences between individuals (Fig. 2a). These differ-
ences are not surprising, given the underlying physiological differ-
ences among healthy subjects.

We next analyse the distributions of the beat-to-beat variation
amplitudes. For the healthy group, these are well fit by the
generalized homogeneous form'® (the gamma distribution)

bv+l _

P(x,b) = m—)x € (2)
where b = v/x,, I'(v + 1) is the gamma function, x, is the position
of the peak P = P,,,, and v is the fitting parameter (Fig. 3a). A
function P(x,b) is a generalized homogeneous function if there
exist two numbers « and f, called scaling powers, such that, for all
positive values of the parameter 4,

P(X*x, A’b) = 2P (x,b) (3)
Generalized homogeneous functions are defined as solutions of
this functional equation; P(x, b) satisfies this equation with oo = —1

and f = 1.

Functions describing physical systems near their critical points
are generalized homogeneous functions'. Data collapse is one of
the important properties of generalized homogeneous functions:
instead of data points falling on a family of curves, one for each
value of b, data points collapse onto a single curve given by the
scaling function

P(u)=P(x,b)/b 4)

where the number of independent variables is reduced by defining
the scaled variable u = bx. Our results show that a common
scaling function P(u) defines the probability density of the magni-
tudes of the variations in the beat-to-beat intervals for each
healthy subject. Note that it is sufficient to specify only one
parameter b to characterize the heterogeneous heartbeat varia-
tions for each subject in this group.

To test the hypothesis that there is a hidden, possibly universal,
structure to these heterogeneous time series, we rescale the
distributions and find for all healthy subjects that the data conform
to a single scaled plot (‘data collapse’) (Fig. 2b). Such behaviour is
reminiscent of a wide class of well-studied physical systems with
universal scaling properties'>”. In contrast, the subjects with sleep
apnoea show individual probability distributions (Fig. 2c) which
fail to collapse (Fig. 2d).

We also analysed heart-rate dynamics for the healthy subjects
during daytime hours (12:00 to 18:00). Our results indicate that
the observed, apparently universal behaviour holds not only for
the night phase but also for the day phase (Fig. 3b). Moreover, we
find the observed scaling to be stable for a wide range of timescales
(Fig. 3c).

To ascertain whether the observed scaling of the distributions
for healthy subjects is an intrinsic property of normal heartbeat
dynamics, we test the cumulative variation amplitude method on
artificially generated signals with known properties. Our analysis
of uniformly distributed random numbers in the interval [0,1] and
of gaussian-distributed noise with and without long-range power-
law correlations shows that, after the wavelet transform, the
amplitude distributions follow the Rayleigh probability distribution
(x/c*)e™"/". This finding agrees with the central limit theorem,
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P(x)

FIG. 2 a, Probability distributions P(x) of the amplitudes of heart-rate
variations x = A(t) for a group of 18 healthy adults. Individual differences
are indicated by the different average value and widths (standard devia-
tions) of these distributions. All distributions are normalized to unit area. b,
Same probability distributions as a, after rescaling P(x) by P,..,, and x by
1/P...x, t0 preserve the normalization to unit area. This rescaling is equiva-
lent to that discussed in the text (equation (4)), as P(x) = P(x,b) and
P.ax < b. The data points collapse onto a single curve. ¢, Probability
distributions for a group of 16 subjects with obstructive sleep apnoea.
The second (right-hand) peak in the distributions for the sleep-apnoea
subjects corresponds to the transient emergence of characteristic patho-
logical oscillations in the heart rate associated with periodic breathing®*’. d,
Distributions for the apnoea group after the same rescaling as in b. The
absence of data collapse demonstrates deviation from normal heart
behaviour. Direct analysis of interbeat interval histograms does not lead
to data collapse or separation between the healthy and apnoea group.

which can be expressed as a property of convolutions (in our case
wavelet transform): the convolution of a large number of positive
functions is approximately a gaussian function, and the instanta-
neous amplitudes of a gaussian process follow the Rayleigh
probability distribution®.

We perform parallel analysis on surrogate data obtained from a
healthy subject by Fourier transforming the original time series,
preserving the amplitudes of the Fourier transform but randomiz-
ing the phases, and performing an inverse Fourier transform (Fig.
4). Thus both the original and surrogate signals have identical
power spectra. Application of the cumulative variation amplitude
analysis on this surrogate signal results again in a Rayleigh
distribution, whereas the original time series has a distribution
with an exponential tail. This test clearly indicates the important
role of phase correlations in the R—R time series. The presence of
these correlations is probably related to the underlying nonlinear
dynamics. A characteristic feature of nonlinear (as opposed to
linear) systems is the coupling of their components. These mode
interactions may lead to non-random phase structure, and, in the
context of the heartbeat, may account for the visually ‘patchy’
appearance of the normal time series. Our procedure, by preser-
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Moreover, the direct application of the Hilbert transform yielding the
probability distribution of the instantaneous amplitudes of the original
signal does not distinguish clearly healthy from abnormal cardiac dynamics.
Hence the crucial feature of the wavelet transform is that it extracts
dynamical properties hidden in the cumulative variations. For the healthy
group, good data collapse is observed with a stable scaling form for wavelet
scales a =2 up to a = 2 up to a = 64. However, for very small scales
(a = 1, 2), the average of the rescaled distributions of the apnoea group is
indistinguishable from the average of the rescaled distributions of the
healthy group. Hence very high frequencies are equally present in the
signals from both groups. Our analysis yields the most robust results when a
is tuned to probe the collective properties of patterns with a duration of 30 s
to 1 minin the time series (a = 8, 10). The subtle difference in the tail of the
distributions between day and night phases is also best seen for this scale
range (Fig. 3).

ving the collective phase properties of the original signal which
cannot be detected by conventional power-spectrum analysis,
uncovers a previously unknown nonlinear feature of healthy
heart-rate fluctuations.

Furthermore, our finding suggests that, for healthy individuals,
there may be a common structure to this nonlinear phase inter-
action. This scaling property cannot be explained by activity, as we
analysed data from subjects during nocturnal hours, or by sleep
stage transitions, as we found a similar pattern during daytime
hours. The basis of this robust temporal structure remains
unknown and presents a new challenge to understanding non-
linear mechanisms of heartbeat control. We also find that subjects
with sleep apnoea, a common and important instability of cardio-
pulmonary regulation, show a dramatic alteration in the scaling
pattern that may be related to pathologic mode locking associated
with periodic breathing dynamics®.

We believe that the method developed here can pick up
differences that are missed by other approaches for two reasons:
it can ‘filter out’ dominant features related to non-stationarities
and thereby become sensitive to hidden scaling features; and is
sensitive to the time ordering of events (provided a sensible choice
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FIG. 3 a, The solid line is a fit of the rescaled distributions of the beat-to-
beat variation amplitudes of the 18 healthy subjects during sleep hours to a
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stable gamma distribution with v = 1.4 + 0.1 (note that the stable gamma
form has been used previously in the literature to describe other processes,
such as the spike activity of a single neuron in ref. 23). b, Data for 6-h
records of R—R intervals for the day phase of the same control group of 18
healthy subjects demonstrate similar scaling behaviour with a gamma
distribution and v = 1.8 + 0.1, showing that the observed common struc-
ture for the healthy heart dynamics is not confined to the nocturnal phase.
Semilog plots of the averaged distributions show a systematic deviation
from the exponential form (slower decay) in the tails of the night-phase
distributions, whereas the day-phase distributions follow the exponential
form over almost the entire range. The tail of the observed distribution for
the night phase indicates higher probability of larger variations in the healthy
heart dynamics during sleep hours in comparison with the daytime
dynamics. The maximum difference between the cumulative distributions
of the individual subjects and the gamma fit in a, evaluated using the
Kolmogorov—Smirnov test, can be a good index to separate the healthy from
the apnoea group. Analysis of the mean and the variance of the individual
distributions also shows clear separation for both groups. c, Average of the
rescaled distributions for the amplitudes of the cumulative variations for the
healthy group during nocturnal hours. Note that the observed gamma
scaling is stable for a wide range of the wavelet transform scales a.
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FIG. 4 a, Original R—R time series as a function of beat number. b, Wavelet
transform T, (R-R) of this series. ¢, Surrogate (R-R),,, signal after phase
randomization. d, Wavelet transform of the surrogate signal which is more
homogeneous (less patchy) than in b. e, Probability distributions of the

is made for the scale parameter a). Thus the dual use of wavelet
and Hilbert transform techniques may be of practical diagnostic
and prognostic value, and can be applied to a wide range of
heterogeneous, ‘real world’ physiological signals. O
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RECENT measurements of inorganic chlorine gases' and hydro-
carbons® indicate the presence of reactive chlorine in the remote
marine boundary layer; reactions involving chlorine and bromine
can affect the concentrations of ozone, hydrocarbons and cloud
condensation nuclei. The known formation mechanisms of
reactive halogens require significant concentrations of nitrogen
oxides®™, which are not present in the unpolluted air of the
remote marine boundary layer®. Here we propose an autocatalytic
mechanism for halogen release from sea-salt aerosol: gaseous
HOBr is scavenged by the aerosol and converted to only slightly
soluble BrCl and Br,, which are released into the gas phase.
Depending on the sea-salt concentration and given a boundary
layer that is stable for a few days, gaseous HOC] and HOBr may
reach molar mixing ratios of up to 35 pmol mol~'. We calculate
that HOBr and HOCI are responsible for 20% and 40%, respec-
tively, of the sulphur (1v) oxidation’® that occurs in the aerosol
phase. The additional S(1v) oxidation reduces the formation of
cloud-condensation nuclei, and hence the feedback between
greenhouse warming, oceanic DMS emission and cloud albedo.
We also calculate significant bromine-catalysed ozone loss.

Recently, considerable attention®'* has been given to the role in
the chemistry of the marine boundary layer (MBL) of chlorine
atoms, which react with alkanes up to two orders of magnitude
faster than do hydroxyl radicals. Chlorine atoms may accordingly
serve as an additional oxidant, at concentrations larger than
1 x 10* atoms cm~>. From diurnal measurements of non-methane
hydrocarbons*!*, or the observation of inorganic chlorine gases,
Cl-atom concentrations of the order of 10*~10° atoms cm~ were
inferred. In addition, Barrie et al.'* have suggested—and there is
now evidence for this from field measurements'*—that ozone is
destroyed in the MBL during polar sunrise by a mechanism
involving Br and BrO.

So far no satisfactory mechanism has been proposed for
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reactive bromine and chlorine production in the pristine
MBL or the Arctic. The gas-phase reactions of OH radicals
with HCI or HBr are only a minor source of halogen atoms.
Singh and Kasting'” calculated Cl-atom concentrations of
10°atomscm >, assuming an HCI volume mixing ratio of
1nmol mol~', which is much larger than measured in the remote
MBL!?!8, Very recently, Mozurkewich'® suggested the reaction of
peroxomonosulphuric (Caro’s) acid (HSO;5) with sea-salt
bromide as a source of elemental bromine in the Arctic. However,
the mechanism is favoured by low temperatures and high SO,
concentrations and by itself should not oxidize significant amounts
of halides. Mozurkewich also discussed direct bromide oxidation
through free radicals, such as OH or HO, in the sea-salt aerosol.
However, none of these mechanisms is capable of significant
chlorine atom production in the unpolluted MBL.

Our proposed mechanism for autocatalytic bromine and chlor-
ine chemistry in the liquid and gas phase is shown in Fig. 1.
Hypobromous acid, HOBr, which is formed through an initial
bromide oxidation (see below), is scavenged by sea-salt aerosol.
Because in sea water (and therefore also in the nascent sea-salt
aerosol) the bromide to chloride ratio is ~1/700, HOBr reacts
with Cl™:

HOBr + ClI” + H* < BrCl + H,0

l. 20

(17 _1)

Recently, Wang et al.”’ determined a lower limit of the BrCl
hydrolysis rate constant, k_; > 1 x 10° s™'. From the equilibrium
constant K., = 5.6 x 10°M~2 (ref. 20), we calculate the rate
constant of the forward reaction k, > 5.6 x 10° M~?s™!, which is
of the same order of magnitude as that of the comparable reaction
of HOBr with Br~ (ref. 21).

HOBr + Br™ + H' < Br, + H,0
(27 _2)
(k=16 x10°M7?2s™! k, =110s")

This reaction has been discussed as potentially important for
bromine cycling on sulphate aerosol® and for autocatalytic
bromine release from sea-salt aerosol®*. Because of the large
[CI")/[Br~] ratio in sea water, the forward reaction (1) is much
more important than forward reaction (2). Although the hydrolysis
reaction (—1) is faster than reaction (—2), this is of lesser
significance because a substantial fraction of the BrCl will react
with Br~ leading to autocatalytic Br activation:

HOBr + ClI” + H" « BrCl + H,0 (1,-1)
BrCl + Br < Br,CI” (3,-3)
Br,ClI” < Br, + CI” (4,-4)

Br, -+ hv — 2Br 5)

2(Br + O;) — 2(BrO + O,) (6)

2(BrO + HO,) — 2(HOBr + 0O,) (7)

HOBr,C1™

(net)2HO, + H" + 205 + Br™ + hv HOBr + 40, + H,O0

(8)
Equilibria (3) and (4) were found to be established very rapidly®,
probably at a diffusion-controlled rate. After escape of Br, to the
gas phase, photolysis (5) and reactions (6), (7) and (1) an auto-
catalytic cycle of bromine activation is closed. Thus, bromide
oxidation is driven by HO,, O; and aerosol acidity in the presence
of sunlight and is catalysed by HOBr and CI~.

We have incorporated reactions (1)—(7) into a photochemical
box model of the MBL®. The model treats chemical reactions in
the gas phase and deliquesced sea-salt particles, as well as
exchange between the two phases; standard O;-NO,-HO,-S
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