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Summary

Individual locations of many neuronal cell bodies (>104)
are needed to enable statistically significant measurements
of spatial organization within the brain such as nearest-
neighbour and microcolumnarity measurements. In this
paper, we introduce an Automated Neuron Recognition
Algorithm (ANRA) which obtains the (x, y) location of
individual neurons within digitized images of Nissl-stained,
30 μm thick, frozen sections of the cerebral cortex of the
Rhesus monkey. Identification of neurons within such Nissl-
stained sections is inherently difficult due to the variability
in neuron staining, the overlap of neurons, the presence
of partial or damaged neurons at tissue surfaces, and the
presence of non-neuron objects, such as glial cells, blood
vessels, and random artefacts. To overcome these challenges
and identify neurons, ANRA applies a combination of image
segmentation and machine learning. The steps involve active
contour segmentation to find outlines of potential neuron cell
bodies followed by artificial neural network training using the
segmentation properties (size, optical density, gyration, etc.) to
distinguish between neuron and non-neuron segmentations.
ANRA positively identifies 86 ± 5% neurons with 15 ± 8%
error (mean ± SD) on a wide range of Nissl-stained images,
whereas semi-automatic methods obtain 80 ± 7%/17 ± 12%.
A further advantage of ANRA is that it affords an unlimited
increase in speed from semi-automatic methods, and is
computationally efficient, with the ability to recognize ∼100
neurons per minute using a standard personal computer.
ANRA is amenable to analysis of huge photo-montages of Nissl-
stained tissue, thereby opening the door to fast, efficient and
quantitative analysis of vast stores of archival material that
exist in laboratories and research collections around the world.
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Introduction

Since the 1980s, the application of unbiased stereological
approaches to quantify objects of biological interest has
allowed for rigorous measurements of many parameters
of brain structure including total neuron number, area,
and volume. These approaches are based on systematic
random sampling from defined regions of interest using
unbiased estimators (Mayhew, 1991; Schmitz & Hof, 2005).
Although these measurements have produced extremely
valuable insights into the structural organization of the brain,
including age-related preservation of neuron numbers (Peters
et al., 1998), these ‘first order’ stereological parameters only
partially describe the structural organization of the brain, as
they cannot efficiently quantify ‘second order’ parameters
that measure more complex spatial properties of neuron
organization, such as the nearest neighbour arrangement
(Asare, 1996; Duyckaerts & Godefroy, 2000; Schmitz et al.,
2002; Urbanc et al., 2002; Hof et al., 2003; Krasnoperov &
Stoyan, 2004) and arrangement into mini- or microcolumns
(Buxhoeveden & Lefkowitz, 1996; Buldyrev et al., 2000; Cruz
et al., 2005).

Several approaches can be used to quantify ‘second order’
parameters. Stereological methods can quantify nearest-
neighbour arrangement (Schmitz et al., 2002), but the
methods are labour intensive and would be difficult to apply
to large brain areas. Image Fourier methods do not require
manual marking of neuron locations and can quantify ‘vertical
bias’ of objects within an image (Casanova et al., 2006), but do
not discern between the contribution from glial and neuronal
cell bodies.

Alternatively, pair correlation methods use concepts from
statistical physics to calculate correlation properties such
as cross-correlation between two different types of objects
(Urbanc et al., 2002) and microcolumnar organization
(Buldyrev et al., 2000) of neurons, as well as more discerning
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properties of spatial arrangement, such as the strength of
microcolumnar order and microcolumnar width and length
(Cruz et al., 2005). The multitude of spatial organization
quantities that can be calculated with pair correlation analysis
makes it appealing to apply to large brain areas. To do
that, we first need to address the major challenge to this
approach: how to obtain the necessarily large number of
neuron locations (103–104 locations per measurement) to
get statistically significant results (see Section ‘Density map
method and microcolumnar strength’ and ‘Discussion’) over
large regions of the brain, reaching ∼106 for a large study. The
acquisition of such numbers of neurons by manually or semi-
automatically identifying and marking the location of each is
prohibitively time-consuming and open to user bias. Hence,
correlative analysis of spatial relationships among neurons
[as well as non-stereology based cell counts (Todtenkopf et
al., 2005)] would be dramatically facilitated by an automatic
method for identifying and locating the visible centres of
neurons accurately and efficiently.

Although various other immunhistochemical methods
could facilitate automated discrimination of neurons and glia
better than Nissl, there are important advantages to develop
automated methods for Nissl-stained tissue. Nissl-staining is
the least expensive, easiest applied method for staining both
neurons and glia. Furthermore, there are thousands of unique
and often irreproducible collections of Nissl-stained brain
material in clinical and research labs around the world that
could be analyzed using the Automated Neuron Recognition
Algorithm (ANRA).

There are several challenges to automatically retrieve
neuron locations from two-dimensional digitized images of
Nissl-stained brain tissue (Fig. 2a). A major challenge is
to distinguish between neuron and non-neuron objects,
including staining errors, tissue folds, and dirt particles, as well
as blood vessels and glial cells. Another challenge is to identify
neurons that differ almost as widely from each other as they do
from non-neuronal objects. Neuron cell bodies are naturally
diverse in size and shape and have different orientations with
respect to their dendrite and axon processes. Neurons can also
be cleaved at the cutting surface or damaged by the cutting
process, which affects their shape in the tissue. These variables
lead to diverse neuron cell profiles within the tissue slice.
A further challenge is to discriminate between neurons that
overlap, a common finding as tissue sections are 3D volumes
projected onto a 2D image.

There are currently several published approaches to
automatic retrieval of cell bodies from images. Some methods
use segmentation techniques based on thresholding (Slater
et al., 1996; Benali et al., 2003), Potts model (Peng et al.,
2003), watershed (Lin et al., 2005), and active contours (Ray
et al., 2002). Others use trained neural networks to mark
appropriately sized ‘pixel patches’ as cells of interest. The
‘pixel patch’ training methods use artificial neural networks
(Sjöström et al., 1999), local linear mapping (Nattkemper et al.,

2001), Fischer’s linear discriminant (Long et al., 2005) and
support vector machines (Long et al., 2006). Another method
based on template matching has been recently introduced by
Costa & Bollt (2006).

In this paper, we introduce and test an ANRA (Fig. 1) which
uses a combination of segmenting and training to overcome
the challenges of retrieving neuron location in Nissl-stained
tissue sections. ANRA automatically identifies neurons from
digital images and retrieves their (x, y) locations.

Methods

Image input and preprocessing

The inputs for ANRA are photomicrographs of 30 μm thick
Nissl-stained tissue sections taken at 10× magnification and
a resolution of 1.5 μm per pixel. Because the 30 μm tissue
section shrinks during processing to a thickness of less than
10 μm, all of the tissue is in focus when viewed at microscopic
magnifications of 20× or lower, thus the 2D image properly
represents neuron locations. Since the colour information is
not as useful in the monotone Nissl-stained images (Fig. 2a)
the images are converted to grey scale images ranging from 0
(black) to 255 (white).

The photomicrographs are taken from different areas of
the brain from different subjects at different times. Therefore,
images are of different ‘quality’, reflecting a combination of
variations in morphology, staining, slide preparation, and
digitization (Fig. 2b). To reduce this variability, the images
are first ‘normalized’ such that every image has the same
background and foreground average optical density. This
is done by thresholding each image into foreground and
background pixels and finding the average optical density for
the foreground and background separately. For each image,
the optical density histogram is then shifted to match the
foreground/background averages of an ideal image (Fig. 3a).
Figure 3(b) shows the images final normalization as compared
to the original images in Fig. 2(b). This preprocessing step
removes most of the image variations due to processing
(staining, slide preparation, digitization, etc.) and is a key step
toward applying ANRA to an unlimited number of images that
do not vary drastically in intrinsic morphological differences
(neuron density, shape, size, etc.). There is no need for other
preprocessing steps such as blurring or sharpening since
ANRA, by design, overcomes the challenges of noisy images
and weak boundary information.

Main segmentation tool: OSM

Here we describe the segmentation procedure presented in
Fig. 1, called the overall segmentation method (OSM).

Overmarking the image. An initial step of the segmentation
process is ‘seeding’ the image with one or more points for each
possible neuron cell body. A combination of two methods is
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Fig. 1. A schematic diagram showing processes involved in the Automated Neuron Recognition Algorithm (ANRA). The schematic describes the two
main steps of the algorithm: training and application. Rectangles denote parameters that pass through the algorithm. Ovals, such as the OSM, are the
computational parts of the algorithm, which can have images, segmentations, and parameters as their inputs and outputs.

used (Fig. 4a): a hexagonal grid of points is placed over the
thresholded foreground of the image and the centre points of
objects identified by the traditional watershed segmentation
(Javi, 2002).

Active contour segmentation. We employ active contour
segmentation with statistical shape knowledge (Cremers
et al., 2000) because the method is designed to overcome the
challenges of noisy images and missing boundary data, the
main identification challenge in Nissl-stained tissue. Also,

themethoduses low-dimensionalshaperepresentationswhich
are ideal for modeling cell contours (outlines of cells). Because
the image is initially overmarked, the calculations of contour
splitting (Zimmer et al., 2002) are not needed.

The image f i j is a digital image of sliced brain tissue which
defines the optical density (grey scale value) of each pixel (ij).
We assume that the image contains at least one type of object
of interest (neurons) mixed with other objects (non-neurons).
The goal of a single run of the segmentation is to ‘segment’ a
single object of interest (a single neuron) from the rest of the
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Fig. 2. Challenges of automated neuron recognition. (a) 20× micrograph
(scale bar: 50 μm) of a typical section showing the difficulties of separating
neurons from glial cells and other artefacts in Nissl-stained tissue:
1. capillaries, and unidentified material, 2. large glia (astrocytes), 3.
glial as light as neurons in some cases, 4. neurons overlapped by glia
(oligodendrocytes), 5. neurons overlapped by other neurons, 6. multiple
neurons and glial overlapped. (b) 10× micrograph examples showing
varying image quality. The highlighted micrograph is selected as an ‘ideal’
contrast to be used in image normalization.

image (all other neurons, non-neurons, and background). It
does this by ‘evolving’ a loop of pixels called a contour (C) from
a circle of typical neuron diameter (12 μm) starting at one of
the overmarked starting points, to a location and shape that
surrounds a potential neuron cell body (Fig. 4b). This process
is repeated for each starting location until all starting locations
have been exhausted.

The movement of C is controlled by a set of N points called
control points {(xn, yn)}n=1..N for which we use the compact
notation (Cremers et al., 2000)

z = (r1, . . . , rN ) = (x1, y1, . . . , xN , yN ) . (1)

The control points are parameters in a closed quadratic Bezier-
spline (B-spline) curve (Blake & Isard, 1998) that define the
exact location (pixels) of C (see Fig. 5 for definition). Hence, C
moves and changes shape by the iterative motion of the control
points z. At each time step, each control point z makes a small

Fig. 3. (a) Preprocessing ‘normalizes’ the images so that they every
image has the same background and foreground average optical densities,
thereby removing the challenge of varying image type within Nissl-stained
tissue. This is done by mapping optical density values of non-ideal images
to an ideal image so that the average foreground and background averages
are the same. The graph shows the optical density ranges of the ideal and
non-ideal images (0..255), and a Bezier curve that passes through 4 points:
(0,0), the background and foreground averages of the ideal and non-ideal
images, and (255,255). (b) Examples of image normalization.

movement towards encircling an object close to its starting
location by minimizing a total energy E based on two energy
considerations, E MS and E c:

E ( f , u, C ) = EMS( f , u) + αEc(C ). (2)

A qualitative understanding of the energy terms is presented
in Fig. 6. E MS is the Mumford–Shah energy term, which
determines how well the contour separates lighter and darker
grey scale regions in the image f i j . E c(C ) is the contour
energy term, which quantifies the similarity of the contour
to a previously chosen set of training shapes (in our case, the
training shapes are oval-like). E MS is high when C does not
separate different contrasts well, and is low if it does. E c(C ) is
high if the shape is very contorted, and low if it is oval-like. α

changes the relative influence of the two energy terms. If α is a
high value, then C will evolve into a rigid perfect oval, ignoring
all image information. If α is zero, then C will surround any
nearby object in the image with no regard to the final shape of C.
When the two energy terms are balanced with an appropriate
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Fig. 4. Steps of the overall segmentation method (OSM). (a) Overmarking
the image with a hexagonal grid of points that lay on the thresholded
foreground and centre points of a traditional watershed segmentation.
Pointswithin5pixelsarecombinedtoavoidredundancy.(b)Activecontour
segmentation: using each starting location found in (a), a segmentation
(clustering) process is performed within a small region of the image to
find one possible neuron cell body. This process is then repeated for each
starting location until all starting locations are exhausted. (c) The final set
of computer segments, shown in different solid colours, is the output of the
OSM.

α and the system is evolved to minimize E then objects in an
image are encircled properly. Figure 7 shows a typical evolution
of C with an appropriate α value. ui j is a variable image, similar
to a blurred version of f i j , which is used in the algorithm, as
described below.

The Mumford–Shah energy term E MS( f , u) quantifies the
alignment of the contour with edges in the image f i j :

EMS( f , u) = 1
2

∑
i j

{
[ fi j − ui j (t)]2 + λ2|∇ui j (t)|2}

, (3)

where λ is the Mumford–Shah energy parameter that
determines relative strengths of the terms. |∇ui j (t)|2 is the
square of the magnitude of the picture gradient:

|∇ui j (t)|2 =
(

∂u
∂x

)2

+
(

∂u
∂ y

)2

= [ui+1, j (t) − ui−1, j (t)]2 + [
ui , j+1(t) − ui , j−1(t)

]2

4
. (4)

It should be noted that Cremers et al. (2000) includes an
additional term ν‖C‖ to Eq. (3), which minimizes the length
‖C‖ of the contour within its evolution. We do not include

this term because it adds an additional free parameter and
does not contribute to the functionality of the algorithm when
identifying cell shaped objects.

Equation (3) is differentiated with respect to control point
movement. Setting the solution of the differentiation to a
minimum of E MS[ f , u(t)] gives the evolution equation for each
individual control point n = 1, . . . , N during each iteration dt
(Mumford & Shah, 1989):

ẋn(t) = (e+ − e−)nx

ẏn(t) = (e+ − e−)ny,
(5)

where e+ and e− are E MS (Eq. 3) summed over the single line
of pixels right outside (e+) and right inside (e−) the segment of
C centred around control point (xn, yn) (Fig. 8). nx and ny are
the outer normal vectors of C at each control point rn in the x
and y direction respectively. ẋ = d x/d t and ẏ = d y/d t, where
t is the artificial time parameter.

Equation(3) is thendifferentiatedwithrespecttothevariable
image ui j . Setting the solution to a minimum of E MS [ f , u(t)]
gives the evolution equation for each pixel uij during each
iteration dt (Mumford & Shah, 1989):

ui j (t + d t)

=
{

ui j (t) + {
fi j − ui j (t) + λ2∇2ui j (t)

}
d t if i j ∈ C

ui j (t) if i j ∈ C .
(6)

At t =0, ui j (0)= f i j .∇2ui j (t) is the Laplacian in 2D Cartesian
coordinates:

∇2ui j (t) =
(

∂2u
∂x2

)
+

(
∂2u
∂ y2

)
= ui+1, j + ui−1, j + ui , j+1 + ui , j−1 − 4ui , j (7)

Equation (6) describes a diffusion [∇2ui j (t)] process limited
by the original image [ f i j − ui j (t)]. The key component
is that ui j never evolves at the pixels that make up C . ui j

becomes stable once C separates contrasted regions. Therefore,
minimizing E MS tends to evolve C so that the grey scale values
vary slowly (smoothly) in the areas inside and outside the
contour but vary strongly (discontinuously) across the contour
C.

The contour energy term E c affects the shape of the contour
irrespective of the images f i j and ui j . E c is minimized for
contour shapes most similar to a previously chosen set of
training shapes χ = {z 1, z 2, . . .}. The energy is calculated
using the following equation:

Ec(C ) = 1
2

(z − z0)T �−1 (z − z0) , (8)

where the vector z 0 and the matrix � (with an inverse �−1)
contain the mean and covariant information of the previously
chosen set of training shapes χ = {z 1, z 2, . . .}:

z0 = 〈zi 〉 (9)

� = 〈(zi − z0)T (zi − zo )〉. (10)
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Fig. 5. (a) The contour C is described by the control points r1, r2, . . ., r N . (a) Quadratic Bezier curve B(t) is defined for control point n using the control
points rn−1, rn , and rn+1. The points r′

n are halfway between rn−1 and rn . The equation for the contour is B(t) = (1 − t)2r′
n + 2t(1 − t)rn + r′

n+1t2, t =
0..1. The equations guarantee that at the points r ′ the curve is continuous and smooth. Combining several Quadratic Bezier curves creates a quadratic
B-spline contour. An example with 5 control points is presented in (b) which shows how the B-spline contour moves when one control point (r1) moves.
(c) Contour C (white pixels) with 20 control points (single black pixels) that is overlaying the image.

Fig. 6. Schematic drawing showing the relative energies of E MS and Ec for the same image (shown as grey) and four different contour shapes (shown as
black loops). The first three cases are examples of improperly fit contours with a high overall energy E = E MS + αE c . The last case is an example of an
optimal contour minimizing the overall energy.
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Fig. 7. Examples of the active contour movement within the image during the OSM segmentation phase. The number of control points (black dots) is 20.
The B-spline contour is white. The contour starts at a location determined by the overmarking step of the OSM. (a) Evolution of the energy terms EMS

and E c. (b) Contour evolution after 0, 4, 8, 30, 48, 60, and 120 steps. When a local minimum is reached, the contour no longer moves, and the points
internal to the contour are saved.

Fig. 8. Control point movement based on E MS follows Eq. (12). The terms
e+ and e− are EMS (Eq. 3) integrated over the single line of pixels right
outside (e+) and right inside (e−) of the contour centred around each
control point n. nx and n y are the x and y components of the outer normal
vector of C at the control point.

Here 〈〉 denotes the sample average. z 0 is a 2N vector and �

is a 2N × 2N matrix. Creating z 0 and � for a set of shapes
χ = {z 1, z 2, . . .} is equivalent to modeling the distribution
of shapes in R2N as a Gaussian distribution (Cremers et al.,
2000).

To minimize E c(C ), the following evolution equation for
each control point is used:

ż(t) = �−1 (z(t) − z0) . (11)

Combining the two Eqs (5) and (11) gives the final evolution
equations for each control point n during each iteration:

xn (t + d t) = xn (t) + {
(e+ − e−)nx

+ α
[
�−1(z(t) − z0)

]
2n−1

}
d t

yn (t + d t) = yn (t) + {
(e+ − e−)ny

+ α
[
�−1 (z(t) − z0)

]
2n

}
d t, (12)

recalling that e+ and e− are E MS (Eq. 3) summed over the
single line of pixels right outside (e+) and right inside (e−) the
segment of C centred around control point (xn, yn) (Fig. 8),
and are dependent on λ and ui j .

The evolution of the contour is driven by Eqs (6, 12),
with variables ui j and contour points (x1, y1, . . . , x N ,
yN ). Note that Eqs. (6, 12) are coupled and must be solved
simultaneously.
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Performing a step by step evolution of the control points
(Eq. 12) and ui j (Eq. 6), C evolves in the following way: If
C begins to change into a contorted, non-ovular shape to
minimize E MS (such as ‘leaking’ out of an area of weak or
missing boundary information in the image), then E c will
increase, hence there will be a force opposing the movement.
Similarly, if the contour begins to move back to a perfect oval to
minimize E c, E MS will increase and thus limit such a change.
When a local minimum is reached and the contour no longer
moves, the points internal to the contour are saved, and the
process starts again at a new location until all starting locations
are exhausted.

There are several free parameters (α, λ, d t, N, etc.) that must
be set within the OSM algorithm. Some of these parameters,
called secondary parameters, do not greatly affect the evolution,
and can be set the same for all Nissl-stained images. The
secondary parameters are as follows: N is set to 20, so that
for a typical 80 μm circumference of a neuron cell body,
neighbouring control points are 3 μm, or roughly 4 pixels
away from each other. z 0 and� define the training that depend
on the typical shapes of the object of interest, in our case a
neuron. We build these parameters by creating a sample of
100 ellipses, ranging linearly from an eccentricity of 0–0.4,
a simple representation of the average shape of neuron cell
bodies. To speed up the evolution, we allow for different ‘time’
steps and Mumford–Shah parameters in Eqs (12,6). In Eq. (12),
d t → d tc and λ → λc. In Eq. (6), d t → d tu and λ → λu . In this
schema, d tc, d tu and λu can be set as secondary parameters
which do not need to change for any of the pictures. We set
d tc = 100, d tu = 0.05 and λu = 1.

In addition to the secondary parameters, there are two
primary parameters which greatly affect segmentation, and
must be determined empirically: the energy ratio α between
E MS and E c, and the energy parameter λc within the E MS

term.
Because the active contour algorithm described above was

designed for generic object recognition, the algorithm itself (in
addition to the free parameters) can be ‘tuned’ for the task of
finding dark elliptical features that are overlapping or relatively
close to each other on a lighter background. We adjust the
above algorithm in a simple way to accommodate overlapping:
if f i j − ui j (t) > 0 near and inside the given control point, the
contour is ‘leaking’ out to find the edge of another feature next
to it. We therefore multiply this control point’s contribution to
E MS by a free parameterη greater than 1. Here,η is a secondary
parameter, and is set to 1.5 for all images.

We now discuss each step in ANRA.

Step I: Image acquisition

We test ANRA on Nissl-stained tissue samples of seven young
adult (6.4–11.8 years; mean 8.5 years) and seven aged (24.7–
32.9 years; mean 30.1 years) female Rhesus monkey subjects
that were part of an ongoing study of the effects of aging on
cognitive function (Cruz et al., 2004). For each subject, eight

(four from each of two sections) grey scale (1–256) 512 × 512
pixel images with 1.5 pixels μm−1 resolution (∼150 neurons
per image) were taken from area 46, layer III of the prefrontal
cortex in the ventral bank of sulcus principalis. Three subjects
had appreciable differences in image quality between the two
sections, therefore the total number of different subject/image-
qualities is 17. Figure 2(b) shows 12 of the 17 subject/image-
qualities.

Step II: Segmentation training

All images are normalized as described in Section ‘Image
input and preprocessing’. Out of each of the 17 subject/image-
qualities, one image is randomly selected as a training image.
The digital image is marked for neuron cell bodies by an expert
observer who ‘paints’ sets of pixels over the neurons using a
small graphical program. Different objects can share pixels,
or overlap, but the sets exist as separate entities even if there
is an overlap. We designate these sets of pixels created by an
expert observer the training segments. The training segments
will be compared to computer segments from the OSM output.
The manual identification is relatively quick (2–4 seconds per
neuron), and does not require a model image, i.e.: no feature
overlap (Lin et al., 2005). Furthermore, the cell marking
method creates knowledge of the extents of each cell body as
viewed by an expert observer, independent of and unbiased
to our segmentation procedure. This information is saved and
used repeatedly for multiple training runs as needed, and does
not have to be repeated for the same image if different training
parameters are checked (de Solórzano et al., 1999; Lin et al.,
2005).

We next determine the values of the primary parameters α

and λc, the two primary free parameters which greatly affect
the segmentation. We find that there is significant loss in
functionality when α is outside the [10−9, 10−8] range and
λc is outside the [1, 5] range. We therefore search this space
of α and λc by comparing the resulting computer segments
to the training segments. A training segment is ‘found’ if
the computer segment shares more than 70% of the pixels
with the training segment (Fig. 9). The set called the final
OSM parameters, denoted α∗ and λc

∗, is the set that correctly
identifies 95% or more training segments. The (α∗, λc

∗) values
are then recorded and used for the rest of ANRA.

The OSM with the correct primary parameters (α∗, λc
∗)

identifies 95% or more of neurons in the images, but it also
identifies other non-neuron objects, such as staining errors,
glial cells, and improper coverings of neurons. To separate
neurons from non-neurons, computer training is performed.

First, we compare the (α∗, λc
∗)-parameter OSM computer

segments to the training segments. Each computer segment is
either placed in the neuron segment category or non-neuron
segment category based on whether the segment mutually
overlaps any training segment (Fig. 9). Second, each segment
is represented by seven segment properties v = (v 1, v 2, . . . ,
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Fig. 9. Two segments represent the same object when they mutually share
more than 70% of their pixels. The two segments in (a) do not pass the
required criteria because neither segment overlaps the other by more than
70%. The two segments in (b) do not pass the required criteria because
only one segment overlaps the other by more than 70%. Only in (c) does
the required overlap occur. This analysis is used when computer segments
are compared to ‘gold standard’ training segments and either designated
a neuron or non-neuron, and during the overlap deletion phase, when the
segment with the highest probability of being a neuron is selected among
all overlapped segments.

v 7). The seven segment properties are chosen to be the most
salient measures of identifying neurons within an image. For
the calculations of the segment properties, we denote the total
number of pixels within the segment as Ac and the total number
of pixels within the contour as |C|. The properties are based on
the optical density of the original image f i j as well as the
square of the magnitude of the image gradient |∇ f i j |2. The
segment properties are presented in Table 1.

∑A is a sum over
all of the pixels within the segment area,

∑C is a sum over the
edge pixels of the segment circumference, r c is the location of
the centre of the segment, and r i j is the location of the pixel
(ij).

Using the WEKA machine learning toolkit (Witten & Frank,
2005), we assess the following machine learning algorithm’s
ability to discriminate between neuron property vectors {v+

1 ,
v+

2 , . . .} and non-neuron property vectors {v−
1 , v−

2 , . . .}: the
1-rule classifier (Holte, 1993), naive Bayes classifier (John
& Langley, 1995), support vector machine classifier (Platt,
1998), nearest neighbour classifier (Aha & Kibler, 1991),
decision tree classifiers (Quinlan, 1993), Bayes net and multi-
layer perceptron (Witten & Frank, 2005). The cost between
Type 1 errors (marking a non-neuron property vector as a

Table 1. Segment properties used in training.

Description Equation

v 1 Segment area Ac

v 2 Average optical density ( f ) 1
Ac

∑A fi j

v 3 Variance of optical density 1
Ac

∑A ( fi j − f )
2

v 4 Radius of gyration of optical density 1
Ac

∑A |ri j − rc| fi j

v 5 Segment edge length (|C|) versus segment area |C |/Ac

v 6 Average gradient of segment edge 1
|C |

∑C |∇ fi j |2

v 7 Average change in gradient of segment edge 1
|C |

∑C |∇ fi+1 j |2 − |∇ fi j |2
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Fig. 10. Receiver operating characteristic (ROC) curve for each training
method evaluated. It is seen that the Multilayer Perceptron (MLP) has
the best ROC curve – the highest percentage of neuron property vectors
identified with the smallest percentage of non-neuron property vectors
incorrectly identified. MLP is chosen as the main training method for
ANRA.

neuron) and Type 2 errors (marking a neuron property vector
as a non-neuron) is scanned by tuning the cost ratio term in
the training algorithm. A stratified cross-validation evaluation
for various cost ratios (3:1, 2:1, . . . , 1:10) creates a receiver
operator characteristic (ROC) curve (Duda et al., 2001) for each
training method (Fig. 10). The Multilayer Perceptron (MLP)
using a single, 4-node hidden layer, has the best ROC curve, as
it provides the highest percentage of neuron property vectors
identified and the smallest percentage of non-neuron property
vectors incorrectly identified. MLP is therefore chosen as the
main training method for ANRA.

Step III: Application

Automatic neuron recognition is now applied on an unlimited
number of other images that are normalized and similar in
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morphology to the training images. The steps are as follows:
1. The OSM with the primary parameters (α∗, λc

∗) is
performed on the new image.

2. The properties v are calculated for each computer segment.
3. A cost ratio is selected by the user.
4. All computer segments deemed non-neurons by the MLP

are discarded.
5. For any two remaining computer segments that mutually

overlap by more than 70%, the computer segments with
the smaller probability of being a neuron (as determined by
the MLP) is discarded.

The (x, y) centres, sizes, and shapes of the remaining
computer segments are the final result of ANRA.

Comparison method

A semi-automatic method (semi-auto) was used in prior
neuron density maps correlation studies (Cruz et al., 2005).
In the semi-auto method a combination of computer software
and human intervention for each image is employed to identify
neurons. Because the amount of human intervention scales
with the number of images analyzed, the semi-auto method
represents a standard with which we evaluate our completely
automated recognition method.

Density map method and microcolumnar strength

We give a description of the density map method, as it is the
main analysis to be applied to the results of ANRA. The density
map method was initially described by Buldyrev et al. (2000)
and a more detailed description and validation was given by
Cruz et al. (2005). The density map is a 2D representation of
the density correlation function g(x, y), which uses as input
the (x, y) locations of all neurons in the region of interest
(ROI). This function g(x, y) is mapped to a two-dimensional grey
scale image (density map) in which different shades of grey are
proportional to the average local neuronal density. Thus, the
density map quantifies the average neuronal neighbourhood
surrounding a typical neuron within the ROI.

Operationally, the density map is calculated by first assigning
indices (i = 1, 2, 3. . .N) to all the neurons in the sample. Next,
we centre a grid of bins of size D over each neuron and count
how many other neurons fall in each bin constructing one
matrix of accumulated neurons m(x, y). We define g(x, y) =
m(x, y)/N · D · 2, in which g(x, y) has units of an average
density of objects at position (x, y). As an example, the density
map would be uniform if locations of objects (neurons) are
uncorrelated, but will show patterns when there are regular
spatial arrangements between the objects.

For the case of neurons forming microcolumns, their
density map exhibits one central vertical ridge, sometimes
accompanied by two less pronounced parallel neighbouring
ridges. For this study, we are interested in the microcolumn
strength S, which is extracted from the density map by

neurons

a

c

b

Fig. 11. Venn diagram showing the relative quantities for evaluating the
quality of a neural recognition method. The bold black line separates
neuron from non-neuron objects in the image. The dotted area shows
the objects that are identified by a method. The method correctly identifies
most of the neurons (a), but misses some neurons (c) and identifies some
non-neurons as neurons (b). Using the quantities a, b and c, standardized
percentages of neuron versus non-neurons can be calculated.

taking the ratio of the neuronal density within the average
microcolumn to the average neuronal density (Cruz et al.,
2005). For the same images, S is calculated using ANRA
(x, y) locations as well as semi-automatic (x, y) locations, and
the results are compared.

Results

For each of 17 subject/image-qualities, an evaluation image is
randomly selected from the remaining images and marked for
neuron cell bodies by the expert. The evaluation image is used
as a ‘gold standard’ to assess the accuracy of ANRA and the
comparison methods. A total of 2448 ‘gold standard’ neurons
are analyzed, for an average of 144 neurons per subject/image-
quality. For each of the two recognition methods (semi-auto
and ANRA), we compare the method’s identified neurons
to the ‘gold standard’, and retrieve the following numbers
(Fig. 11):

a = number of correctly identified neurons, (13)

b = number of non-neurons incorrectly identified as neurons,
(14)

and

c = number of non − identified neurons. (15)

To compare methods for the different subject/image-qualities,
we define the following normalized metrics:

A = a
a + c

× 100, (16)

and

B = b
a + c

× 100. (17)

A is the percent of correctly identified neurons (‘true
positives’). B is the percentage of non-neurons that are
incorrectly identified as neurons (‘false positives’).

The results are shown in Fig. 12. The semi-auto method is
characterized by one (A, B) set. Because of the ability to adapt
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Fig. 12. Results of ANRA. The semi-auto method is characterized by one
(A, B) set. Because of the ability to adapt the cost ratio as described in
Section ‘Step III: Application’, ANRA is shown at 7 different ratios (3:1,
2:1, 1:1, 1:2, 1:3, 1:5 and 1:10), creating an ‘adapted’ ROC curve. Since
each point is an average of the 17 subject/image-types, the error bars show
the standard deviation of the spread for both A and B.

Table 2. Results of ANRA for 1:2 cost ratio.

Semi-auto ANRA

# A(%) B(%) A(%) B(%)

1 81 13 82 11
2 71 14 84 7
3 82 14 91 21
4 79 15 78 4
5 90 43 92 30
6 65 3 85 16
7 76 18 87 21
8 83 15 88 6
9 76 12 93 15
10 79 10 85 23
11 73 6 77 7
12 82 4 88 11
13 92 44 84 6
14 90 26 95 16
15 80 20 80 11
16 77 23 91 28
17 75 7 86 17
Avg. 80 ± 7 17 ± 12 86 ± 5* 15 ± 8

the cost ratio as described in Section ‘Step III: Application’,
ANRA is shown at seven different ratios (3:1, 2:1, 1:1, 1:2, 1:3,
1:5 and 1:10), ranging from very selective, to no selectivity,
creating an ‘adapted’ ROC curve. Since each point is an
average of the 17 subject/image-qualities, the error bars show
the standard deviation of the spread for both A and B. We
choose the 1:2 cost ratio for further analysis because it is at
the inflection point of the ‘adapted’ ROC curve (Fig. 12), and it
has the closest average (A,B) to that of semi-auto. Table 2 and
Fig. 13(a) shows the individual results for each subject/image-
quality for the semi-auto method and the ANRA with 1:2 cost

ratio. Figure 13(b) shows an example of semi-auto and ANRA
points compared to the gold standard.

The results show that ANRA has a significantly higher A
value of recognition (P-value: 0.002) and a similar B value of
recognition compared to the semi-auto method.

We also compare microcolumnar strength S (Section
‘Density map method and microcolumnar strength) using the
(x, y) locations from both ANRA and semi-auto methods of
neuron identification for the entire image database of rhesus
monkey subjects as described in Section ‘Step II: Segmentation
training’. Fourteen thousand neuron locations were used,
for an average of 1000 neuron locations for each subject.
We find significant correlations between microcolumnar
strength measurements of the ANRA and semi-auto methods
of neuron recognition (Fig. 14). This shows that ANRA has the
ability to find significant changes in advanced neuron spatial
arrangements within different subjects, and can therefore
be applied to large data sets where manual or semi-auto
recognition are not viable.

Discussion

In this work, we introduce a method called an ANRA which
uses a combination of image segmentation and machine
learning to retrieve neuron locations within digitized images of
Nissl-stained Rhesus monkey brain tissue. Despite challenges,
such as overlapping of neuron cell bodies and the presence
of glial cells and artefacts in the tissue, we demonstrate that
ANRA has a significantly better recognition capability than a
semi-auto method (Cruz et al., 2005) which requires expert
manual intervention for each image. ANRA’s recognition
quality is combined with computational efficiency, resulting
in recognition of ∼100 neurons per minute using a standard
personal computer. Consequently, large numbers of neuron
locations can be retrieved, spanning considerably larger brain
regions than ever before. Furthermore, because ANRA is
capable of efficiently extracting neuron locations from durable
and commonly used Nissl-stained tissue, it can potentially
be applied to vast stores of archival material existing in
laboratories and research collections around the world.

Such a large data set of (x, y) neuron locations will allow for
a variety of systematic analyses that have previously not been
possible. The ability to identify every neuron in entire sections
of the brain will allow for both global and local analyses of
neuron numbers, glial cell numbers, regional cell densities,
and local variations in cell densities. Also, as was shown in
the ‘Results’ section, studies of microcolumnarity or other
spatial features of cortex, including spatial inter-relationships
among neurons and glia using autocorrelation and cross-
correlation, are possible. Lastly, ANRA also allows for less
obvious applications, including the investigation of the spatial
network of the brain using the neuron locations as nodes. None
of these studies are possible with the elegant sampling methods
of modern stereology.
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Fig. 13. (a) Individual results for 17 subject/image-types for the semi-auto method and the ANRA (with 1:2 cost ratio). (b) Recognition results for the
semi-auto method (left) and the ANRA method (right) for example subject/image-quality #1 (Table 2). Dark green: gold standard marks that match with
the method. Blue: gold standard marks that DO NOT match with the method. Light Green: method points that match with gold standard points. Pink:
method points that do not match with gold standard points.

We highlight the need for large data sets of neuron
locations (103–104) in comparative studies proposed in the
Introduction and defined in Section ‘Density map method and
microcolumnar strength’. Generally, the goal of a comparative
study is to find a statistically significant difference in a
measured quantity (i.e. microcolumn strength) due to a
change in an independent variable (age, species, sex, disease
state, etc.). In the case of a 1D correlation between nearest
neighbours or the 2D microcolumnar analysis, the neuron
locations are used to create 1D and 2D histograms, respectively.
The number of neurons must be high enough to resolve the
effect of the independent variable above random noise of the
histogram. Buldyrev et al. (2000) showed that for a resolution
of interest (seeing 3% changes between 10 μm bins), ∼104

neuron locations are needed in the comparative study of
microcolumnarity. For the same resolution in a 1D correlation
comparative study, such as nearest-neighbour distances, only
∼1000 neurons are needed (Schmitz et al., 2002). For a given
bin size, the theoretical calculation shows that the required
number of neurons scales as a power of dimensions that are
being correlated. Thus, automatic recognition becomes critical
in higher dimension correlations. As an example we consider

a 30 subject study of neuron spatial arrangement using ∼105

neuron locations, making 100 different measurements of
1000 neurons each through a certain layer across several
Brodmann regions. The semi-automatic approach, which
allows for acquisition of 10 neurons per second, would take
83 human hours to complete. Comparatively, ANRA could
complete the same task in 24 h on 20 Intel P4 processors with
less than 1 h of preparation time.

ANRA has a further advantage of reducing experimental
drift. Specifically, in terms of human bias, the ‘criteria’
for neuronal identification will necessarily differ between
different observers that are often required for a huge analysis
extendingovermonthstoyears,whereasANRA’scriteria,once
established from the training algorithm, remains constant.
Furthermore, ANRA’s criteria will not be subject to the kind of
experimental drift that can occur over time when one observer
manually identifies thousands of neurons over a period of
weeks to months.

Recently, there have been advances in level set methods to
recognize overlapped cell nuclei (de Solórzano et al., 1999;
Lin et al., 2007). The recognition challenges with Nissl-
stained tissue are far greater than the challenges of confocal
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Fig. 14. Comparison of microcolumnar strength measurement (S) using
the (x, y) locations from both ANRA (with 1:2 cost ratio) and semi-auto
methods of neruon identification. A total of 14,000 neuron locations were
used, for an average of 1000 neuron locations for each subject (plot point).
Both the neuron density and microcolumnar strength show significant
correlations of ANRA with the semi-auto method.

microscopy using fluorescence. Lin et al. (2007) show how
neurons and glial cells completely separate into two regions
of parameter space using only two parameters (texture and
intensity) of the identified segmentations. If plotted in a similar
way, no two parameters that we consider (size, intensity,
texture, gyration, edge versus area, etc.) would yield such
a separation. Thus, in a Nissl-stained tissue visualized by
optical microscopy, the parametrized method of Cremers et al.
(2000), which, by design, overcomes the challenges of noisy
images and missing boundary data (Section ‘Active contour
segmentation’), is most efficient.

Our results suggest that the ANRA method is performing
at maximal efficiency: when a second expert’s marks are
compared with the gold standard on the same Nissl-stained
image, the performance (A = 88 ± 5%) is not significantly
higher than ANRA’s performance (A = 86 ± 5%).

Although there are 10 free parameters within the algorithm,
only two of them called the primary parameters must be
explored to find the correct values for proper segmentation.
These primary parameters are automatically found in the
OSM parameter search during training. The other eight free
parameters, which we call the secondary parameters, can be
fixed for the general task of identifying elliptical features within
noisy images with missing boundary data, thereby solidifying
them for the broadly applicable problem of neuron recognition

in all Nissl-stained tissue. For a given morphological feature of
interest, once a small set of representative images have been
trained to, the training and parameters can be reused, due
to the normalization of images of different quality. This setup
will allow for the study of large areas of montaged images, or
large data sets of hundreds of slides, all with the same training.
Furthermore, the free parameters and training can be adapted
for identification of other types of neurons, glial cells, etc.

Lastly, because of the modular nature of the method
(Fig. 1), it will be relatively easy to replace partial aspects
of the overall algorithm by considering advances in recent
published work. For example, Tscherepanow et al. (2006)
independently developed a method to identify living cells
that uses a larger set of training properties that is reduced
with principle/independent component analysis, and Costa &
Bollt (2006) has applied advanced pattern matching to the
identification of neuron cell bodies in Nissl-stained tissue. By
replacing the respective aspects of ANRA with such methods,
the ideal overall identification algorithm can be found for
not only the recognition of neuron cell bodies, but also the
recognition of other objects of scientific interest, for example
living cells or glial cells.
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