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Abstract

We report some recent attempts to understand the dynamics of complex physiologic

fluctuations by adapting and extending concepts and methods developed very recently in

statistical physics. We first review recent progress using wavelet-based multifractal analysis,

magnitude and sign decomposition analysis and a new segmentation algorithm to quantify

multiscale features of heartbeat interval series. We then investigate how heartbeat dynamics

change with circadian influences and under pathologic conditions, and we discuss their

possible relation to the underlaying cardiac control mechanisms. The analytic tools we discuss

may be used on a wider range of physiologic signals.

r 2004 Elsevier B.V. All rights reserved.

PACS: 02.50.Ey; 05.40.�a; 87.19.Hh; 87.80.Vt; 89.75.Da

Keywords: Fractal; Multifractal; Nonlinear; Scale-invariant; Magnitude; Sign; Segmentation; Cardiac

control; Wake; Sleep

1. Introduction

The central task of statistical physics is to understand macroscopic phenomena

that result from microscopic interactions among many individual components driven

by competing forces. This problem is akin to many investigations undertaken in
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biology. In particular, physiologic systems under autonomic regulation, such as

heart rate, are good candidates for a statistical physics approach, since (i)

physiologic systems often include many individual components, and (ii) physiologic

systems usually are driven by competing forces, e.g., parasympathetic versus

sympathetic stimuli. Physiologic systems often exhibit temporal structures which

are similar to those found in physical systems driven away from an equilibrium state.

Our work centers on human heart rate variability because: (i) the heart rate is

partially under autonomic control, (ii) interbeat interval variability is readily

measured by noninvasive means, (iii) analysis of heart rate dynamics may provide

important practical diagnostic and prognostic information not obtainable with

current approaches, and (iv) these tools can be generalized to the analysis of a wider

range of physiologic signals.

Beat-to-beat heart rate fluctuations are not simply due to known physiologic reflexes

in response to external factors, but rather they persist during rest, sleep, and controlled

constant routine conditions. In particular, two-point correlation analyses of heart rate

fluctuations reveal the presence of a robust interdependence between heartbeats, with

long-range power-law anticorrelations between the values of consecutive interbeat

intervals (i.e., an increase in one interbeat interval is more likely to be followed by a

decrease). These observations suggest a temporal organization, ‘‘hidden’’ in the

apparently noisy heartbeat fluctuations. Moreover, this ‘‘long-memory’’ structure is

characterized by a Fourier spectrum where the amplitudes of different frequency

components follow a power-law relationship of the form 1=f ; where f is the frequency
[1–3]. A power-law relation implies invariance under change of frequency scale.

Fractal 1=f noise is also encountered in a certain class of physical systems [4–6],
which for a given ‘‘critical’’ value of their parameters exhibit complex self-

organization among the individual components, leading to correlated interactions

over a broad range of scales. The behavior of some physical systems is characterized

by 1=f fluctuations. The presence of 1=f fractal structure in heart rate fluctuations is
of particular interest because of its robust appearance in healthy subjects under

different free-running conditions. This fractal pattern breaks down with certain

pathologic perturbations such as congestive heart failure and sleep apnea, suggesting

that 1=f behavior in heart rate fluctuations represents important information about
the underlying cardiac control mechanisms.

Our findings [7,8] suggest that the complexity of the heart rate fluctuations cannot

be adequately described by a single scaling parameter, since cardiac dynamics exhibit

a higher level of multiscale complexity [9] which goes beyond 1=f fractal

organization. A large set of scaling parameters are needed. For example, nonlinear

features in heart rate dynamics are not accounted for by 1=f noise. Specifically, (i)
the magnitude and the sign of heart rate fluctuations exhibit temporal structures

different from those found in 1=f noise, and (ii) there is a Fourier phase organization
in heart rate fluctuations not present in 1=f signals. We have tested and developed
complementary methods to probe for a variety of independent characteristics of

heart rate fluctuations beyond 1=f behavior, and determined a set of indices which
can better describe the complexity of cardiac dynamics under various physiologic

conditions and pathologic perturbations.
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1.1. Concepts and approaches from modern statistical physics

To probe how mechanisms of cardiac regulation generate complex heart rate

fluctuations, we have proposed an approach based on concepts and methods derived

from statistical physics. The traditional approach considers physiologic systems to

be governed by the classical principle of homeostasis which postulates that

physiologic systems return to equilibrium after perturbation [10–13]. Such systems

are often characterized by a single dominant time scale. Our preliminary results,

however, suggest that physiologic dynamics are characterized by long-range

correlations and the absence of a typical dominant time scale, and exhibit scale-

free power-law behavior over a broad range of scales [6]. Scale-free behavior is

associated with networks of multiple inputs and interactions [14,15].

1.1.1. Systems with characteristic scales

In order to understand the concept of ‘‘scale-free’’, we start with a discussion of

systems with a characteristic scale, the correlation length. Consider a physical

quantity which describes some properties of a system. This quantity may vary from

one location to another location (or may fluctuate in time). If the system cannot be

divided into many isolated sub-parts, the fluctuations of the physical quantity are

not completely uncorrelated. There is a well-defined scale for correlation length

related to the distance above which the physical properties are uncorrelated (or the

smallest scale of the sub-systems that can be treated as independent). This

characteristic scale has its practical role in simplifying the problem of describing

the system. Several models for studying physical systems take advantage of the

existence of this scale. For many physical systems, a similar scale in time also exists.

Furthermore, we note that the characteristic scales are frequently related to the

exponential decay of a specific quantity. For example, a half life is a characteristic

time scale for radioactive particle decay.

1.1.2. Scale-free systems without characteristic scales

Not every system contains a well-defined scale. In statistical physics, attention has

been directed at understanding systems that do not have any characteristic scale. A

classic example is a ferromagnetic Ising spin system at the critical point [4]. We will

use this example to illustrate important aspects of a scale-free system. Consider a

lattice with a spin on each lattice site. The spin can take two directions, denoted by 1

and �1; and interacts with its nearest neighbors through ferromagnetic interaction
(lower energy when two spins align). If the temperature is high, then the

‘‘randomness’’ of the thermal noise dominates. Therefore, each spin is free to

choose its own direction with little correlation with its neighbors. If we gradually

lower the temperature, we will notice that spins are more correlated (with a short

correlation length). A physically meaningful way to define the correlation length for

the system is first to connect all nearest neighbor spins that are aligned in the same

direction as a ‘‘cluster’’, and then to relate the correlation length to the average

cluster size. Spins in different clusters know nothing about each other and, therefore,

the system can be divided into independent sub-systems (clusters). For high
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temperature, the distribution of cluster size decays fast (it is extremely rare to find

large clusters), so a meaningful correlation scale exists. As we lower the temperature,

the size distribution varies (more chance to find large clusters) and the correlation

length increases. However, there is no dramatic change in the form of the

distribution function. If we continue to lower the temperature, suddenly, at

the critical temperature, the distribution function becomes a power law and the

correlation length diverges, i.e., the size of the largest cluster one can find becomes

comparable to the system size. At this point, the system can no longer be viewed as

many independent sub-systems and any characterization of the system must involve

the system as a whole: long-range power-law correlations appear.

1.1.3. Power-law scale-invariant correlations

Our preliminary work has focused primarily on the pursuit on the possibility that

the fluctuations in cardiac dynamics possess long-range power-law correlations.

Systems that have power-law correlations usually have certain scaling properties

related to fractal and nonlinear mechanisms, and are described by homogeneous

functions. The physical meaning of a homogeneous function is that the value of the

function at a new scale is simply related to the value of the function at the original

scale by a constant factor—scale invariant systems are identical under change of

scale. As such they obey functional equations of the form f ðlxÞ ¼ lpf ðxÞ; which state
that when the variable x is changed by a factor l; then the function is replaced by a
multiple of itself. The solution of this functional equation is obtained by setting

l ¼ 1=x: f ðxÞ ¼ f ð1Þxp:We say that f ðxÞ is a power law with exponent p, and we see
that systems that are scale invariant of necessity obey power laws. The converse is

also true: any function gðxÞ obeying a power law of the form xp also obeys a

functional equation gðlxÞ ¼ lpgðxÞ: For this reason, a test for scale invariance is to
test for power-law behavior.

The scale invariance concept generalizes to functions hðx; yÞ of more than one
variable: hðlax; lbyÞ ¼ lhðx; yÞ: If l ¼ ð1=yÞ1=b; the hðx; yÞ ¼ y1=bhðx=ya=b; 1Þ; so that
the original function hðx; yÞ of two independent variables x and y is really a function

of a single ‘‘scaled variable’’ x=ya=b: This property is recognized in real data by
plotting on the y-axis the ‘‘scaled’’ function hðx; yÞ=y1=b and on the x-axis the scaled
variable x=ya=b: If the original function hðx; yÞ is a scale invariant, then all the data
will ‘‘collapse’’ upon a single one-variable curve hðx=ya=b; 1Þ: Such ‘‘data collapse’’ is
also an indicator of scale invariant behavior [5–7].

Many systems in nature are scale invariant, and the ubiquity of such systems has

been popularized under the general term ‘‘fractal’’. Hence the words scale invariance,

scaling, power law, and fractal are used interchangeably. When applied to perfect

geometrical objects, such as the Sierpinski gasket construction, this scale invariance

is exact. However when applied to statistical objects, such as a heartbeat time series

where multiple extrinsic and intrinsic inputs of stochastic nature play an important

role, this scale invariance holds in a statistical sense, and such a scale invariant

system is not identical when examined on different scales, but rather has identical

statistical properties. Thus even though heart rate fluctuations may appear erratic,

they exhibit certain predictable statistical patterns.
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1.2. Nonstationarity in physiologic signals: limitations of traditional analysis

The healthy heartbeat is generally thought to be regulated according to the

classical principle of homeostasis whereby physiologic systems operate to reduce

variability and achieve an equilibrium-like state [10,12,4]. We find, however, that

under normal conditions, beat-to-beat fluctuations in heart rate display the kind of

long-range correlations typically exhibited by physical systems far from equilibrium,

such as those near a critical point. In healthy subjects such power-law correlations

are long-range: they extend over thousands of heartbeats [1,16–18]. In contrast, heart

rate time series from patients with congestive heart failure show a breakdown of this

long-range correlation behavior [19–22].

A major problem in quantifying long-range heart rate correlations is the presence

of nonstationarity. The signals obtained under constantly varying conditions raise

serious challenges to both technical and theoretical aspects of time series analyses.

Furthermore, nonstationarities are important features of the data under both

healthy and perturbed conditions [23–26].

Various problems related to nonstationarity are encountered when attempting to

extract both (a) static and (b) dynamic markers of physiologic data when

investigating sources of cardiac instability:

(a) Static properties such as averages, standard deviations and distribution

functions are widely used to characterize physiologic time series. However, while

physiologic signals under different conditions may have the same averages and

standard deviations—which is often the case with heartbeat time series—there may

be clear differences in the dynamics generating the signals. Hence additional

methods, sensitive to local patterns related to nonstationarities, are required if these

signals are to be distinguished. Further, it has been also hypothesized [27,20] that

even if the heartbeat fluctuations are different (e.g., smaller) during illness, the

pattern of heart rate variability might be otherwise very similar to that in health. In

such a case, the interbeat variations for normal and abnormal cardiac dynamics

would have the same distribution. Such assumptions are based on more conventional

studies of interbeat intervals.

(b) Dynamical properties such as the time ordering (correlations and frequency

content) of physiologic fluctuations are traditionally probed by means of correlation

and power-spectrum analyses. However, both of these methods assume that

the signal studied is stationary, and when applied to nonstationary time series can

lead to misleading results. For example, power-spectrum analysis cannot differ-

entiate between a signal where two different frequency components are present

and a signal where one of the frequency components is present in the first half of

the signal, and another frequency component is present in the second half. The

calculation of the power spectrum for these signals leads to almost identical results.

Similarly, the presence of linear or higher order polynomial trends can mask

true correlations in physiologic fluctuations, e.g., uncorrelated white noise super-

posed on a linear trend will appear strongly correlated. Thus, traditional methods

can be misleading if they are used as the only form of analysis for nonstationary

signals.
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2. Review of recent work

2.1. Multifractality and cardiac regulation

One problem in physiologic research is the signal processing and analysis of

nonstationary time series [2,23,28–31]. Many physiologic time series are extremely

inhomogeneous and nonstationary, fluctuating in an irregular and complex manner.

As one approach to this problem, we have adapted and applied a wavelet-based

multifractal formalism to characterize and quantify specific aspects of the

nonstationarity in physiologic signals [8,19,32–35].

Previously, analyses of the fractal properties of physiologic fluctuations were

restricted to second-order linear characteristics such as the power spectrum and the

two-point autocorrelation function [2,3,36–38]. These analyses revealed that the

behavior of healthy, free-running physiologic systems is often characterized as 1=f -
like [1,16–18,39–52]. Monofractal signals (such as classical 1=f noise) are

homogeneous, i.e., have the same scaling properties throughout the entire signal

[53–57]. Monofractal signals can therefore be indexed by a single exponent: the

Hurst exponent H [58].

On the other hand, multifractal signals are inhomogeneous and can be

decomposed into many subsets characterized by different local Hurst exponents h,

which quantify the local singular behavior and thus relate to the local scaling of the

time series. Since the local scaling properties change with time, multifractal signals

require many exponents to fully characterize their nonstationary properties [9,59,60].

The multifractal approach, a concept introduced in the context of multi-affine

functions [61,62,56], has the potential to describe a wide class of signals more

complex than those characterized by a single fractal dimension.

To avoid an ad hoc choice of the time scale over which the local Hurst exponent is

estimated, and to filter out polynomial trends masking the local singularities in the

heart rate signal, we have implemented a wavelet-based algorithm [63]. Wavelets are

designed to probe physiologic time series over a broad range of scales and have

recently been successfully used in analysis of ECG signals. Our wavelet decomposi-

tion reveals a robust self-similar hierarchical organization in the seemingly irregular

heartbeat fluctuations with bifurcations propagating from large to small scales [64,7].

To quantify these hierarchical cascades and to avoid inherent numerical instability in

the estimate of local singularities, we employed a ‘‘mean-field’’ approach—a concept

introduced in statistical physics [4]—which allows us to probe the collective behavior

of local singularities throughout the entire signal.

We performed a wavelet-based multifractal analysis to test the hypothesis that a

large number of exponents is required to characterize heterogeneous heartbeat

interval time series. We analyzed both the daytime (12:00–18:00) and nighttime

(0:00–6:00) continuous heartbeat time series records of healthy subjects [65] and the

daytime records of patients with congestive heart failure [66].

We found the heart rate in healthy subjects to be a multifractal signal; our finding

was the first demonstration of multifractality in physiologic dynamics. Multi-

fractality in heart rate cannot be explained by activity, as data from subjects during

ARTICLE IN PRESS

P.Ch. Ivanov et al. / Physica A 344 (2004) 685–704690



nocturnal hours also showed multifractality [19,8]. Furthermore, this multifractal

behavior could not be attributed to sleep-stage transitions, as we found multifractal

features during daytime hours as well, suggesting that intrinsic mechanisms may

account for these complex dynamics.

From a physiologic perspective, the detection of robust multifractal scaling in the

heart rate dynamics is of interest because it raises the possibility that the control

mechanisms regulating the heartbeat interact as part of a coupled cascade of

nonlinear feedback loops. In physical systems, such interactions are typically

associated with turbulent dynamics and certain systems operating far from

equilibrium [67,68,4]. Furthermore, our results indicate that the healthy heartbeat

is more complex than previously believed, posing a challenge to ongoing efforts to

develop realistic models of heart rate control.

We found that heart rate data from subjects with a pathological condition

associated with sudden death, e.g., congestive heart failure, show a clear loss of

multifractality [19,8]. For the heart failure subjects, the multifractal spectrum is non-

zero only over a very narrow range of exponents h indicating monofractal behavior.

Thus the degree of multifractality might prove useful as a diagnostic tool [64,69,70].

What gives rise to multifractality in healthy human heartbeat dynamics? This

intriguing question has important implications for basic signaling and feedback

mechanisms, and two possible answers can be considered. The first is that the

observed multifractality is primarily a consequence of the response of control

mechanisms to activity-related stimuli [71]. The second is that the heart rate control

mechanisms—even in the presence of weak external noise—endogenously generate

multifractal dynamics [72].

To confirm our initial findings suggesting that the observed multifractal dynamics

are related to intrinsic mechanisms of heart rate control, we next analyzed data taken

from healthy adult subjects under three control conditions: (i) a ‘‘constant routine’’

protocol where physical activity and postural changes were kept to a minimum, (ii)

sympathetic blockade, and (iii) parasympathetic blockade. Fig. 1(a) displays the

average multifractal spectra DðhÞ for six subjects under both regimens of daily and

constant routine. The identical width of the multifractal spectrum DðhÞ suggests that

the multifractality does not change with reduced physical activity under the constant

routine protocol (Fig. 1). This finding supports the hypothesis that the multi-

fractality in healthy heartbeat dynamics is endogenous to the regulation of the heart

rate [8,72].

To further test this hypothesis, we analyzed data from six additional subjects

(4 male, 2 female, ages: 21–34 yr), administered a beta-blocking drug [73,74], and

analyzed data from a placebo control group [75]. We analyzed eight datasets from

the six subjects from the second and/or third day of beta-blocker administration. The

multifractal spectrum curve DðhÞ for the group receiving the beta-blocker drug

differed from that of the control group. This result is consistent with decreased

multifractality—a shrinking of the multifractal spectrum—due to the suppression of

sympathetic control (Fig. 1(b)).

We also analyzed the multifractal properties of the heartbeat dynamics of healthy

individuals who were administered atropine, which suppresses the parasympathetic
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control of the heartbeat, and of age-matched controls. Fig. 1c shows the multifractal

spectra for the two groups. The curve for the group of parasympathetic blockade is

nearly linear, indicating a marked loss of multifractality more apparent than with

sympathetic blockade. These results suggest the possibility that multifractality in

healthy heartbeat dynamics may arise, at least in part, from the interplay between

the two branches of the autonomic system and that the parasympathetic system

plays a particularly important role.

The interaction of autonomic and possibly other control mechanisms that

generate the complex multiscale dynamics of the heartbeat and other physiologic

signals will be a major challenge in our future efforts to model ‘‘real-world’’ signaling

mechanisms [15,76–82].
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Fig. 1. Multifractality and heart rate regulation (from Ref. [72]). (a) Constant routine study. DðhÞ measures

the fractal dimension of the subsets of the signal characterized by local Hurst exponents h. The two curves

have nearly identical widths indicating a similar degree of multifractality. This result is consistent with the

possibility that the activities of daily living do not account for the multifractal complexity of heart rate

dynamics. (b) Sympathetic blockade study. Heartbeat dynamics during sympathetic blockade with

metoprolol display a change in the multifractal spectrum, namely, decreased multifractality as evidenced

by the narrower distribution DðhÞ: (c) Parasympathetic blockade study. Suppression of parasympathetic

control with atropine leads to a collapse of the multifractal spectrum and to monofractal behavior similar

to the behavior observed for congestive heart failure, a condition associated with impaired vagal

regulatory mechanisms [19,8].
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2.2. Magnitude and sign correlations in heartbeat dynamics

To further probe scaling and nonlinear features embedded in nonstationary

physiologic signals, we developed a new approach that involves (a) decomposing the

signal ‘‘increment’’ series (increments between successive heartbeat intervals) into

magnitude and sign series (Fig. 2), and (b) analyzing their respective scaling

properties using the detrended fluctuation analysis DFA method (Fig. 3) [83–85]. We

demonstrated that signals with identical long-range power-law correlations (1=f
noise) can exhibit different temporal organization for the magnitude and sign,

implying that this analysis goes beyond 1=f analysis. Further, we found that the
magnitude series relates to the nonlinear properties of the original time series, and

that the value of the scaling exponent characterizing the correlations in the

magnitude series relates to the width of the multifractal spectrum [8,86,87]. On the

other hand, the sign series relates to the linear properties of the original signal.

We applied our approach to the heartbeat interval series obtained by Holter

monitoring. We previously found that heartbeat increment fluctuations exhibit

fractal-like scale-invariant properties and are anticorrelated over a broad range of

time scales (i.e., the power spectrum follows a power law where the amplitudes of the

higher frequencies are dominant) [20]. Using our new magnitude and sign approach,

we found that the magnitude of the heartbeat interval increments exhibits power-law

scaling behavior and is positively correlated, unlike the original heartbeat increment

time series which is anticorrelated (Fig. 3) [21].

Positive correlations in the magnitude series indicate that an increment with a

large magnitude is more likely to be followed by an increment with a large

magnitude. Anticorrelations in the sign series indicate that a positive increment is
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more likely to be followed by a negative increment. Our result for the temporal

organization of heartbeat fluctuations thus suggests that, under healthy conditions, a

large increment in the positive direction is more likely to be followed by a large

increment in the negative direction. We observe that this empirical rule holds over a

broad range of time scales from several up to hundreds of beats.

We also found a significant decrease in the short-range scaling exponent for the

sign series in heart failure, which may be related to perturbed vagal control affecting

relatively high frequency fluctuations. The simultaneous decrease of the long-range

scaling exponent of the magnitude series for heart failure patients indicates weaker

correlations and loss of nonlinearity that may be related to the observed loss of

multifractality in the same group of subjects suggesting impaired feedback

mechanisms of cardiac regulation.

2.3. Scale invariance in the nonstationarity of heartbeat fluctuations

Traditional methods of time series analysis do not address the problem of

nonstationarity in physiologic signals, and most of the more recent techniques

(e.g., wavelets and DFA) focus on removing effects of nonstationarity by filtering

out certain features of nonstationarity such as spikes or polynomial trends. However,

nonstationarity itself may carry information related to the dynamic regulation of
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removing the nonlinear features in the time series as a result of the Fourier phase randomization) suggests

that the magnitude series carries information about the nonlinear properties of heartbeat dynamics.
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physiologic systems. Working under this hypothesis, we developed a new segmenta-

tion algorithm to quantify nonstationarity in physiologic data [25].

Segmentation method for nonstationary signals. The segmentation algorithm

[25,24] we have developed consists of the following procedure (Fig. 4):

� A sliding pointer is moved from left to right along the signal.

� At each position of the pointer, the mean of the subset of the signal to the left (mleft)

and to the right (mright) of the pointer is computed.

� To measure the difference between mleft and mright; the statistic t 	
mleft�mright

sD

�

�

�

�

�

�
is

calculated, where sD is the pooled variance.

� Next the position of the pointer for which t reaches its maximum value tmax is

determined, and the statistical significance of tmax is estimated.

� If this significance exceeds a selected threshold P0 (usually taken to be 95%), the

signal is cut at this point into two subsequences; otherwise the signal remains

undivided.

� If the sequence is cut, the procedure continues recursively for each of the two

resulting subsequences created by each cut.

� Before a new cut is accepted, the statistic t between the right-hand new segment

and its right neighbor (obtained by a previous cut) as well as between the left-hand

new segment and its left neighbor (also obtained by a previous cut) is calculated. If

both values of t have a statistical significance exceeding P0; we proceed with the
new cut; otherwise we do not cut. Thus all resulting segments have a statistically

significant difference in their means. The process stops when none of the possible

cutting points has a significance exceeding P0: As a result the signal is segmented
at the ‘‘significance level P0’’ (Fig. 4).
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Fig. 4. (a) An artificial time series f ðxÞ composed of three segments with different mean values. (b) Values

of the statistic tðxÞ obtained by moving the pointer along the time series; tmax is reached at x ¼ x1: If
PðtmaxÞXP0 ¼ 95%; we can cut the series at x1: (c) We iterate the procedure with the segment ½0; x1�: Since

PðtmaxÞX95% and t computed between ½x2;x1� and ½x2; 2000� is greater than 95%; the series is cut at x2: (d)

We iterate the procedure with the segment ½x1; 2000�; and find PðtmaxÞp95%; so this segment is not cut

(from Ref. [25]).
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The specific problem we addressed is how to partition a nonstationary time series

(composed of many segments with different mean values) in a way that maximizes

the difference in the mean values between adjacent segments. The segmentation

method leads to the partitioning of a time series into segments with well-defined

means, each significantly different from the mean of the adjacent segments (see

Fig. 5(a)–(d)). We then probed the nonstationarity in a signal through the statistical

analysis of the properties of the segments, thereby going beyond 1=f analysis.
We considered 47 heart rate datasets from 18 healthy subjects, 17 cosmonauts

during orbital flight, and 12 patients with congestive heart failure. We analyzed the

cosmonaut data provided by NASA collaborator Dr. J. Fritsch-Yelle (Houston

Space Center). We separately analyzed six-hour subsets of each dataset correspond-

ing to the periods when the subject was awake or sleeping. To quantify the

nonstationarity in heart rate variability, we superimposed a plot of the segments

obtained by means of our segmentation algorithm (Fig. 5(a)–(d)) and analyzed the
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the larger variability and patchiness for the healthy record. (b) Magnification of a small fraction (2000

beats) of the signals in (a). (c) Same signals as displayed in (a) after subtracting the global average and

dividing by the global standard deviation—the signal from the healthy subject is vertically offset; both

signals appear very similar after this normalization. (d) Magnification of a small fraction (2000 beats) of

the signals in (c). (e) Probability density functions of the absolute value of the difference between the mean

values (‘jumps’) of consecutive segments. Both healthy and cosmonaut subjects follow an identical

distribution while the heart-failure subjects follow a quite different distribution with a higher probability

for small jumps consistent with reports of smaller variability in heart failure subjects [88,89]. All

distributions are normalized to unit area.
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absolute values of the differences between the mean values of consecutive segments,

called jumps.

In order to systematically compare the statistical properties of the jumps between

different individuals and different groups, we normalized each time series by

subtracting the global average (over six hours) and dividing by the global standard

deviation. In this way, all individual time series have a zero mean and unit standard

deviation (Fig. 5(c) and (d)). Such a normalization does not affect our segmentation

procedure. We found that heart rate fluctuation from both the healthy subjects on

earth and the cosmonauts under microgravity conditions follow identical distribu-

tions, but the distribution of the jumps obtained from the heart failure group are

markedly different—centered around lower values—indicating that even after

normalization there is a higher probability for smaller jumps compared to the

healthy subjects. This finding suggests a reduction in the response to autonomic inputs

for patients with congestive heart failure (Fig. 5(e)). Furthermore, these distributions

can be collapsed on top of each other by means of a homogeneous transformation

[25]. The ratio between the scaling parameters used in this transformation provides a

factor by which this feature of the heart rate variability is reduced for the subjects

with heart failure as compared to the healthy subjects. These observations extend to

previously reported results for the distribution of heartbeat fluctuations obtained by

means of wavelet and Hilbert transforms [7,36] and support the hypothesis that a

nonstationarity index itself carries relevant physiologic information.

2.4. Sleep-wake scaling differences in human heartbeat dynamics

To further probe the mechanisms of nonstationarity of heartbeat regulation, we

investigated circadian influences, a key modulator of many physiologic processes

[90,64]. The question we asked was whether there are characteristic differences in

the scaling behavior between sleep and wake cardiac dynamics. Differences in the

average value and standard deviation can be systematically observed in plots of the

interbeat intervals recorded from subjects during sleep and wake periods (Fig. 6(a)

and (b)) [90]. We hypothesized that changes in cardiac control during sleep and wake

periods may occur on all time scales and thus could lead to systematic changes in the

scaling properties of the heartbeat dynamics [91]. Elucidating the nature of these

sleep–wake rhythms could lead to a better understanding of the mechanisms of

cardiac regulation and its interaction with the mechanisms of sleep regulation.

We analyzed 30 datasets, each with 24 h of interbeat intervals, from 18 healthy

subjects and 12 patients with congestive heart failure. We analyzed the nocturnal and

diurnal fractions of the dataset of each subject, which corresponded to the six hours

from midnight to 6:00 am and noon to 6:00 pm. We found that at scales above

� 1min (n460) the data during wake hours display long-range power-law

correlations over two decades with average exponents awake � 1:05 for the healthy
group and awake � 1:2 for the heart failure patients. For the sleep data we found a
systematic crossover at scale n � 60 beats followed by a scaling regime extending

over two decades characterized by a smaller exponent: asleep � 0:85 for the healthy
group and asleep � 0:95 for the heart failure group (Fig. 6(c)) [91]. Although the
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values of the sleep and wake exponents vary from subject to subject, we found that

for all individuals studied, the heartbeat dynamics during sleep are characterized by

a smaller exponent, indicating stronger anticorrelated behavior in the heartbeat

fluctuations during sleep. The physiologic implications of this fundamental change in

the temporal properties of cardiac dynamics during sleep will be a focus of this

application.

To test the robustness of our results, we also analyzed 17 datasets from six

cosmonauts under conditions of microgravity during a long-term orbital flight on the

Mir space station [92]. Each dataset contained continuous six-hour periods of data

under both sleep and wake conditions. We found that for all cosmonauts the

heartbeat fluctuations exhibit an anticorrelated behavior with average scaling

exponents consistent with those found for the healthy terrestrial group: the exponent

is � 1:04 for the wake phase and � 0:82 for the sleep phase (Fig. 6(d)). Thus the
larger values for the wake phase scaling exponents cannot be a trivial artifact of

activity since cosmonauts are under completely different stress and physical

conditions compared to the terrestrial group. Furthermore, the larger value of the

average wake exponent for the heart failure group compared to the other two groups

cannot be attributed to external stimuli either, since patients with severe cardiac

disease are strongly restricted in their physical activity. Instead, our results suggest

that the observed scaling characteristics in the heartbeat fluctuations during sleep

and wake phases are related to intrinsic mechanisms of heart rate control, the

dynamics of which may change during the transition from wake to sleep [91,93,94].

Such a change in the dynamical state of cardiac regulation may be associated with
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previously reported peaks in cardiac vulnerability during sleep-wake transitions

[95–97] and may have important diagnostic and clinical applications.

2.5. Scale-invariant patterns in heartbeat dynamics during different sleep stages

Since our findings suggest different regimes of intrinsic regulation of the cardiac

dynamics during wake and sleep that may switch on and off with circadian rhythms

[91], we next investigated how the heart rhythms of healthy subjects change within

the different sleep stages [98]. We found that different sleep stages are associated with

specific types of correlations and different degrees of nonlinearity in heartbeat

dynamics [99], suggesting changes in the cardiac regulation with different sleep

stages.

We analyzed 24 records of interbeat intervals (� 7:5 h duration) obtained from 12

healthy individuals during sleep. Fig. 7(a) shows the heartbeat interval time series for

a typical healthy subject with periods of light sleep, deep sleep, REM sleep, and short

intermediate wake phases. The annotation and duration of the sleep stages were

determined based on standard procedures [100]. We next applied our magnitude and

sign approach.

The mean values of the scaling exponents obtained using our magnitude and sign

approach and their standard deviations for the different sleep stages are shown in

Fig. 7. We found a smaller scaling exponent amag for light sleep than for REM sleep,

indicating weaker long-range power-law correlations (Fig. 7). Surprisingly, we found

that in contrast to REM and light sleep, the magnitude series for deep sleep is

uncorrelated, with amag ¼ 1:5 suggesting random-walk-like Brownian behavior. The
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deep sleep.
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long-range magnitude correlations found for REM sleep indicate nonlinear

contributions to the heartbeat regulation, which are reduced during light and deep

sleep [8]. Thus, the correlation behavior of the heartbeat increments and their signs

and magnitudes during daytime activity is similar to the behavior we find in REM

sleep, but quite different from the behavior we observe in deep sleep (Fig. 7).

3. Summary

A defining feature of physiologic systems is their complexity. Trying to decode the

remarkable range of behavior of living systems in health and disease has emerged as

a major focus of contemporary medicine. This enterprise suggests a need for

interdisciplinary collaborations among scientists with different backgrounds and the

need to foster of multidisciplinary approach to problems at the interface of physics

and physiology.

The general objectives of our work are to explore both the physiologic significance

and practical utility of heart rate fluctuations. This research should lead to deeper

understanding of the multiscale nature of cardiac control mechanisms, and to further

development of reliable statistical algorithms with which to identify and quantify

healthy and pathologic cardiac dynamics.
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