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We develop a random-walk approach that permits one to study novel physical phenomena that
occur in the random two-component mixture of good and poor conductors. Our work significantly
generalizes the previous body of knowledge on the random resistor network (pure “ant” limit) in
which the poor-conductor species has infinite resistance, and the random superconductor network
(pure “termite” limit) in which the good-conductor species has zero resistance. We find that for any
fixed value of the concentration p of good conductors, we can map a system that is nearer the ant
limit to one that is nearer the termite limit. Specifically, we find R*(1,h,t/h)=R*(h~',1,t) where
R*0,4,04,t) is the mean-square displacement of the walker, and h =0, /0, is the ratio of the con-
ductivity of the poor and good components. This exact transformation permits one to develop a
scaling theory for the general two-component case, which reduces to the known results for the ant
limit and predicts dramatically new behavior for the termite limit. We test the scaling predictions
extensively by Monte Carlo simulation methods. Finally, we develop an analogy with a simple mag-
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netic system, in which the role of the magnetic field is played by the conductivity ratio h.

I. INTRODUCTION

How are the fundamental laws of diffusion and trans-
port modified when the medium in question is a random
AB mixture of good and poor conducting regions [Fig.
1(a)]? This question has received a considerable degree of
recent attention for two limiting cases:'~7 (i) The random
resistor network (RRN), or pure “ant” limit, for which B,
the poor-conducting species, has zero conductance,"8~!2
and (ii) The random superconducting network (RSN), or
pure “termite” limit,’~7 for which 4, the good-
conducting species, has infinite conductance.

The terms ant and termite arise from the fact that one
can replace the conductivity problem with a diffusion
problem using the Nernst-Einstein relation.!*> For the
RRN limit, no diffusion can occur on the component with
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FIG. 1. (a) Schematic illustration of a random two-
component composite material before coarse graining. (b) Re-
placement by equivalent random network with two conduc-
tances a =0, (probability p) and b =0, (probability 1 —p).

zero conductance, so the constrained diffusion problem is
rather like an “ant in a labyrinth.”1 For the RSN limit,
the diffusion can occur everywhere since both components
conduct, but the fact that the good conductor species has
zero resistance means that the diffusion is remarkably dif-
ferent in this region than elsewhere. Some years ago de
Gennes invented the term “termite diffusion” to describe
this subtle phenomenon.? However, to date there has been
no clear statement of exactly how to properly define or
measure this phenomenon,>~> in contrast to the ant limit
where the diffusion is simply constrained to one com-
ponent.>~> There are many reasons for the current up-
surge of interest in this problem.

(i) One reason is that there are many experimental sys-
tems that are random and inhomogeneous.” For example,
a rock is composed of tiny grains of different conductivi-
ties (to heat, to fluid flow, to electricity, etc.). To the ex-
tent that such inhomogeneous materials are also random,
we may think of using a site-random description of this
material “lattice-gas” description. One first coarse grains
the material and then assigns to each cell one of two con-
ductivities o, and o,. Calculations based upon such a
straightforward approach have been usefully compared
with a wide range of experiments,®”!*~%° from conduc-
tivities of thin films of lead depositions on an insulating
substrate’ (roughly the RRN limit) to thin films of super-
conducting material vacuum deposited on a normal sub-
strate® (roughly the RSN limit). Moreover, ionic conduc-
tors mixed with a dispersed insulating phase represent
random heterogeneous materials, where both limits seem
to play an important role.!*

(ii) A second reason is related, perhaps, to the reason
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why the Ising model has always been of great interest: It
is an extremely simple model that captures the essential
physics of a realistic system in nature. The analog of the
Ising model for random inhomogeneous materials is a
mixture of sites (or bonds) randomly distributed on a
lattice—see, e.g., Fig. 1(b). The sites (or bonds) are as-
sumed for simplicity to have only two possible values of
the conductance,

o, (probability p) ,
(L.
o, (probability 1—p) .

By convention, we choose- o, >0}, so that the ratio
h =0y /0, is always less than unity.

Conventionally, one wants to know the macroscopic
magnetization of an Ising ferromagnet composed of ele-
ments (spins) whose microscopic property is a two-valued
variable. Similarly, we now want to know the macroscopic
conductivity which depends on all possible configurations
of the microscopic elements (conductors) whose property is
again a two-valued quantity (o, and o,).

The two limiting cases mentioned above can now be
discussed more precisely (Fig. 2): (a) In the RRN limit,
the large conductance is set to unity and the small con-
ductance is set to zero. As the percolation threshold p, is
approached from above, the macroscopic conductivity 3
approaches zero with a critical exponent p,”?!

S~(p—pW.

(b) In the RSN limit, the small conductance is set to uni-
ty, and the large conductance is infinite. As the percola-
tion threshold is approached from below, the conductivity
diverges to infinity with an exponent 542223
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FIG. 2. Schematic dependence on p of the macroscopic con-
ductivity 2 for two limiting cases of the present model: (a) the
random resistor network (RRN) or ant limit, and (b) the random
superconductor network (RSN) or termite limit. The corre-
sponding exponents y and s are equal for d=2.
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Z~(p.—p)*°. (1.2b)

The traditional approach to the RRN limit has been to
replace Kirchhoff’s laws by an equivalent diffusion prob-
lem, where the macroscopic conductivity is related to the
diffusion constant D by the Nernst-Einstein relation,

2~nD, (1.3)

where n is the density of the charge carriers.?*

II. RANDOM-WALK MODEL
FOR THE CONDUCTIVITY OF A TWO-COMPONENT
RANDOM MIXTURE

In this section, we briefly explain the model we have
been developing to describe—using random walks—the
conductivity of a general two-component random mix-
ture.>> Perhaps the best starting point is the pure ant
limit in which the conductance of the poor conducting
species tends to zero (o, =0). In this case, the Nernst-
Einstein theorem applied to this case tells us that the mac-
roscopic conductivity 2 (measured, e.g., by a pair of bus
bars—see Fig. 1) is proportional to the diffusion constant
D.

It is convenient to imagine a randomly diffusing parti-
cle which jumps from site to site over potential barriers.
Each barrier has the same height if the bond has conduc-
tance o,, while the barrier is infinite in height if the bond
has conductance o, (see Fig. 3). Thus, when the particle
is at a boundary between two bonds with conductivities
o,=1 and o, =0, it will be “reflected” with probability
unity by the zero conductivity bond. We could say that
its jump frequency into the high-conductivity region is
fa=1, while its jump frequency into the low-conductivity
region is f, =0. Similar remarks apply to the termite or
RSN limit, except that now f,— « and f, =1. For the
case of a general inhomogeneous material, f, and f;, are
both finite constants, different from zero or infinity. The
ratio h =f}, /f, is zero for both the RRN and RSN limits,
but for the general inhomogeneous material / is a number
between zero and one. Note that since f,~o, and
fp ~0p, his also given by
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FIG. 3. Schematic illustration of our random-walk model for
a one-dimensional lattice, showing the presence of a boundary
between a good-conductor cluster of conductors o, and a poor-
conductor cluster of conductors o,. The corresponding jump
frequencies f, and f, determine, through Eq. (2.2), the probabil-
ity of a particle being reflected at the boundary.
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h=0’b/0'a=fb/fa . 2.1

With the foregoing picture in mind, we can now state
clearly the random-walk model of a general two-
component inhomogeneous material. Place a walker on a
d-dimensional lattice made of two kinds of bonds, 4 and
B (for illustration, d=1; the general-d case is discussed in
Appendix B). The walker carries two coins, weighted and
unweighted, and a clock. Without loss of generality, let
the origin be well inside a high-conductivity A4 region. At
each tick of the clock, the walker tosses the unweighted
coin and moves to the left or right depending on the out-
come of the coin toss. When the walker comes to a site
on the boundary between the A4 region and the B region, it
tosses the other coin that is weighted with probability

Pa=fa/(fa+fb)=l/(1+h), (2.2a)
to stay in the A region, and a probability
Po=fp/fa+fo)=h/(1+h), (2.2b)

to go outside into the B region. In the event that the
walker steps outside the A region, then he must slow
down by the ratio f, /f;. For example, if the conductivity
of the B region is ten times smaller than that of the A4 re-
gion, then f} is ten times smaller than f, (h=0.1) and the
walker steps only after every ten ticks of its clock.
Limiting cases of our random walk model are as fol-
lows: (i) h=1. There is no distinction between regions,
no reflection on the boundaries (P, =P, ), and no differ-
ence in walk speed on and off the A clusters. (ii) A << 1.
The walker now moves at one step per clock tick when it
is on an A cluster, and is almost always reflected when it
comes to the boundary. Extremely rarely it passes out of
an A region and into a B region, whereupon it walks
much, much slower—taking a new step only after its
clock has made h~! ticks. Statistically speaking, in a
very large time >>h ~!, the walker performs O (f,) moves
in the 4 region and O(f,) moves in the B region. Sup-
pose we make a motion picture of the walker’s motion.
Then we see that the walker is reflected from the walls al-
most all of the time, and only very rarely—roughly once
per h ! trials—will come outside the cluster (see Appen-
dix B). When this does occur, its motion will slow down
by a factor of h. Let us now speed up the motion picture
projector by a factor of 1/4 so that the walker is now tak-
ing one step per unit of time while in the B region. Then,
when it finally encounters an A cluster, it moves onto it
with a high probability, 1/(1 + k), and proceeds to move
about the A cluster with a motion that is also sped up by
the same factor 1/h. Thus the original ant who stepped
normally on an A cluster and extremely slowly on B clus-
ters has suddenly been transformed into a termite who
moves normally on B clusters and extremely fast on A
clusters. Indeed, the only difference between the two
domains, ant (RRN domain) and termite (RSN domain),
is the definition of the time scale. We shall see that this
simple observation can be formalized in terms of a
rigorous transformation (Sec. III) and that the transfor-
mation in turn forms the basis of the scaling laws for the
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ant and termite limits of the general two-component ran-
dom mixture (see Sec. IV).

III. GENERAL RESULTS (EXACT)

In this section we develop some quite general and rather
surprising exact relations. These concern (a) the dc
(w=0) conductivity 2, (b) the rms displacement R (¢), and
(c) the ac conductivity 2(w). These relations lead to
surprising consequences. For example, they show that
physical laws in the vicinity of the RSN limit are identical
to those in the vicinity of the RRN limit. Since the rela-
tions hold for any fixed p, we have suppressed the p
dependence in this section.

A. Proof that =(h~',1)=h~'2(1,h)

The content of this relation, treated previously by Efros
and Shklovskii®? and by Straley,? is indicated schemati-
cally in Fig. 4(a). It follows from the homogeneity rela-
tion
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FIG. 4. Illustration of the exact relation derived in Sec. III
for (a) 3, (b) R?, and (c) =(w). The curly bracket means to mul-
tiply by the transformation factor 4 .
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z(kaaakab)=x-2(aa’ab) ’ (3.])

which is a functional equation holding for all positive
values of A. If we set A=1/0,, then

0,2(1,0p/0,)=2(0,4,03) . (3.2a)
Alternatively, we can set A=1/0},

020, /0y, 1)=2Z(0,4,0p) . (3.2b)
Combining (2.2a) and (2.2b), we have

S(h~L,D=h"'2(1,h), (3.3)

where h =0y,/0, as before. This result holds for all
values of A. In the limit hA—0, the left-hand side ap-
proaches 27 =2(o0,1) and the right-hand side approaches
h~'%,=h"'2(1,0). Note the following corollary: Since
the Nernst-Einstein relation must hold for the two-
component network, we can replace the conductivity by
the diffusion constant in (3.3) and write

D= 1)=h"'D(1,h) . (3.4)

B. Proof that R(h~',1,t)=R (1,h,t/h)

The above results can be generalized to the somewhat
more microscopic function R (z)=({r?))!/?, the rms
(averaged over all configurations) displacement of a ran-
dom walker who moves on the general two-component
system according to the rules described in Sec. II. This
motion is thus characterized by two jump frequencies
fa~0g and fj, ~0,, with h =f,/f,. If we consider now
a second system in which, e.g., all jump frequencies were
doubled, then the rms displacement of the original system
would be reached in half the time. Note that since the
jump frequency to the nearest neighbors only depends on
the jumping ratio f,/f,, the path of the walker in the old
and in the rescaled system are exactly the same. Thus an
analogous statement holds for any transformation, and R
must obey the functional equation

R(Afo, M5, A7) =R (fo, fp,1") - 3.5
If we set A=1/f,, then

R, fo/far ' fa)=R(f4, [b, 1), (3.6a)
while if A=1/f}, we have

R(fy/fp, L, U'f5)=R(f4, fb,t") . (3.6b)

Combining (3.6a) and (3.6b), we have a new result valid
for any ¢ and any h,
R(h=41,6)=R(1,h,t/h), 3.7

where we have defined ¢t =f,¢’ so that
t'fo=t"fp ) fa/fp)=t/h .
Thus the detailed behavior of the walker near the RSN

limit differs from the behavior near the RRN limit by a
simple change of time scale [Fig. 4(b)].
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C. Proof that 2(h~',1,0)=h"'2(1,h,ho)

Clearly this result reduces to (3.3) when @w=0. One
first must establish the homogeneity relation

2(Aog,A0p,A0')=A2(0,,0p,0") , (3.8)

which follows directly from the definition (1.3) and the
homogeneity relation (3.5). Next we set A=1/0, to ob-
tain the analog of (3.6a) and then we set A=1/0,. Equat-
ing these, we find

S(h~1,0)=h"'2(1,h,ho), (3.9)

where we have defined w =w'/0} so that
o' /o,=(0"/opNap/0,)=0h .

Thus we can determine the conductivity at a frequency w,
in the termite regime if we know the conductivity in the
ant regime at a frequency hw, [Fig. 4(c)].

IV. SCALING FOR THE CONDUCTIVITY
OF A RANDOM MIXTURE

A. Conductivity scaling of 2(1,h,€) and the RRN limit

An analogy between the conductivity near the percola-
tion threshold and the magnetization near the critical
point was proposed by Straley.> For a ferromagnetic ma-
terial, as e=(T—T,.)/T,—0", one finds that the mag-
netization approaches zero as

M(e)~ |€e|?. (4.1a)

Similarly, for the pure RRN limit (h=0), we find as
e=(p.—p)/p.—07, the dc conductivity also approaches
zero,

2(1,h=0,€)~ |€e|*. (4.1b)

This trivial analogy between M (€) and 2(€) can be ex-
tended to the field variable 4. (See Figs. 5 and 6.) For the
ferromagnet at T =T,

M(e=0,h)~h'/3, (4.22)
while for our problem h =0, /0, and
3(1,h,e=0)~h", (4.2b)

where u = for d =2.%

Next we obtain the functional form in the full e-# plane
near the origin e=h=0. For the ferromagnet, the scaling
ansatz states that asymptotically

M(e,h)~h'g(e/h?) . (4.3a)

Here ¢ =1/36 is the crossover exponent between € and A,
while g (x) is the scaling function. Hence the natural scal-
ing ansatz for the two-component random mixture is

3(1,h,e)~h'g(e/h®) . (4.3b)
Here
¢=U/ﬂ (4.4)

is the crossover exponent between € and A, and g (x) is the
scaling function.
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B. Conductivity scaling for £(h~!,1,¢) and the RSN limit
The analogs of (4.1) and (4.2) for the RSN limit are

S(h~'=w,1,€)~ |€| ~* (4.5a)
and

S(h™! 1, e=0)~h~1+" . (4.5b)
Since by Sec. IIT A, we have

(k= 1,€)=h"'2(1,h,€)
so that if 2(1,h,e=0)~h* as h—0, then

3(h~!, 1,e=0)~h "'+ Therefore, the scaling form
(4.3b) is unchanged except that the leading power 2“ be-
comes k& ~!** and the crossover exponent is given by

d=(1—u)/s . (4.6)

Since the expressions for ¢ in (4.4) and (4.6) must be iden-
tical, we can eliminate the “critical isotherm” exponent u
to obtain an expression for ¢ in terms of the “thermal-
like” exponents of the pure RRN and RSN limits,

o=1/(n+s) . 4.7)

Note that for d=2, u = 7 by duality.”* Hence from (4.4)
and (4.6) we have

u=s (d=2). (4.8)
Moreover, for d=2 we can show that more generally
g(—x)=1/g(x), (4.9)

where g(0)=1 by definition. Therefore, if the scaling
function is known for p >p., we obtain it for p <p, sim-
ply by (4.9). In Ref. 5 we have shown by using Monte
Carlo simulations that the scaling ansatz (4.3b) is justified
and g (x) satisfies relation (4.9). A rigorous proof of (4.9)
is given in Appendix A.

V. SCALING FOR THE rms DISPLACEMENT
FOR THE RRN AND RSN LIMITS

Already with h=0, the scaling of R (¢) is subtle and the
results are quite rich. Hence, we devote this section to the
h=0 case, deferring to Sec. VI the general-A discussion.

A. Scaling of R (1,0,¢,t) for the RRN limit

Many of the results of the RRN limit have been already
proposed.®~!! Here we present a particularly simple
derivation of the scaling behavior; we will later generalize
our RRN result to the RSN limit, and to the general two-
component system as well.

The physics of the RRN is completely different below
and above p.. Below p. the walker (de Gennes ant) is
trapped inside the finite cluster. Hence,

lim R%(1,0,6,t)=R}(€)~

t— o0

le| =*+8 (p <p.), (5.1a)
where R,(€) is the mean radius of a finite cluster, and
e=(p.—p)/p. as above (see Fig. 7).

Above p,., there is a tenuous infinite network so the
mean-square displacement (averaged over all configura-

tions) is not bounded by R2. We expect from the Nernst-
Einstein relation that R2/t ~D ~ | €| ¥, so

R%1,0,e,t)~1t | €|*. (5.1b)
Accordingly, one is led to a general scaling ansatz
R*(1,0,e,t)~t |€|*A+(t/|e| 7D, (5.2)

where A _(x) denotes the ant scaling function below p,
and A, (x) is the corresponding scaling function above
Pe-
Now A4, (x) must have the following properties: (a) In
order that (5.1a) be satisfied, R%(1)—R?2 for p <p, and
t>> | €| 7% Hence,

A_(x)~1/x (x>>1). (5.3a)
(b) In order that (5.1b) be satisfied,
A (x)=const. (x>>1). (5.3b)

Note that the crossover exponent z in (5.2) is readily
determined by substituting (5.3a) into (5.2) and comparing
with (5.1a),

z=p+2v—p. (5.4)

For length scales much less than the correlation length,
the substrate cluster is self-similar. Hence, a random
walker on this substrate cannot distinguish the fact that
the system is not at the critical point—i.e., ps#%p.. Hence,
for times less than a “crossover time” ¢, = | €| ~* the walk
statistics have the same scaling properties as those exactly
at p.. For this reason, we expect R%(1,0,¢,t) to be in-
dependent of € for ¢ <¢,. By definition,

R¥1,0,6,t) ~t%* (t <t;) . (5.5)
In order that (5.5) be satisfied, we require that
As(x)~x%*=1 (x «<1). (5.6)

Hence, R? in (5.2) will be independent of € only if k is re-
lated to the conventional critical exponents through

k=2v-p)/[2(u+2v—-P)] . (5.7)

Note that if the walker’s starting point was constrained to
the incipient infinite cluster, then 2k would be replaced by
2/d,, where d,=2+u/v—pB/v. The anomalous dif-
fusion law (5.5), valid for small times, reflects the fractal
structure of the substrate on short length scales. As we
approach p,, t;— o« and the regime of anomalous dif-
fusion becomes arbitrarily large.

B. Scaling of R(,1,¢,t) for the RSN limit

Here we focus entirely on p <p., and present a new
scaling formulation for the RSN limit. For the RRN lim-
it, the walker reaches R; asymptotically, i.e., R—R, as
t— . However, for the RSN the walker (de Gennes ter-
mite) reaches the cluster radius already at infinitesimally
small times, i.e.,

R—R; (1—07%). (5.8a)

For large times, it follows from the Nernst-Einstein re-
lation that

Ri~t|e| ™ (t—>w). (5.8b)



33 RANDOM-WALK APPROACH TO THE TWO-COMPONENT . ..

Note that (5.8a) and (5.8b) for the RSN are analogous to
(5.1a) and (5.1b) for the RRN. However, (5.8a) and (5.8b)
both concern p <p. but two different time limits, while
(5.1a) and (5.1b) both concern the same t— « time limit
but two different domains of p —p,.

For the RRN problem, the p <p. and p >p, regimes
were bridged by the scaling ansatz (5.2). For the RSN
problem, p <p. but the short-time and long-time regimes
of (5.8a) and (5.8b) can be bridged by the ansatz

R¥w,l,et)~t |€| *T_(t/|€| ~%). (5.9

Now T _(x) must have the following properties: (a) In
order to satisfy (5.8a), we require

T_(x)~1/x (x—0%). (5.10a)
(b) In order to satisfy (5.8b), we must have
T _(x)=const. (x>>1). (5.10b)

The crossover exponent z’' appearing in (5.9) may be
found on substituting (5.10a) into (5.9) and comparing
with (5.8a),

Z’=—s+4+2v—PB. (5.11)

Note that (5.11) has the same form as (5.4) except that the
RRN exponent p is replaced by the RSN exponent —s.

VI. SCALING OF THE rms DISPLACEMENT
FOR GENERAL h

In the previous section we carried out a scaling analysis
of the rms displacement R for the pure RRN (ant) and
the pure RSN (termite) limits. In this section we will con-
sider the general case where the fieldlike parameter
h =0y /0, is not zero. Thus this section corresponds to a
completely arbitrary two-component random material
such as that described in the introduction (Fig. 1). First
we consider the vicinity of the RRN limit, and later we
will use Eq. (3.7) to transform to the vicinity of the RSN
limit.

We begin by generalizing the #=0 scaling ansatz of Eq.
(5.2) and the t = Ansatz for the long time diffusion
constant of Eq. (4.3b) to

RX1,het)~t |€|*G.(t/ €| “5h/ €| ?) . (6.1)
(a) MAGNET (b) ANT
be:Jw\ b
L /
M
Ke J/KT Pc =p
h=9 M4 2
___J___’
Ke K Pc p
@ Kc,M~hv/3 @ pc, Z~hY

FIG. 5. Analogy between (a) a ferromagnet and (b) a random
mixture.
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Corresponding to the second variable A is a second cross-
over exponent ¢; the two crossover exponents z and ¢ are
given by Eqgs. (5.4) and (4.7). The subscript indicates, as
above, the sign of p —p,, and we shall consider mainly p
below p,.

For the magnetic system, there are two relevant scaling
regions (Fig. 6). By analogy, we expect there to be two
scaling regions for the })resent problem, which we denote
as region @ (h << | €|/#) and region B (1>>h >> | €| /)
(see Fig. 6).

A. Scaling for region a (h << | €| /%) close
to the RRN limit

Since h /| €| '/# is small, we have
R*(1,h,e,t)=t |€|*[G_(t/]| €| ~%0)
+h/|€e|V*G,(y% /€| 7], (6.2)

where the second term is the leading contribution to the
small values of h and y=h/|e|'/%. Note that the
second term in (6.2) vanishes as 7 —0, so that we recover
the RRN scaling relation (5.2).

In (6.2) we have assumed that the ¢ and & dependence
of G, enters only in the product form th. We can further
argue that §=1. To see this, recall the general relation
(3.7) that R? of a system near the RRN limit is identical,
if ¢ is replaced by t/h, to R? for a system near the RSN
limit. Thus if we perform the transformation t—t/h,
(6.2) becomes

R(1,h,e,t/R)=R(h~ 1,1,
ie.,
R*=(t |€|*/h)G_(t/h |€| ~%0)
+1 |€|F18G (th® 1| e| —2—8/%) . (6.3)

For h—0 we approach the RSN limit. Then for any
nonzero ¢ the first term tends as A —0 to R? (see Sec. V),
while the second term also becomes independent of A, ap-
proaching ¢ | €| ~* for large times (see Secs. III and V).
Hence, we require from the argument of G, in (6.3) that
8=1. With §=1, we have from (6.1) and (6.2) that

R¥(1,h,e,t)~t |€|*G_(t/| €| ~%0)
+th |€| ~G,(th/ | €| ~7), (6.4)

where we have used Egs. (4.7) and (5.11). Comparison of
(6.4) and (5.2) yields

(b) Random mixture

(a) Magnet

FIG. 6. Scaling regions a and B for the simple ferromagnet
and random mixture.
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G_(t/]€| ~30)=A_(t/]|€] 7). (6.5)

In Eq. (6.4) we distinguish between three different time
regimes [Fig. 8(a)], which are separated by two crossover
times,

ty=le| 7%, (6.62)

and

t,=|€e|"%/h. (6.6b)

First we give a rough physical interpretation of the two
crossover times involved.

For t <<t (regime I) the walker is just beginning to ex-
plore the bulk interior of whatever finite cluster he landed
on. This is the self-similar region of the walk since the
underlying substrate is self-similar for scales much small-
er than ¢,. This crossover time scales as R,/’%,

R,l/k~ IGI -z 6.7)

where k and z are given by Egs. (5.7) and (5.4).

For t; <<t <<t, (regime II) the walker continually tries
to escape completely from the cluster but he continually
fails because most of the perimeter sites belong to the
screened interior. In fact, the walker may temporarily
leave the cluster but if he leaves in the screened region he
will stumble again on the same cluster before breaking
completely free. This is indicated schematically in Fig. 1
of Ref. 3. Hence, R? does not increase, and we see a pla-
teau.

Finally, for ¢ >>t, (regime III), the walker completely
escapes the cluster he started on by exiting from one of
the unscreened “tiplike” portions of the cluster. Hence,
there is an overall classical diffusion R?>~Dt, with D ex-
tremely small. Specifically, D~h | €| ~* is related to the
number of unscreened perimeter sites, since the exit fre-
quency should scale as the ratio of unscreened perimeter
sites M, to the total number of all cluster sites M,q,,"
multiplied with the probability that the walker can step
out from an unscreened site,

ty' ~(M, /Mo )h . (6.8)
Here M, is the total number of cluster sites,

Mg ~E7, (6.8b)
and M, is the number of unscreened perimeter sites

M, ~&% (6.8¢)

Relation (6.8c) defines the dimension d, of the unscreened
sites of a percolation cluster. From (6.8) we have

7 hE T h €|+, 6.9)
where z'= —s +2v— by Eq. (5.11). Hence,
dy=d;—(2v—B—s)/v, (6.10)

which for d=2 reduces to d,=s/v. Next we consider
quantitative predictions for each of the three time re-
gimes. First, we define regime I as

t<<t;=|€| P<<ty=|€| ¥/h (regimel).
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At very small times, we can neglect the second term in
(6.4) and so recover the equation describing the short time
behavior of the de Gennes ant,

R*(1,h,e,t) ~t'~#/* (for regime I) , (6.11a)

from Eq. (5.5). Second, we define
t <<t <<ty (regime II) .

According to (5.1a), the first term becomes R?, while the
second term can be neglected. Therefore,

R¥(1,h,e,t)~ | €| ~2**# (for regime II) . (6.11b)

Third, we define
t>>t, (regime III) .

No matter how small k =0, /0, is, if we wait sufficiently
long the walker will completely escape from the cluster
and will walk on the low-conductivity regions of the net-
work until it again encounters a cluster of high-
conductivity bonds. For this reason, we intuitively expect
the plateau in R%(¢) to give way to an increasing function.
From the analogy with the RSN limit, we require
G,(x)=const. for x >>1 [cf. Eq. (5.10b)], and, hence,

R¥1,h,e,0)~ | €| "?+Bth |€| ~* (regime III) . (6.11c)

B. Scaling for region B (1>>h >>¢€'/%)
close to the RRN limit

In Sec. III we found that in the long-time limit for
1>>h >>€'/?,

R*/t~D~3~h" (u=¢pu), (6.12)

is independent of €. We therefore expect that also for fin-
ite times R?2 should be independent of €. Therefore, (6.1)
should reduce to the following scaling ansatz in region B:

RY1,he,t)~th*H[(t/|e| ~*)h/|€e|/#)?], (6.13)

for both p >p. and p <p.. The exponent a must be ad-
justed so that € does not appear in (6.6a). Hence, a=¢z,
and (6.13) becomes

R (1,h,e,t) ~th®H (th*) . (6.14)

To find the functional form of H(x), we first note that
for long times (f>>t,=h~%), we require RZ~th?*
Hence,

H(x)—const (x>>1). (6.15)

For t <<t the motion of the walker is governed by the
fractal structure of the substrate alone. Therefore, we ex-
pect that

R¥(1,h,e,)~1?* (t «<13) (6.16)
is independent of h. Thus we have from (6.14)
H(x)~x"H*% (x «<1). (6.17)

For h—0, the crossover time ¢, tends to infinity and the
anomalous diffusion (6.16) extends to all time scales.
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C. Scaling for region a close to the RSN limit

From (3.7) and (6.4) we obtain the mean-square dis-
placement [see Fig. 8(b)] in the vicinity of the RSN limit

RXh—'1,et)~t(|€|*/h)G_(t/h | €| ~%0)
+t|€| Gt/ | €| ~%) . (6.18a)

For t>>h |€| % the first term in (6.17) tends to R}
Therefore, in order to reach the termite limit for times
greater than 1, h ~ 0, /0, has to satisfy the inequality

h<<|€|?, (6.18b)

so that the first term of Eq. (6.17) approaches
R2~ | €| ~%*P already at time of order 1. Hence, we
only need consider the second term. To check the predic-
tions of our scaling theory for the termite limit, we have
undertaken extensive Monte Carlo computer simulations
in a two-dimensional square lattice for times ¢ >1 with a
number of moves per unit on the A sites for
h~'>>|e| ~*> We have determined R%(h~!,1,¢,t) for
0.4 <p <0.58. The result has been divided by |eL—2"+‘g
and plotted against t/ | €| ~%, where —2v+B= — 3, and
z'=—3t+1.3~—1.2 for d=2 percolation. The result
displayed in Fig. 9 confirms our scaling theory. Corre-
sponding to the three time regimes—1I, II, and III—near
the RRN limit, near the RSN we have three time regimes:
I', I, and III'. These are connected by the crossover
times ¢t =h |€| “*=ht, and t= | €| ~¥ =ht,. In regime
I' (¢t <<t}), which shrinks to zero as A—0, the walk is
governed by the fractal structure of the substrate. There-
fore, we must have

R¥h=1,et)~t—H/% (6.19)

which does not depend on €.
In regime II' (7] <<t <<t;) we have, in analogy to
(6.11b),

RAh~" 1,60~ |e| ~+B, (6.20)
In regime III' (2 >>t3),
R¥n~1,et)~ |e| ~?*P4t|e|—*. (6.21)

In contrast to the RRN limit, where the motion of the
walker is governed by the interior bulk properties of the

<rz>

'’

N _t*

Self?gimilar Homoaneous

FIG. 7. Schematic dependence of mean-square displacement
on time for a system slightly below p.. For t <t,, the walker
samples a self-similar region smaller than the correlation length
so the diffusion is anomalous ({r?) ~1?¥). Above t,, the walker
saturates the finite clusters, whose average diameter scales as
R,, where R} diverges as || ~2**5.
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FIG. 8. (a) Dependence of the mean-square displacement
time for a system near the random resistor network (RRN) or
ant limit, and (b) a corresponding plot for the random supercon-
ductor network (RSN) or termite limit. As discussed in the text,
there are now fwo crossover times, t;, which depends on the
“bulk” fractal properties, and ¢,, which depends on the surface
fractal properties.

finite clusters on a time scale ¢ ~ | € | ~% the motion of the
walker close to the RSN limit is governed by the attempts
of the walker to find unscreened sites of a high conduct-
ing cluster. Therefore, on a time scale t~ | €| =%, the
walker stays close to the surface of the finite cluster be-
fore leaving it. The time | €| % is proportional to the ra-
tio of the average number of unscreened and screened sites
on a finite cluster. While close to the RRN limit the bulk
properties of the finite clusters are probed, the surface
properties of them are studied close to the RSN limit. In
the termite limit already at infinitesimally short times the
walker reaches the surface of a finite cluster. That is,
R?>—R} where R? depends strongly on €. There exists
no finite time regime where R? is independent of e.
Therefore, a scaling ansatz R>~t**" analogous to (5.5), in
connection with (5.9), cannot be made.’ Indeed, such a
scaling ansatz yields

1/k'=2z"/(2v—PB) , (6.22)
which makes the prediction k'=1 for d=2, and so
predicts nearly ballistic behavior in two dimensions.

D. Scaling for region B close to the RSN limit
From (3.7) and (6.14) we obtain
R¥h='1,6,) ~th**~'H(th#~") . (6.23)

Following Sec. VIB, we distinguish between two time re-
gimes with a crossover time

ty=hty=h—%+1, (6.24)
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FIG. 9. Mean-square displacement multiplied by €*~# plot-
ted against ¢ | €| ~**+2*~# for values of h >> | €| ~***+#~%. Data
are for several values of €, which here denotes p, —p: p=0.55
(@), p=0.54 (A), p=0.53 (0), p=0.52 (O), p=0.50 (X ), and
p=0.45 (A). The data collapse confirms the validity of the
scaling ansatz (6.4). For details of the Monte Carlo calculation
see Ref. 5.

In two dimensions —¢z+1=—7, and therefore the
crossover time tends to infinity as #—0. For ¢ <<t;, we
again expect anomalous diffusion R*~t%*, while for
t >>t;, we must have R*2~th% ~!. We have checked our
scaling ansatz (6.23) by performing Monte Carlo simula-
tions at p =p, for various values of h (see Fig. 10). The
results led to a data collapsing as predicted by (6.23),
which nicely confirms the validity of the present scaling
approach.
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FIG. 10. Mean-square displacement times 4 vs th'/? for
p =p. and several values of h: h =10""'(A), A =5X10"% (W),
h=10"2 (0), and h =103 (X). The data collapse confirms
the validity of the scaling ansatz (6.23). For details of the
Monte Carlo calculation we refer to Ref. 5.
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VII. SUMMARY

In this work, we have discussed an exact transformation
for the mean-square displacement of a random walker in a
two-component random material. This exact transforma-
tion was used to develop a scaling theory for the mean-
square displacement of the walker near the random super-
conducting limit (the “termite problem”). We predict
three distinct time regimes, and these predictions are suc-
cessfully confirmed by computer simulations. Since the
long-time regime is related to the conductivity, the dif-
fusion model discussed here provides also an efficient tool
to calculate the conductivity exponents.
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APPENDIX A: EXACT RESULTS
IN TWO DIMENSIONS

Equation (4.9), g(x)=1/g(—x), is the direct conse-
quence of a duality argument valid in two-dimensional
square-bond percolation. Note first that

g(x)=2(1,h,e)/2(1,h,0) , (A1)
with x =e/h* and e=(p —p.)/p, with p,=+. From the
exact duality relation we have for the square lattice*>?

3(1,h,e)2(1,h,—€)=h , (A2)
which at p. gives

3Xa,h,0)=h . (A3)

From (A1)—(A3) follows g (x)=1/g(—x).

APPENDIX B: RELATION BETWEEN THE
MODELS USED IN REFS. 3 AND 5

In this appendix we briefly explain the two models we
have used to test our scaling predictions. In model I
(Refs. 3 and 5) (see Sec. II), the walker’s unit time per step
f,"’l is inversely proportional to the conductivity, i.e.,
fg/fa=0p/0 4 [Eq. (2.1)] and the transition probability
at a given site, m;, to the ith nearest-neighbor sites is pro-
portional to the conductivity, i.e., m;=f;/Z;f;, where the
sum extends over the nearest neighbor of site i.

In model II,’° the rules for the walker are slightly dif-
ferent. When the walker is on a B cluster, it chooses at
random any direction and proceeds to this neighbor re-
gardless of whether it is a B site or an A4 site. The corre-
sponding step frequency is fp=1. When the walker is on
an A site, it chooses at random in which direction its next
attempt to move to a nearest-neighbor site will be (a) if
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the attempted site belongs to an A cluster, the walker
steps and the time not counted, or (b) if the attempted site
belongs to a B cluster; then the walker can either step or
wait, with probability 7 45 ~h and 1 —7 5 ~ 1 —h, respec-
tively.

The limit 7 45— 1 in model II corresponds to the limit
h=fg/f4—0 in model I. Both models are intimately re-
lated to each other in the following sense. Consider model
I. By the detailed balance condition, the average time ¢,
the walker spends on A sites, and the average time ¢ the
walker spends on B sites are simply related by

ty/tg=p/(1—p). (B1)
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Let us now consider a variation of model I (which we call
model I') for which time is not counted inside an 4 clus-
ter. Then the corresponding diffusion constant in this
model will be enhanced simply by a factor 1/(1—p). The
difference between model I' and model II lies merely in
the fact that in model I' the walker always has to jump,
like “a myopic walker,” while in model II the walker can
wait like “a blind walker.” It has been shown recently that
both kinds of walker belong to the same universality
class.?’” We verified, by extensive simulation of R%(z),
that model I and model II also belong to the same univer-
sality class.
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