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Abstract. We calculate the fractal dimension d, , ,  of the shortest path I between two points 
on a percolation cluster, where 1 - rd”n and r is the Pythagorean distance between the 
points. We find d , , ,=  1.130*0.002 for d = 2  and 1.34i0.01 for d =3 .  

What is the length 1 of the shortest path or ‘chemical distance’ between two points of 
a random material? In general, I is greater than r, the Pythagorean distance between 
the points. If the object is self-similar (‘fractal’) on length scales r < 6 (where 6 is the 
pair connectedness length), then by definition the density p decreases as the size 
increases as p - r d f - d ,  where dr is the fractal dimension. That df- d is negative implies 
that when a fractal is examined on larger and larger scales there must occur ‘holes’ 
on larger and larger scales, up to the size of the connectedness length 6. 

Now as r increases, 1 increases faster since larger and larger ‘holes’ must be 
circumnavigated by the shortest path. Previous work suggests that 

r < 5  (1) 1 - r’min 

where d,,,, the fractal dimension of the shortest path, is bounded from below by unity. 
Most studies agree that d,,, is universal in the sense that it depends only on the 
dimension d of the underlying lattice and not on the type of lattice or other details 
of the problem. 

One particularly well studied fractal object is the incipient infinite cluster in  
percolation. However, most studies have been limited to d = 2 lattices, and even for 
the case d = 2  different studies disagree on the numerical value for d,,,. A precise 
value of d,,, is important in many physical applications of this concept. For example, 
suppose we consider a forest fire burning in a fractal landscape. The velocity of the 
moving front of the fire scales in time with the exponent d,,,- 1; since d,,, is 
numerically close to one if d = 2 even a small error in d,,, can have a large effect on 
the velocity exponent. Apart from the practical applications of d,,,, this exponent is 
of considerable theoretical importance since it is the analogue in percolation of the 
dynamic scaling exponent z of critical point phenomena-it governs the fashion in 
which information is ‘propagated’ in time from one point to another. Based on this 
analogy, one might expect that d,,, is not related to other percolation exponents, just 
as z is not related to other critical point exponents. Nonetheless, an intriguing 
conjecture has been made (Havlin and Nossal 1984) relating d,,, to the fractal 
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dimension dred of the singly connected 'red' bonds (Stanley 1977, Coniglio 1981) and 
the fractal dimension df of the percolation cluster 

(2) 

The critical exponents of many d = 2  systems are now known exactly, so a highly 
accurate estimate of d,,, could be useful to test the accuracy of conjectures such as 
(2) and also to motivate attempts to calculate d,,, exactly. 

For reasons such as these, we have undertaken a rather large-scale simulation effort 
designed to obtain accurate numerical estimates for the dynamic exponent d,,, for 
both d = 2 and d = 3. To accomplish this, we have systematically studied a sequence 
of finite-size systems increasing from typically a few hundred sites to almost two million 
sites. For each system, we have obtained statistics of u p  to 50 000 distinct realisations. 
This effort has consumed approximately 10000 hours of CPU time on an IBM 3091 
mainframe computer. 

Our procedure is as follows. For a fixed box size of edge 6 we first generate a 
percolation cluster at the percolation threshold p c ,  which we take to be 0.592 77 for 
d = 2 (Gebele 1984, Ziff and Sapoval 1986) and 0.3117 for d = 3 (Heermann and 
Stauffer 1981). Next we identify the largest cluster, and we move two bus bars from 
two diagonally opposed corners of the box toward the centre until we contact the 
largest cluster. The Pythagorean distance r between the two points at which the cluster 
touches the two bus bars is recorded. Then we calculate the minimum path length 
between the two points by 'burning' the cluster (Herrmann et af 1984). Starting at one 
of the two sites at each burning step all the nearest neighbours are burned that belong 
to the cluster and have not yet been burned. This is done until after 1 burning steps 
the point on the opposite bus bar is burned. 

For each system site b we calculate the averages of the Euclidean distance ( r ) h  and 
of the chemical distance ( l ) b  and also over various moments of 1: 

(mz)'=(12)h - ( I ) ;  

d,,, = dr- dred = 55/48 = 1.146. 

(m4)4 = ( 14) h - 4 j 3 )  h( l > h  + 6( f2 )b (  1 )  - 3 (1) 

( '21f,)6 = (I6), - 6 ( l 5 ) b ( l ) h  + l 5 ( l 4 ) h ( 1 ) i  - 20(f3)h(1)i + 15( l')h(l): - 5(f)6, 

(m8)"(IB)h -8(1')h(I)h +28(16)h(0; 

- 56( 1')h( 1 ) ;  + 70( I 4 ) h (  1):  - 56( I3)h( I ) ;  + 28( I*),( 1 ) :  - 7( 1 ) ;  

In figure 1 we show how these quantities behave as a function of b for d = 2 and 3. 
We see that the points fall quite well on straight lines even for the higher moments in 
the log-log plot. Clearly ( r ) b C C  b as expected. Within our error bars we find m6K m,oc 
m,x(l) ,cc bd". in d = 2 and 3 which means that there is gap scaling and apparently 
no multifractality. The slopes yield d,,, = 1.135 * 0.005 in d = 2 and d,,,, = 1.33 f 0.03 
in d = 3. 

We note that in figure 1 corrections to scaling to (I),, and its moments are virtually 
undetectable since already for the smallest systems the points already follow the 
asymptotic behaviour within the statistical error bars. This is interestingly different if 
one plots ( I ) ,  against ( r ) , ,  where a curvature in the data is apparent. One sees actually 
in figure 1 that there are some deviations of ( r > h  from the straight line for small 6. 

Another way of analysing the data is the ratio method, i.e. obtaining for each pair 
of successive values of b the local slope in figure 1 which gives an effective dmIn(6). 
In figure 2 we plot d,,,(6) as a function of b- ' .  We see that the data are not independent 
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Figure 1. (I),, (O) ,  ( r ) h  (0) and moments m4 as a function of b in d = 2 and d = 3. The 
moments are q = 2  ( A ) ,  q=4 (O), q = 6  (V), and q = 8  ( x ) .  

of b so that there is some correction to scaling. Extrapolating to b + c o  yields from 
figure 2: d, , ,=  1.130i0.005 in d = 2  and d, , ,= 1.38i0.04 in d = 3 .  Due to the strong 
statistical fluctuations at large b it is not possible to obtain the correction to scaling 
exponent. 

One way to suppress the strong fluctuations is to calculate another effective d,,,  
in which one calculates in figure 1 the slope via a linear regression without taking into 
account sizes less than a cutoff size b*. In figure 3 we show d',,, as a function of the 
inverse of b*.  For d = 3 we extrapolate d,,, = 1.338 f 0.004. In d = 2 the data have no 
clear trend and statistical fluctuations dominate; a value of d,,,  = 1.129*0.001 seems 
plausible. 

Edwards and Kerstein (1985) (see also Kerstein and Edwards 1986) suggested the 
possibility of d, , ,  = 1 in d = 2 but with logarithmic corrections to scaling in b of the 
type (In b ) - ' .  The increase (instead of decrease) of the effective d , , , (b )  for d = 2  in 
figure 2 when b + c o  already rules out a limiting value of 1 regardless of the type of 
corrections. We analysed our data, however, also for a behaviour ( I ) ,  - (r),(ln( r),)' 
but the data do not fall at all on a straight line in a log-log plot so this possibility can 
be ruled out. 

Instead of averaging together all data from a given box size b, we also considered 
all pairs ( r ,  I )  regardless of the box they came from as independent data points and 
used linear regression in the log-log plot on the whole cloud of data. We also considered 
the linear regression of the cloud taking away data for small values of I or r for different 
cutoffs. We also binned the data according to I and according to r, calculated averages 
( r ) /  and ( I ) ,  respectively and tried to get d,,, from the relation between I and ( r ) /  and 
between ( I ) ,  and r. None of these many ways of getting d,,,  gave good results: the 
values fluctuated very much, strongly dependent on the cutoffs and even dependent 
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Figure 2. Effective d , , , ( b )  as a function of 6-'  for d = 2 and d = 3 .  The straight line is a 
guide to the eye. 
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Figure 3. Effective d',,, as a function of the cutoff 6*-' for d = 2 (0) and d = 3 (0) .  The 
straight line is a guide to the eye. 
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on the detailed linear regression formula (formula obtained through minimising y 
coordinates or formula obtained by minimising the Euclidean distances). These effects 
are due to the boundaries of our boxes which systematically neglect paths of a certain 
type, namely those that would go out of the shape of the square given by the box. 
The best way to control this effect is therefore by comparing results of different box 
sizes with each other, i.e. what we previously did in figures 1-3. 

Summarising our results we obtain the exponents dmin = 1.130 * 0.002 for d = 2 and 
dmi, = 1.34 * 0.01 for d = 3. They are consistent with but more precise than the previous 
numerical estimates in d = 2 of Pike and Stanley (1981), Havlin and Nossal (1984), 
Herrmann er a1 (1984) and Grassberger (1989, and in d = 3 of Alexandrowicz (1980), 
Herrmann er al (1984) and Grassberger (1986a, b). In  d = 2 we can exclude a recent 
conjecture dmi,= 17/16 made by Larsson (1987) and we can also exclude the dmi,= 
dr- dred of Havlin and Nossal (1984). The later value has been known to be inconsistent 
with some numerical work and E expansion (for a discussion see, e.g., Grassberger 
(1986a, b)). We propose, however, the relation dmi, = 2 - dB + dred which is in good 
agreement with our data, where d B  is the fractal dimension of the backbone (Herrmann 
and Stanley 1984). 

This work was supported by CNRS and NSF under the auspices of an international 
cooperation grant. We also wish to thank John Porter of the Boston University 
Academic Computing Center for providing time on the IBM 3091. 
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