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We introduce two Ising models which exhibit tricritical behavior. Their properties are studied in the
presence of a nonzero external magnetic field using the method of high-temperature-series expansions.
Both models may simulate some features of metamagnetic materials such as FeCl, or dysprosium
aluminum garnet (DAG). In Paperl we treat the first model, called the “meta” model, which
incorporates in-plane ferromagnetic and between-plane antiferromagnetic interactions (J,, > 0,J, < 0).
From the two-spin correlation function (expanded to eighth order in inverse temperature), series for the
direct and staggered susceptibilities ¥ and x,, are obtained which are exact in the external field. The
critical line in the H-T plane is located, and along it X, appears to diverge with a constant 5/4
exponent X, © [T — T . (H)]~**, consistent with the universality or “smoothness” postulate. Particular
attention is focused on behavior near the tricritical point, where the phase transition in the H-T plane
changes from second to first order and where the critical-point exponents may be expected to take on
a new set of values. At the tricritical point (T, H,), the tricritical susceptibility exponenty defined
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by x © (T—- T,)'; is estimated to be 1/2. The second model is analyzed in Paper II; there we also
present the implications of our results for both models in the light of the scaling hypothesis for

tricritical points

I. INTRODUCTION

The term “tricritical point” (TCP) was coined
by Griffiths,! who first discussed its significance
as a special symmetry point where a changeover
from a second-order to a first-order phase transi-
tion occurs. Recently great interest in TCP’s has
arisen because completely new critical behavior
may be expected to characterize such points. More
specifically, in the case of metamagnets such as
FeCl,, 2 Ni(NO;), * 2H,0, ® or dysprosium aluminum
garnet (DAG),* critical-point exponents at the TCP
will in general be different from those along the
second-order antiferromagnetic-paramagnetic
trangition line in the field-temperature (H-T) phase
diagram (see Fig. 1). As has been the case before
in the field of critical phenomena, this new kind of
behavior affords a fruitful arena for active inter-
play of theory and experiment, and has accordingly
come under increasing investigation from many
sides. There are now a large number of systems
known to display TCP’s. In addition to metamag-
netic systems, multicomponent mixtures such as
He®-He!, whose phase diagram is closely analogous
to that of metamagnets, have been studied. °

It is the purpose of the present work to investi-
gate, by the method of high-temperature series ex-
pansions, two Ising models displaying TCP’s. The
series-expansion approach has in the past been
widely applied to obtain detailed predictions for
lattice Hamiltonians of magnetic systems.® In-
deed, in the absence of exact solutions for all but
a small class of models (and none for realistic
models in three dimensions such as the Ising or
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FIG. 1. (a) Schematic phase diagram of “simple” anti-
ferromagnet (nn only isotropic interactions) in the physi-
cal H-T field space. (b) Schematic phase diagram of
metamagnet in the physical H-T plane. (c) Schematic
metamagnetic phase diagram in complete H-T-Hg,
space.
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Heisenberg models), much of our knowledge of
critical behavior has rested upon results from
series analysis. For example, estimates of criti-
cal-point exponents from series extrapolations
have been extremely instrumental both in the for-
mulation and in the verification of the hypotheses
of scaling” and universality®; these two hypotheses
have served to unify much of our current under-
standing of phase transitions and critical phenom-
ena,

In this paper and in the following paper® (here-
after referred to as I and II, respectively) we con-
sider two models displaying tricritical behavior,
They are both two-sublattice Ising antiferromag-
nets with the addition of ferromagnetic interactions
within each sublattice. It is the ferromagnetic in-
teractions which are responsible for the tricritical
behavior (cf. discussion in Sec. II). These Hamil-
tonians, for which high-temperature series expan-
sions for nonzero external field have previously
not been available, are defined precisely in Sec.

II, where we review previous series work on
TCP’s. Section II also presents a general discus-
sion of the metamagnetic phase diagram, the spe-
cial features of the TCP, and the predictions of
the “smoothness ” !° or universality® hypothesis.
Section III describes the method of calculation, and
may be skipped by the reader not interested in the
diagrammatic methods underlying the generation of
the high-temperature series.

The analysis of the first model is presented in this
paper, while the second model is treated in Paper
II. In Sec. IV we present our results for L,, the
second-order critical line in the “physical” (H-T)
plane, showing the calculated phase boundary. We
produce evidence germane to the question of the
universality of critical exponents along L;. Sec-
tion V focuses upon the vicinity of the TCP. We
present data allowing an estimate for the tricritical
susceptibility exponent y, Throughout, we make
comparisons with mean-field-theory (MFT) predic-
tions where appropriate.

1. FEATURES OF PHASE DIAGRAM AND PREVIOUS
SERIES-EXPANSION WORK

Landau® was the first to discuss a line of phase-
transition points changing from second to first or-
der below a certain temperature, and he applied
his “classical ” theory for critical behavior at this
special changeover temperature. However, it was
not until much later (1970) that such transition
points came to be more fully appreciated, for it
was at this time that Griffiths! called attention to
their significance in the context of current ideas
concerning universality or smoothness of critical
behavior,

In order to put the Hamiltonians we consider by
series in some perspective, we provide in this
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section a review mainly of the previous series-
expansion work on TCP and Ising antiferromagnetic
critical behavior, Lack of space permits only
brief mention of some of the other recent theoreti-
cal work., In our discussion, we lean heavily upon
the terminology and concepts of Griffiths and
Wheeler,  whose comprehensive geometric ap-
proach to critical phenomena has facilitated the
understanding of more complex critical points
(e.g., TCP’s) and critical surfaces of higher di-
mensionality, such as occur in multicomponent
systems. .

Bienenstock'® and Bienenstock and Lewis* ap-
plied high-temperature series expansions to the
study of the shape of the phase boundary in what
will be called a “simple ” antiferromagnet. They
treat in the presence of an external magnetic field
a nearest-neighbor antiferromagnet on loose-
packed lattices (i.e., two interpenetrating sublat-
tices), with an exchange constant that is isotropic
with respect to lattice direction. Their Hamilto-
nian is therefore written simply as

¥==J 2 s;s,- pH s, .

W) 1

Here J<0, the sum is over nearest-neighbor pairs
only, H is an external field, p is the magnetic mo-
ment per site, and s;=+1. The addition of a stag-
gered magnetic field H,, acting up on one sublattice
A and down on the other sublattice B would add a
term ~ pHy 3, nys,, where 1,=+1 for spins on A
and —1 on B. Griffiths and Wheeler'? have empha-
sized the importance of this third field in under-
standing the critical behavior of antiferromagnets.
The three appropriate field variables are then T,
H, and H,, and in this three-dimensional field
space the Hamiltonian of Eq. (2.1) has a line of
singularities in the H-T (H,, = 0) plane [see Fig.
1(a)]. The external field H merely serves to dis-
place the critical temperature T,(H) at which the
second-order phase transition occurs. This transi-
tion is associated with critical fluctuations in the
order parameter (or ordering “density*), the stag-
fered magnetization, defined as My, =3(M - M,).
The conjugate field is H,,, the “strong-” field di-
rection, and the strongly divergent quantity along
the second-order line is the staggered susceptibility
Xst = (8M g, / 8H,), where the derivative is evaluated
for Hy =0 and T - T (H).

The other two fields H and T both lie in the plane
of the coexistence surface and hence are “weak-"
field directions (except at the Néel point Ty, where
H is parallel to the critical line and becomes an
“independent ” direction).? The nonordering den-
sity M will not undergo strong fluctuations for
(2.1), and the direct susceptibility

(2.1)

o= (22)
8H Jyyi=0,T 0
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is expected to show only a specific-heat singularity
a along the critical line and remain finite at
Ty.'®2'1% The phase transition is thought to re-
main second order all the way from T, down to
absolute-zero temperature, where of course it
must be first order. Although this second-order
behavior has not been rigorously proved for this
model, it is plausible on the basis of physical and
energetic considerations near T'=0, Further, it is
the behavior shown by Fisher’s exactly solved
superexchange antiferromagnet model. ¢

Griffiths posed a smoothness postulate! for
critical behavior along lines of critical points such
as the line T, (H) in the simple antiferromagnet,
According to this postulate, critical properties
will vary smoothly along a second-order line of
critical points provided there is no basic change
in the underlying first-order phase transition. In
particular, critical indices should stay constant
along the critical line no matter which point on it
is approached.

Rapaport and Domb!”? extended the length of the
series used in Ref, 14 for the simple antiferromag-
net, and studied several specific predictions of the
smoothness postulate. Included is the question of
the constancy of the exponent y,; characterizing yg
for various field values. Using Padé-approximant
techniques, '® they verify that for small values of
the external field on the simple-cubic and square
antiferromagnetic lattices, y4 does not vary from
the expected values of 1.25 and 1,75, respectively.

The Hamiltonian (2. 1) with J>0 (ferromagnetic
and in finite field) has been studied by Gaunt and
Baker' intheir study of the M(H, T)function. As
will be seenin Sec. III, their finite-field expansions
served as an extremely important check on the
computer program we employed in our study.
Other Ising series in a field have recently been ob-
tained by Ferer and Wortis. 2°

Most real antiferromagnetic materials in fact
depart from the ideal behavior of Fig. 1(a) at low
temperatures, exhibiting either a spin-flop or
metamagnetic transition, 2! The latter is the con-
ceptually simpler of the two, and may be simulated
by the Ising models soon to be introduced. A
schematic metamagnetic phase diagram in the H-T
plane is shown in Fig. 1(b). Figure 1(c) shows the
“wings ” present in the complete H-T-H,, space.
These are predicted on the basis of mean-field-
theory calculations, '3 The TCP lies at the inter-
section of the two critical lines L,, L3 bounding
each wing and the critical line L, in the physical
H-T plane. At the TCP, given by H=H, and T=T,,
there is an instability both in the ordering density
Mg, and in the nonordering density M. % Thus here
is an example where the nature of the underlying
phase transition does indeed change. This led
Griffiths to propose that there may well be a break-

down of smoothness at such a point, and that a new
set of critical-point exponents will appear. !

The discontinuity in M below T, is already sug-
gested above T, by the increasingly steep M vs H
isotherms at the critical values of the field H,(T).
The isotherms measured* in DAG, the metamagnet
on which most data has been obtained thus far, def-
initely appear to show an infinite slope at 7;. To
qualitatively understand this apparently strongly
divergent behavior in x at the TCP in terms of the
geometric concepts of Griffiths and Wheeler, we
note that because of the wings, H may cease to be
a “weak” direction at the TCP. The corresponding
quantity at the TCP in He’-He* mixtures also shows
strongly divergent behavior, *®

Although we have been focusing on magnetic sys-
tems, the bulk of experimental work on TCP be-
havior has been on the TCP in He®-He* mixtures.
Griffiths proposed! 3 simple scaling theory at the
TCP in this system consistent with experimental
measurements, and later Blume, Emery, and
Griffiths?® (BEG) introduced a microscopic lattice
model for the superfluid and phase-separation
transitions. This is a spin-1 Ising Hamiltonian
(s;=0, 1),

Je==d 25 8;8,+ 0055,
s !

(2.2)

It is solved in the mean-field approximation to
yield a TCP and the correct qualitative features,
although detailed predictions are not in accord with
He-mixture experiments. Series expansions were
applied to the BEG model by Saul and Wortis®* and
by Oitmaa,?® revealing some significant differences
with the MFT predictions. No values for TCP ex-
ponents are specified, but one may infer an esti-
mate for the tricritical ¥ from the confluent-singu-
larity form for y given by Saul and Wortis.

The two tricritical Ising models considered in
this work are spin-3 Ising antiferromagnets with
ferromagnetic interactions within each of the two
sublattices. We define the first of the tricritical
models which we call the “meta” model. The in-
teraction Hamiltonian, defined for the sc lattice, is

X z
¥C=—d,y > §8;=d, 21 8S;=pH2 ;. (2.3)
45 (11> i

Here the interactions are all nearest neighbor (nn),
but they have one value J,, for bonds in the x-y
plane and another value for bonds connecting spins
along the z direction. This is then a model with
directional or “lattice ” anisotropy. Such models
have been studied by series expansions by various
authors,?® but only in zero field. We choose J,,>0
and J,<0 so that each of the planes is ferromag-
netic, but is coupled antiferromagnetically to adja-
cent planes. This corresponds to the signs of the
interactions present in metamagnetic materials
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such as FeCl,. In our model, one “sublattice ”
would consist of all even-numbered planes, and
the other “sublattice” of all odd-numbered planes.
A staggered field would alternate direction from
one plane to the next. A pictorial representation
of the ordered state is shown in Fig, 2(a).

The second tricritical model we call the nnn
model because it incorporates next-nearest-neigh-
bor (nnn) interactions. The Hamiltonian is the
same as (2.1) with the addition of second-neighbor
ferromagnetic exchange, so that

a
¥==-d, i 548~y i $i8;=wH s, (2.4)
1) 441 4

Here J,<0, J,>0, and the first and second sums
are over nn and nnn spins, respectively, again on
the sc lattice. In Eq. (2. 4) there are two sublat-
tices consisting of two interpenetrating fcc lattices.
The ordered antiferromagnetic state in one plane
is shown schematically in Fig. 2(b).

The nnn Hamiltonian [Eq. (2.4)] has been pre-
viously studied®’ by series techniques, but only for
zero field. Althoughno previous serieswork exists,
Monte Carlo studies for (2. 4) in finite field have

N

(b)

FIG. 2. (a) Schematic diagram of perfectly ordered
T=0 state in meta model, showing in-plane ferromagnetic
bonds J,;, and between-plane antiferromagnetic bonds J,.
(b) One plane of ordered state of nnn model, showing anti-
ferromagnetic nn bonds J; and ferromagnetic second-
neighbor bonds Jj.
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been carried out quite recently. ?® A tricritical
point was located and estimates of certain tricriti-
cal exponents were given (the high-temperature
susceptibility exponent ¥ and the exponent g de-
scribing the discontinuity in magnetization below
T;). The same Monte Carlo techniques have also
now?® been applied to the meta model with exactly
the same choice of parameters J,, and J, discussed
by us in subsequent sections, thereby complement-
ing and providing valuable checks on our series
work,

Finally, for a detailed mean-field-theory treat-
ment of two-sublattice Ising antiferromagnets in a
magnetic field, the reader is referred to the work
of Bidaux et al.3°

We may gain some physical insight into the be-
havior of the two tricritical models we consider
by noting that in either case, the ferromagnetic
exchange serves to stabilize the order within a
sublattice. At low temperatures, most spins on
one sublattice are oriented parallel to an external
field, those on the other antiparallel. A big enough
external field, the critical field, will flip the spins
on the antiparallel sublattice, and the system
passes from an antiferromagnetic phase (where the
order parameter is nonzero) to the paramagnetic
phase (where the order parameter is zero). Be-
cause spins on this sublattice are locked together
due to the J,, or J,, a finite discontinuity in mag-
netization results, and the transition is first order
[see Fig. 1(b)]. This discontinuity is maximum at
T=0, and decreases to zero at the TCP. At higher
temperatures, the order within a sublattice is not
strong enough to overcome the randomizing thermal
effects, and the phase transition is second order
up to the Néel point, beyond which it disappears
completely.

To conclude this section, we mention briefly
some of the other recent theoretical work on
TCP’s. A more detailed scaling theory at the TCP
(than Ref. 1) was developed by Riedel®® and used to
describe He®-He* mixtures. Hankey et al.?! ex-
tended the scaling hypothesis to include the third
ordering field and discussed the consequences for
the shape of the critical lines at the TCP. “Double-
power” laws near the TCP have been discussed by
Riedel®®*® and by Chang ef al.*® (Such laws and
other aspects of TCP scaling will be considered in
more detail in Paper II,)

Riedel and Wegner®* investigated TCP behavior
using the Wilson renormalization-group approach,’
obtaining mean-field-like tricritical exponents ford
=3. Recently, logarithmic corrections totricritical
thermodynamic functions have been obtained, 3®
Kortman®' has presented a parametric equation of
state near the TCP, and droplet-model descriptions
have been examined by Reatto®® and Stauffer, %
Finally, several workers*® have studied one-dimen-
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sional Ising chains with competing short- and long-
range interactions. These models display tricriti-
cal and other hypercritical (e.g., tetracritical)
points.

III. GENERATION OF HIGH-TEMPERATURE SERIES

A computer program which implements the re-
normalized linked-cluster expansion theory of
Wortis ef al.*! is employed to generate the high-
temperature series for the two models we consider,
The program calculates the two-spin correlation
function C,(T)=(sSz) = (So){sz) from the origin to
all sites T in an appropriate reduced space on the
lattice, The calculation is effected by constructing
a set of diagrams on the lattice, and evaluating
their contribution to successive powers of inverse
temperature. In the resulting perturbation expan-
sion for Cz('f) in 1/k T, the exchange constants J,,
and J, (or J; and J,) are absorbed in the coefficients
of the expansion, and if desired may be factored
out in the end to give an expansion in a dimension-
less variable of an (exchange energy)/k,T.

As in earlier linked-cluster expansions, the
summation of diagrams in this program is of the
“free ” type, so that there is no excluded volume
problem and lattice constants are easily evaluated.
Englert* carried through the one-point or “vertex”
renormalization of the Ising-model linked-cluster
expansion, and later the Wortis group went further
to do the two-point or “bond” renormalization. As
the level of sophistication of the theory increases,
there is a corresponding decrease in the number
of diagrams which must be considered explicitly.
Under the various renormalizations, large classes
of graphs become topologically equivalent, and
only the underlying “skeleton” of a given graph is
important. This, of course, occurs at the cost of
much increased algebraic complexity, since each
skeleton no longer carries its bare value but must
include contributions from the entire class of
graphs which reduce to it when the extra decora-
tions are cut away. **

Using the fact that decorations of a skeletal graph
need not be considered separately and that, of those
remaining graphs, the more complex ones may be
built up using simpler ones already evaluated, one
may iterate the basic integral equations of the two-
point-renormalization theory. Every higher-order
term in B=1/%,T is evaluated using information
from the lower-order terms already available.

The only diagrams which cannot be evaluated in
this manner are the class of so-called “elemen-
tary ” diagrams, and these must be constructed
explicitly in the computer program at the point
where they first enter, Their number rapidly pro-
liferates as one goes to higher orders in 8, and
this is the chief limiting factor in computer time
and programming labor which prevents one from
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reaching arbitrarily high orders.

The program based upon the two-point-renormal-
ization theory is particularly powerful and well
suited for our purposes because it becomes tech-
nically feasible to incorporate the complexities
necessary for treatment of the two tricritical Ising
models, whereas other methods of obtaining the
series would prove impractical. The two models
require (i) the presence of both a finite external
field and (ii) the modifications needed to include
the directional anisotropy of the exchange of the
meta model or the next-nearest-neighbor bonds of
the nnn model. These latter complications mainly
affect the geometrical details of how the lattice is
set up at the beginning of the program. One need
only feed in values for the respective exchange
constants as input parameters and the iteration
proceeds as for the simpler nn isotropic model
since the same basic equations apply. Naturally,
the computation time increases, as the program
must separately keep track of graphs formed of in-
plane and out-of-plane bonds in the meta case, and
in the nnn model cope with all the extra graphs
made possible by second-neighbor bonds.

The essential modifications necessary to go from
zero field to finite field are the inclusion of more
elementary diagrams and the redefinition of the
“bare semi-invariants.”*' In the zero-field case,
one has for the Ising model a number of simplifying
rules concerning which diagrams make a nonzero
contribution to Ca('f' ). If the two points between
which the correlation function is being evaluated
are called the “external” vertices, and the other
vertices of the graph are called “internal,” then
in zero field there is required to be an even num-
ber of lines impinging upon an internal vertex and
an odd number at the external vertices (where in
effect an extra “ghost” line is present). These
rules stem from the fact that Trs; vanishes, but
may also be understood in terms of the semi-in-
variants which arise in a linked-cluster expansion.
Each vertex in a graph has associated with it a
particular semi-invariant corresponding to the num-
ber of lines coming into that vertex. Of course, in
a vertex-renormalized theory, renormalized semi-
invariants are used, as these include contributions
from all diagrams which can be constructed from
the original skeleton by hanging on “loose ends.”
All single-particle properties suck as intevaction
with an external magnetic field are incorporated in
the bare semi-invariants defined as the start of the
iteration. The bare semi-invariant of order =,

M (h)= MY(BuH), is defined by

n
Mr('o) (h)E d anQ(h)

dn® ’ (3. 1)

where Z, is the noninteracting partition function,
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(a)

N=7
(b) (c)

N=8
(d) (e)

(f) (g)

(h)

FIG. 3. Eight elementary diagrams needed in finite-
field expansion of the two-spin correlation function to
eighth order in inverse temperature. The diagrams are
grouped by the number of lines N they contain. External
vertices are shown as open circles, internal vertices as
solid circles. Not counted as separate diagrams are those
differing only by an interchange of the external vertices.

Zy=TreP*#s1 = Tre"1=2coshh. (3.2)
Thus M{® =tanhk, M{¥ =1 - tanh®, etc. From
(3.1) and (3. 2) it is obvious that for H=0 all semi-
invariants for odd 7 vanish, which accounts for the
special zero-field rules. In finite field, however,
these semi-invariants are nonzero and one must
consider all graphs without respect to even-oddness
properties.

There are a total of eight elementary diagrams
with the number of lines less than or equal to eight,
and these are shown in Fig. 3 below. In finite field
a diagram first makes a nonzero contribution at
the order in inverse temperature equal to the num-
ber of lines in the diagram, provided it can be
embedded on the lattice. Thus, in general, there
are already eight elementary diagrams which must
be included in a finite-field calculation to eighth
order. By contrast, in zero field to the same
order, because of the even-odd rules, only diagram
(a) of Fig. 3 need be considered! Indeed, even for
a tenth-order calculation in zero field, the only
contributing elementary diagrams are the first
five, Fig. 3(a)-3(e), plus another one with nine lines
[formed from Fig. 3(d) by the addition of a line connect-

F. HARBUS AND H. E.
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ing the external vertex with two impinging lines to
the internal vertex with three impinging lines].

The external field is carried along in the semi-
invariants as a polynomial in the variable tanh(k)
=tanhBuH., The resulting expansions for each cor-
relation function Cz(?) in the high-temperature
variable g8 have, as the coefficient of the p" term,
a polynomial of degree (n+1) in the variable
tanh®(k). This is an extremely advantageous fea-
ture for our various Ising-model series, since it
means that once the general field polynomials in
tanh®(k) are known, we can evaluate the dependence
of the external field exactly by fixing » and sum-
ming the polynomial at each order in 8.

In this work we have concentrated not upon the
correlation functions themselves* but upon the
thermodynamic quantities derived from them, re-
duced susceptibility ¥ and reduced staggered sus-
ceptibility ¥,;. From the fluctuation-susceptibility
theorem, we obtain

_kaE -
= = Cr
A At
and

— kT -
Xst=_§7i>2& =§; Nz Co(T).
T

For the meta model, the index 7; is + 1 for sites

on even-numbered planes and - 1 for odd-numbered
planes, since here the two sublattices are the two
interpenetrating sets of alternating planes of spins.
For the nnn model, 7z is +1 if the sum of the Carte-
sian coordinates x +¥ + z of point T'= (v, y, z) is even
and -1 if it is odd. To determine the general-field
coefficients for ¥ and ¥, one needs series for a
minimum of ten different values of %, so that a
10x10 system of simultaneous linear equations
may be solved. Some care is required in the
choice of the different %’s to optimize the conditions
for the solution. The coefficients a, and b, for the
meta model with J,,=1, J,=-1 are presented in
Table I, below, where a, and b, are the coefficients
through order » =8 in the susceptibility and stag-
gered susceptibility series, respectively,*

(3.3)

(3.4)

i: ig a, [tanh(ﬂny)]n ’ (3 5)
Toe= O b, [tanh(BIL)] . (3.6)
n=0

The computer time involved to generate series di-
rectly from the main program for the many differ-
ent values of % needed to study the phase boundary
would become prohibitive, but the general field ex-
pressions allow further series to be obtained with
relatively little cost.

There are many possible sources of error in the
programming, and checks on the computer code
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were essential. As emphasized earlier, we needed
a “package ” capable of calculating series with both
finite field and appropriate lattice modifications
present simultaneously.

To ensure that the finite field was programmed
correctly, we first considered series in a field for
nearest-neighbor isotropic lattices. Our results
for these cases were matched against results ob-
tained from the data of Gaunt and Baker!® who give
“double ” series expansions for k& as a function of
M and B. We reverted these polynomials to yield
M as a double series in H and 8, from which the
series for susceptibility y= (8M/8H) were derived
and compared with those from our program.

A much weaker check was to set 2=0 and regain
the zero-field series, well known*® for the various
nn isotropic lattices. Further, for an infinite ex-
ternal field k=, all correlation functions (and

hence ¥ and ¥, ) vanished to all orders, as expected.

The numerous checks on the modifications for
lattice anisotropy and next nearest neighbors are
totally independent of those for the finite-field
implementation. Rather strong tests on the lattice-
programming aspects were provided by having the
program reproduce known series in various limits.
For example, when J, /J;~ = on an fcc lattice, the
lattice reduces to bce, and one obtains the appro-
priate bce series,

The strongest test on the correctness of the

whole package for either the meta or nnn model is
performed by summing the general-field coeffi-
cients for any order in B in both the ¥ and ¥
series. These coefficients were obtained from
correlation-function data from runs for at least ten
different values of # with the required lattice an-
isotropy or nnn bonds already built into the pro-
gram., The sum should be zero, since tanh?(k)=1
when &=, for which both y and x,,; vanish to all
orders. The numbers in Table I indeed satisfy
this check and so do the nnn model series reported
in Paper II,

IV. RESULTS FOR CRITICAL LINE AND CONFIRMATION
OF SMOOTHNESS POSTULATE

As discussed in Sec. II, the strongly divergent
quantity along the second-order line of an antifer-
romagnet is the staggered susceptibility y,, analo-
gous to the strongly divergent direct susceptibility
at the Curie point of a ferromagnet. The smooth-
ness postulate or universality hypothesis predicts
that as long as the transition remains second order,
we will expect

Xt~ [T = T(H)]S2. (4.1)

Using the general-field expansions for ¥, de-
termined by the methods described in Sec. III, we
have mapped out the critical line in the H-T plane
and examined the universality prediction. Our

TABLE 1. Coefficients a, and b, through order »=8 in the meta-model series for the suscepti~
bility and staggered susceptibility, Eqs. (3.5) and (3.6), respectively. Here the expansion variable
X denotes tanh? £ = tanh®(uH/kgT). A single asterisk denotes an uncertainty in the last digit; two
asterisks denote an uncertainty in the last two digits.

ap= 1-X
a;=2—-8X+6X?
a,==2+2X+10X*—10X°

a3==—14+200X — 566X +576X°
—196x*

ay=—42+1026X — 5144X2 +10 040X°
- 8526X%+2646X°

a5=—46 +1960X —16814X? + 56 256 X°
— 88 048X+ 65 040X° — 18 348X°

ag=—90 —1014X +10434X° — 594X°
—105 900X*+237436X° — 200 228X°
+59956X"

a;=2 —19 304X + 320 862X° — 1 757 952X°
+4597716X* - 6479120X°+5 015 212x°
—1984256X" +306 840X°

ag=—1402 — 28 478X +1 155 680X° — 10 011 488X°
+40107912X* — 88 872 520X°+ 115 745 632*X°

— 88314 336**X" +36 561 936** X% — 6 342 936**X°

bp=1—-X
by=6—16X+10X?
by=30—134X + 186X — 82X3

b3=150 — 880X + 1894X* —1760X°
+596X*

b,="T26 —5150X + 14 600X* — 20 536.X°
+14258X* - 3898Xx°

bs=3510 — 28 848X + 99 166X> — 182 208X°
+188208x%~103 296X°+ 23 468X°

bg=16'710 — 157 342X + 635 378X% — 1 426 906X°
+1924948X*—1 559 284X* + 701 5645
—135068X7

by =T9 494 — 843 728X + 3 932 594X°
~10493 024X3+17 509 596X*
—18699 904X° + 12 478 036.X°
— 4755 072X +792 008X°

by =375174 —4445438X
+23 579 488X% — 73 392 864X°
+147 460 232x% - 197 953 224X°
+177 251 104*X® — 101 949 760**X7
+34145 680**X® — 5070 392%*Xx?
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5.0_ T T T 1 down to the form
M heo Pt(h)=k5Tc(h)[1+(7,t- 1)/l] , (4.4)
- h=0

4‘5;\0———\_‘)\":02 —
;\o_——\_‘\*mo.s

4'0-;——'_0"’\/c\ -
- h=0.4

Py L

3»5/‘\/\0 |
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8

~i-F

l |
-
5 6
178
FIG. 4. Ratio plots p; vs 1/ for staggered suscepti-

bility series at various values of h=pH/kT [cf. Eqs. (4.3)
and (4.4)]. Note the presence of oscillations in the ratios.

analysis of the series employs the usual ratio and
Padé-approximant (PA) methods. *” Although series
convergence worsened for higher values of field,
we believe our results provide good evidence for
universality for a wide range of the external field.
To emphasize the dependence of the coefficients
of a given series upon the particular k= pH/k,T
path it is computed along, we write
Xot ()= 24 b, ()" . (4.2)
These paths are “rays” through the origin in the
H-T plane and have the property that they must
intersect the critical line lying in this plane some-
where along their length, at least when the transi-
tion is second order. *® Our series will continue to
exhibit singularities below the TCP where the tran-
sition becomes first order, but they cannot be
used to locate the first-order line. Indeed, our
initial estimate of the location of the TCP relies
upon the unphysical hooking upward or downward
of the calculated phase boundary observed beyond
a certain value of #.
The ratio and PA analysis will be discussed in
turn,

A. Ratio Method

In the ratio method, we form the ratios of suc-
cessive series coefficients of Eq. (4.2),

py(R)=b,(R)/b,.,(R), (4.3)

and plot these vs 1/ for various values of . I
the series is dominated by a singularity of the form
Yot (R)~ [T =T, (R)]*t we expect®’ the ratios to settle

where universality predicts that y,, is independent
of h,

It is seen that the ratios of Fig. 4 have oscilla-
tions characteristic of loose-packed lattices (sc
with nn bonds only). Such oscillations generally
arise from the presence of one or more interfering
singularities in the complex temperature plane, *°
and in this model, in particular, they are due to a
pole on the negative real axis. This may be under-
stood in zero field as due to the weak singularity
in the staggered susceptibility for the ferromagnet
obtained by changing the sign of J,, just as the
susceptibility for a two-sublattice ferromagnet
shows a weak antiferromagnetic singularity.

The negative pole should occur at precisely - Ty,
since flipping all spins on one sublattice and chang-
ing the sign of J, simultaneously leaves the Hamil-
tonian invariant. While this symmetry no longer
holds in finite field, the log Padé tables, from
which the distribution of poles may be gauged, in-
dicate that the negative real pole persists at small
fields and then gradually gets smeared out as com-
plex poles begin to enter at higher fields.

To improve the convergence of the ¥, series and
diminish the effects of the interfering singularities
we carried out a bilinear transformation?®*®! on the
original high-temperature variable g to give a new
expansion variable g*,

B*=p/(1+ch). (4.5)

Note that ¢ =0 corresponds to a series with the
original coefficients. The ratio plots for the
transformed series with the choice ¢ =1 for the
same set of & values as in Fig. 4 are shown in Fig.
5. The ratios now lie on much straighter lines,
and afford estimates for the critical temperature
from the intercept at 1/7=0 and the exponent vy,
from the slope. Successive estimates for the crit-
ical temperature, here a function of both path &
and transformation parameter ¢, are given by

kT (h, ¢)=1p,(k, c)= (I-1)p,4(k, c),  (4.6)

where the transformed critical temperature is
trivially related to the true critical temperature
through Eq. (4.5) by 25T (k, ¢)=kgT,(h, 0)+c. A
sequence of estimates for the exponent may be
formed,

’

Yy (h, c)=1- 1(1- ﬁ%) . (4.7)
In principle, y, will be asymptotically (- «) un-
affected by the bilinear transformation, but in
practice, with a finite number of terms, the values
of yg vary slightly with ¢. Of course, once one
has a “best” estimate for T,, this may be used in
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TABLE II. Estimates of exponents yg and critical
temperatures T, for various values of k= pH/kpT and
for various values of bilinear transformation parameter
c. Here ¥ and k5 T? are determined from the slope and
intercept of the line joining the final two points on the
ratio plot, p; and pg [cf. Eqgs. (4.6) and (4.7)]. Note
¢ =0 corresponds to the untransformed original series,
whose irregularity did not permit reliable estimates us-
ing ratio plots. The entry kgT% is the singularity esti-
mated from Padé approximants to the series Ixg (%, c)14/5,
The two entries represented by three dots denote insuffi-
cient convergence to allow an estimate from the Padé
table.

c=0 c=1,0 c=1,5 c=2,0
h o keTe 5 ksTS kpTo v kpTF kpTE  v%  kpTR kpT?
0 4,51 1.25 4.51 4,51 1.23 4,52 4.51 1.22 4.52 4,51
0.1 4.45 1,26 4.45 4.46 1.24 4,46 4,46 1,22 4,47 4.46
0.2 4.29 1.28 4.27 4.29 1,25 4.28 4,30 1,23 4,30 4.29
0.3 4,04 1.30 4.00 4.04 1,27 4,02 4,04 1,24 4,04 4,04
0.4 3.73 1.29 3.69 2.73 1,28 3.70 3.73 1.24 3.72 3.72
0,5 3.37 1,22 3.37 3.38 1,25 3.34 3.37 1.23 3.36 3.37
0.6 1.05 3,07 3,01 1,21 2,99 3.01 1.25 2.97 3.01
0.7 . 0.86 2,80 2,67 1,26 2,60 2.67 1.46 2.49 2,67

Eq. (4.7) to produce a new sequence of estimates
for vyg.

Table II lists estimates for the critical tempera-
ture and exponent determined by Eqs. (4.6) and
(4.7), respectively, for eight field values and three
different values of transformation parameter c.
They are the final estimates 27® and »{?’ obtained
from the line joining the last two points on the ratio
plot, p, and p;. Also shown are estimates kgTF
from Padé approximants, to be discussed below.
Using #T'® as the best estimate for the critical
temperature, one may recalculate the sequence
v$}’ by passing lines through the points p, and
kpT®. The set y4'® obtained in this manner from
the transformed series with ¢=1.5 and various
field values are shown in the 1/1 plots of Fig. 6.

Note y{¥*® is not shown since it is identical to

(7,8)
Yut' .

B. Padé Approximants

When both the exponent and critical temperature
of a series are unknown, the method of log Padés
may be applied. This refers to the operation of
forming the PA to the logarithmic derivative of a
series expansion of some function f(B) expected to
vary like f(B)~ (8,~ B)™. Then,

A
Bc - B
and the PA’s to the new series for g(8) might be
expected to represent this function well and show
poles at B= B, with a residue of —A. An interfering
singularity such as 8. of strength X’ should also be
represented, provided it entered f as a multiplica-
tive factor in the form (8,- B)™(B.- B)™.

We applied this method to the X, series along
numerous field paths, and a sample of the results

g(ﬁ)EdiB Inf(8)~ 4.8)

6.0 T T T 1
5.8 -
C h=0 7
5.6\ o -
h=02
54 —
5'2_\-3——\ he03 .
Py T b
5.0+ 1
A beoa
4.8~ .
4.6+ —
B h=0.5 T
4.4 -
i T
4.2 1 | |
L 4 S T 0
3 4 5 6 7 8
178

FIG. 5. Ratio plots for ¥, series at various field
values after transformations of the high-temperature ex-
pansion variable from B=1/kgT to p*=g/(1 +p) [cf. Eq.
(4.5)]. The oscillations of Fig. 4 have been “ironed out,”
allowing estimates of the critical temperature kgT(k)
from the respective intercepts and the exponent g from
the slopes.

1.30 T T T 1
h=0.4
h=0.3
0.5

1.25 0.2 ]
h=0.1
h=0

D)

1.20 |

L i iR L L

3 4 5 6 7 8
1/2

FIG. 6. Ratio-method sequence of estimates y§{’ vs
1/1 for various field values [cf. Eq. 4.7)]. Here
kpT® (1) has been taken as the best estimate of the criti-
cal temperature, and a value for the bilinear transforma-
tion parameter of c=1.5 has been used [see discussion
in text and Eq. 4.5)].
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is presented in Table III. In each Padé table the
entries for the physical pole k5T,, and the corre-
sponding residue, are given. It is clear that, ex-
cept perhaps for the 2=0 case, the tables do not
have sufficient convergence to produce conclusive
results regarding k,T,(k) or v, With convergence
worsening for higher fields. Considerably longer
series are probably required to make the log-Padé
method profitable here.

PA’s were employed with considerably more
success in locating the critical temperature as a
function of field when the exponent y,, was fed into
the series as a known quantity., Here a given

TABLE III. Log Padé tables for ¥g; series along vari-
ous % paths, In parentheses below each pole is the cor-
responding residue. The notation **+ denotes the fact that
no physical pole appeared in that entry of the table.

N 1 . s 4 g

(a) h=0
2 4,51 4,53 4,51 4,50 4,51
(1.25) 1.24) (1.25) 1.27) (1.26)
3 4,52 4,52 4,56 4,50
(1.24) (1.24) (1.24) (1.26)
4 4,51 4,55 4,51
(1.25) (1.23) (1.25)
5 4,50 4,50
1.27) (1.26)
6 4,51
(1.26)
() =0,2
2 4,38 4,42 4,34 4,24 4,25
(1.16) (1.13) (1.21) (1.36) (1.34)
3 4,41 4.39 4,25
(1.13) (1.15) (1.34)
4 4,35 cee 4,30
(1.20) 1.24)
5 4,22 4,24
(1.40) 1.37)
6 4,24
(1.37)
(c) h=0.4
2 4,11 4,10 3.90 3.61 3.70
(0.86) 0.87) (1.06) (1.53) (1.31)
3 4,10 4,11 3.67
(0.87) (0.86) (1.39)
4 4,09 4.30 3.77
(0.87) (0.81) 1.17)
5 3.48
(2.26)
6 3.59
(1.62)

F. HARBUS AND H. E.
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TABLE 1V, Singularities given by Padé-approximant
tables to (Xg)*/® for various & paths. Thus the numbers
shown should be approximating the critical temperature

T (0.

N 1 2 3 4 5 6

(@) k=0

2 4,52 4,51 4,51 4,51 4.51 4,51
3 4.51 4.51 4,51 4,51 4.51
4 4,51 4,51 4,51 4,51
5 4,51 4,52 4,51
6 4,51 4,51
7 4,51
(b) n=0.2
2 4,23 4,28 4,30 4,31 4.30 4,29
3 4,28 4,69 4,31 4,31 4,28
4 4.30 4,31 4,30 4,29
5 4,31 4,30 4,29
6 4,30 4,28
7 4,29
(c) h=0.4
2 3.43 3.76 3.63 3.78 3.72 3.72
3 3.69 3.89 3.79 3.76 3.72
4 3.69 3.75 3.72 3.73
5 3.74 3.73 3.73
6
7

Yot (1) series is raised to the # power and a Padé

analysis done on the resulting series. Universality
predicts X, ~ A(T,)[ T~ T,(H)]®/*, where the ampli-
tude is now explicitly displayed; if this holds, the
new series %%/° should have a simple pole at T, (H),
visible in the denominators of the PA’s., These are
now PA’s whose degree N+D <8, the full orderof
the original series, and whose residues at the poles
are the amplitude [A(T,)]*”*. The log-Padé tables
are of one degree less (N+D< 7) because of the dif-
ferentiation with respect to the expansion variable.
We defer a discussion of the behavior of the ampli-
tude A(7,) along the phase boundary to Paper II,
where a tricritical-point scaling hypothesis is used
to make theoretical predictions for the variation of
the amplitude.

This procedure was carried out both on the
series in their original expansion variable, and on
the transformed series. Table IV shows a few of
the ¢ =0 Padé tables, and estimates of critical
temperatures from the ¢=0 PA’s and estimates
from the PA’s for the ¢=1.0, 1.5, and 2.0 cases
are listed under 257% in Table I. We note the ex-
cellent consistency among the various Padé esti-
mates for a given path 2, Further, there is very
good agreement between the Padé estimates for T,
and those from the ratio method; for values of .
up to 0.5, there is never more than a 1% discrep-
ancy. Comparison of 2;T%(h) and k,TF (k) for h up
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to 0. 4 reveals the general pattern that when 7%
< TP, then y®>%, and when TR?> TP, yR <%,

The T=0 critical field uH,(0) may be easily cal-
culated exactly for this model by equating the en-
ergies of a lattice of perfectly ordered planes with
spins opposite on adjacent planes in an external
field H, (cf. Fig. 2) to the energy of a lattice with
all spins pointing up under the influence of H..
This gives

’J'Hc(o) =qt|Jl| ’

where g, is the coordination number in the z direc-
tion. For the parameters we have chosen, WLH(0)
=2X1=2,

Several factors lead us to conclude that Table II
provides strong evidence for the universality pre-
diction of y = § for a wide range of field values.
The values for ¥& predicted by ratio methods from
the various transformed series are closely scat-
tered on either side of § for values of % up to %
=0,5. This & corresponds to a critical field of
LH,=0.5(3.4)=1.7, a substantial fraction of the
maximum T'=0 critical field of 2, Further, there
is quite good agreement between the ratio and Padé
predictions for 7,. The T are singularities whose
location is predicted upon the assumption of a §
power-law divergence. If in fact the ¥ (k) series
did not diverge with this power, neither such
agreement with the 7% nor even a well-convergent
PA, would be expected. The PA’s on the trans-
formed series continued to converge to singulari-

(4.9)

5 PR 1151
ties for the higher-field values for which the ratios
were less consistent, and, as can be seen from
Table II, the agreement among the TZ for the three
values of ¢ remains excellent,

The scatter of the y% about 1,25 and the small
discrepancies between TZ and T7 are due, we be-
lieve, to insufficient convergence of the series.
The trend in the ratio-plot results remarked upon
earlier is consistent with what might be expected
from the ratio plot for a series which has not, in
some sense, fully converged. That is, low esti-
mates of T, are associated with high estimates for
Yst, While high estimates of 7, go with low esti-
mates for y,. Obviously, information from a finite
number of terms is limited, and longer series are
always useful.

We used the points (T,, H,) obtained from the
PA’s to the X (h; ¢ =1) series to obtain the phase
boundary shown in Fig. 7. The value of % was
stepped by 0. 02 for each successive point, but lack
of space forbids a complete tabulation of the calcu-
lated critical temperatures and fields. The Padés
along steeper and steeper % paths continue to show
singularities which are obviously unphysical beyond
a certain point, for the critical line hooks up and
to the right to give critical fields greater than the
maximum 7'=0 value of 2, and double-valued crit-
ical fields for a given temperature. This behavior
is attributed to the fact that the series are here
probing the first-order region, and are unable to
locate the first-order phase boundary. We specu-

3.0 rrr|frrrr|yr1rrr|r1r1rr [ rrr o T T T T T T T T T T T T T T T T T T

2.5

LS BB

2.0

pHe 1.5

0.5

LA S N B B N ) R B B N B B |

0 PR ST S YV U O Y O T N Y N U W VA T YO (S PO S N W T S YO W S T T M W Y S ST OO
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FIG. 7. Phase boundary for meta model of Eq. (2.3) with J,=1, J,=—1. The second-order portion of the phase line
is shown solid, the first-order portion is shown dotted, while the spurious hooking near the tricritical point is shown

dashed.
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FIG. 8. Plot of square of critical field (u)‘:{(_.)2 vs
kplT (H) ~ Ty, the deviation of critical temperature
from the Néel point., The mean-field theory predicts
(uH,)?=3.55 k[T, (H) — ), and a line of slope m =3.55 is
seen to provide an excellent fit to the series data for low
fields. The error bars for each point give some measure
of the uncertainty from the series-extrapolation estimates.,
Also shown for comparison is a line of slope » =3.30.

late that perhaps the series in this region are re-
sponding to singularities of the wings, which may
lie very close to the H-T plane.

To locate the TCP approximately, we draw a
curve from the T'=0 critical-field point to join the
calculated phase line smoothly, i.e., we assume
the first- and second-order lines are asymiptotical-
ly parallel to the TCP. The TCP vicinity then
falls at 25T,=2.60(k=0.72). InSec. V, we de-
scribe how matching the singularities between the
Xt and X series in this neighborhood locates
the TCP with greater precision and furnishes
an estimate for the tricritical susceptibility expo-
nent 7.

C. Mean-Field-Theory Predictions

Not surprisingly, mean-field theory overesti-
mates the ordering temperature. The MFT predic-
tion®® for the Néel temperature is kpT9™’ = g,,J,,
+q.lJgl, where g, is the coordination number in
the xy plane, and ¢, is as defined before. Thus
kyT® =6 in the present problem, while series
give kT =4, 51, Although the absolute tem-
peratures differ, the MF prediction for the skape
of the phase boundary near Ty is in remarkable
agreement with the series-calculation results. Ac-
cording to MF theory, the phase boundary obeys
the square-root law

F. HARBUS AND H. E.
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_ 1/2
wit,=2q) 7, (g e ) (4.10)

Ty
which yields (uH,) =3. 55k5(Ty — T.) upon substitu-
tion of ¢,=2, |J,l=1, and kT, =4.51. A plot of
our series values for (LH,P vs ky(Ty - T,) is shown
in Fig. 8. A line of slope 3. 55 is seen to be well
within the approximate errors bars indicated for
each point (determined from the degree of conver-
gence of the PA’s) for fields up to pH, =1,

V. RESULTS FOR THE TRICRITICAL POINT AND
ESTIMATE OF TRICRITICAL SUSCEPTIBILITY
EXPONENT

We now consider in greater detail what was iden-
tified in the previous section as the tricritical re-
gion and turn our attention to the direct susceptibil-
ity series. We discussed in Sec. II how the suscepti-
bility ¥ may be expected to be more strongly diver-
gent at the TCP than along the critical line, It is
therefore anticipated that the X series have the fol-
lowing two properties:

(a) Their Padé tables are reasonably well con-
vergent in the vicinity of the TCP; (b) the singulari-
ty they exhibit near the TCP matches the singulari-
ty obtained from the ¥, series along the same &
path.

In our analysis of the ¥4 series in Sec. IV, we
located the critical line and its spurious continua-
tion beyond the TCP. Observation of where the un-
physical behavior of the critical line begins, and
continuation of the phase boundary to 7=0, furnish-
es an approximate location of the TCP. An inde-
pendent method for its location is the criterion of
matching singularities between the two different
series X and Xg. Using this criterion, we confirm
with greater precision the TCP locations of Sec.

IV and, further, obtain estimates for the tricritical
susceptibility exponent ... Adding considerably
to our confidence was the independent confirmation
of the location of the TCP by Monte Carlo calcula-
tions, 2

The X series are extremely irregular in the
vicinity of h~0, 72, identified as the tricritical re-
gion in Sec. IV. The coefficients of the series are
both positive and negative in no obvious pattern,

TABLE V. Singularities given by PA’s to the series
[Xse(2=0.72)]*/5, The critical temperature is estimated
to be kgT,=2.60 + 0.05.

N 2 3 4 5 6

2 3.42 2.91 3.12 2,59 2.60
3 2,60 2.15 2,67 2,60

4 ese 2,51 2,62

5 2,57 2.60

6 2,62
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TABLE VI. Singularities given by log Padé method to
X(r=0.72) series. Notation as before in Table III.

N 1 2 3 4 5

2 cee oo LY v LX)

3 2.53 2.35 3.55
(0.59) 0.77) (0.10)
4 see 2.32 2,51
(0.83) (0.61)
5 s 3.05
(0.26)
6 .

and are not monotonically increasing in absolute
value. The actual series for ¥ along £=0,72 is

%(0.72)=0.619423 - 0.175 58383

- 0.341 68083 +17.833868°3
- 0.6586738" - 25. 80286° + 138. 6528°

+64.87528" - 541.6448%. (5.1)

The ratio method is useless on such badly behaved
series.

The PA to the (xy,)*/° series along k=0.72 is
shown in Table V. It appears to show a singularity
at kgT,~2.60, with only fair convergence. The
log Padé to the X series along the same path re-
sulted in Table VI, which evidently does not con-
verge well and is fairly inconclusive. However,
at least some of the entries ([D, N]=3, 2], [4, 3])
are compatible with the singularity indicated by the
Xst series. The residues at these poles are ~0, 6,
and clearly the higher values for the poles in the
table are associated with lower residues. Thus,
while far from being strong evidence, the log-Padé
table provides at least a suggestion of a value for
Ymeta <~ 0.6, perhaps something near 0.5 for a crit-
ical temperature 25T.~2.60. We will see in Paper
II that the log-Padé table for the nnn ) series has
much better convergence and is able to furnish a
more definite estimate for ¥,,,.

In the next stage of analysis we raise the ¥ (&
=0.72) series to a variety of powers and do a full
eighth-order Padé on the resulting series., That
is, we calculate the PA to X?, where p isvaried.

It was expected that the ¥ series raised to the in-
verse of a power close to the correct ¥, Wwould
show a reasonably well-convergent Padé table, with
a pole reproducing the pole from the ¥, analysis
(kpT.=2.60 for h=0.72). Motivated by the log-
Padé results, we tried values for p corresponding
to values of ¥y, near 0.5, i.e., p=(0.5)"=2,

We show in parts (a)-(c) of Table VII, the PA’s
to the series X (0.72) raised to powers p equal to

the inverse of 0.4, 0.5, and 0.6, respectively.
For p=2.5, the singularity appears at k,T,=2.617,
for p=2, at kyT,=2.58, and for p=%, at kpT,
=~92.52. The critical temperature from the ¥*
series is seen to be the closest to the value pre-
dicted from the ¥, PA of Table V. The two singu-
larities from Tables VII (b) and Table V lie within
1% of each other, and well within the admittedly
somewhat subjective error bars assigned to each
on the basis of the extent of Padé convergence.
Moreover, if the three tables (a)-(c) are compared
with respect to convergence, the convergence of
the ')22 case is seen to be rather good, being slight-
ly better than the convergence of the X*/° Padé and
much better than for the X */2 Padé.

The X series along other paths in the neighbor-
hood of £=0,72 were subjected to similar raising
to various powers. The %*/2 series always showed
slightly greater critical temperatures than the ¥,,
series, the X°/® series showed definitely lower
critical temperatures, while the X2 series showed
best consistency with the ¥, results, particularly
in the £=0.70- 0. 74 region. Further away from
the 2=0. 72 path, the mutual consistency of the two
roots from the % 2(k) and X4 (k) PA’s worsened, as
did the convergence of the x2(k) PA itself. Powers
different from two produced nonconvergent PA’s
and/or singularities even further removed from the
corresponding X, singularity.

For the purposes of illustration, we give in Ta-
bles VIII and IX the same data as were presented in

TABLE VII. Singularities given by Padé approximants
to [X(:=0.72)}, with (a) p=§, () p=2, and (c) p=1£.
Convergence and consistency with the X, (0.72) results are
best for the X* Padé, part (b), from which the critical
temperature is estimated to be kgT,=2.58 + 0, 01.

N 2 3 4 5 6

(@) p=%
2 e s e oo e ee e s
3 2,84 2,66 2,70 3.06
4 e 2.69 2,66
5 2,76 3.03
6 2,87
b) p=2
2 K cee ee e ceoe cee
3 2.59 2.58 2.59 2.96
4 2,58 2.58 2,58
5 2,59 2,58
6 eee
© p=3
2 e ce e Y e e e
3 2.39 2,52 2.50 2.89
4 2,48 2.51 2,52
5 2.50 2.48
6 2,40
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TABLE VIII. Singularities given by PA’sto [x(.=0.68)}
with same powers p in parts (a), (b), and (c) as in Table
VII.

(@) p=3%
2 e cee see cee )
3 3.03 2.79 2,80 3.11
4 oo 2.80 2.79
5 2.92 2.97
6 2,97

(b) p=2
2 ves oo oo oo oo
3 2.77 2.68 2,69 3.00
4 2.63 2.69 2.68
5 2,70 2,62
6 2.93

© p=+%

2 cee cee e oo e .o
3 2.56 2.61 2.61 2.94
4 2.60 2.61 2.61
5 2.60 2.60
6 2.45

Table VII but along the paths #=0.68 and £=0. 76,
respectively. The critical temperatures from the
Xst analysis are kzT,(0.68)= 2,73 and k,T.(0.76)
=~2.50. Table VIII indicates that again the x°
series gives a singularity closest to that from ¥,
although now the X°/® PA is better convergent, In
Table IX, the X% series is both the best convergent
and gives the closest singularity to that from g
series.

Assessing, then, the over-all evidence, we cor-
roborate our original estimate of the tricritical re-
gion, and put the tricritical path at #,~0, 72+ 0, 02,
This corresponds to a tricritical temperature of
kT, ~2.60, with error bars of $2%, or T,/Ty
=0.58+0.01. Moreover, we may now estimate the
tricritical susceptibility exponent for this model
to be Vpeta ™ 2= 3, or

imeuﬂ‘ (T— T:)-llz ’ (5. 2)

with error bars for ¥, of about 10%, or 0.05.
Again, we emphasize that these error bars are to
be regarded as somewhat subjective.

The very recent Monte Carlo studies® on the
same model with precisely the same parameters
yield 7,/Ty=0.58+0.01, and ¥pe,=0.55+0.15,
in excellent agreement with our series results.
The Monte Carlo calculation was done both along
an H/T=const path, identical to the kind of path
we used, and along a constant magnetization path
with M=M,, the tricritical magnetization. The
latter path should not generally be expected to
yield the same exponent as an H/T =const or an
H=const path, since a constant magnetization path
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is expected to come in asymptotically parallel to
the phase boundary and not at a finite angle. %
However, for technical reasons, such as the M=M,
data perhaps lying outside the “crossover” region,
both Monte Carlo paths appear to produce the same
exponent,

Comparison with Mean-Field Theory

The MFT prediction for the ratio T,/T for the
parameters in this model is

(_L)“le_ ald,l _5
Ty 3yJy 6°
It is characteristic of MFT to overestimate the
ordering present in a system by making every spin
interact equally with every other spin through the
same effective field. However, in a model with
both ferromagnetic- and antiferromagnetic-order-
ing tendencies, it is difficult to argue in advance
how MFT will treat the ratio 7;/T,. This ratio in
some sense measures the relative strength of the
ferromagnetic versus antiferromagnetic tendencies
in the system. Evidently, in this case MFT ampli-
fies the ferromagnetic order at the expense of the
antiferromagnetic order, since we find (7, /T )¥F
> (T, /Ty)*™.

According to MFT, the susceptibility y is finite
at T, as the TCP is approached from above, i.e.,
from the high-temperature paramagnetic phase.
This prediction, of course, is in direct contrast
to Eq. (5.2), and also contradicts what appears to
be a divergent x in experiments on real metamag-

(5.3)

TABLE IX. Singularities given by PA’sto [x(k=0.76)},
with some powers p in parts (a), (b), and (c) as in Table
VII.

@p=3%
2 ree ce e ce e e e X
3 2.62 2,52 2.60 3.03
4 2.47 2.56 2,50
5 2.60 2,33
6 2.75
b) p=2
2 e e K} oo ee e .
3 2.38 2,47 2.47 2,93
4 2.45 2,47 2,47
5 2,47 2.45
6 eee
c)p=%
2 eee XK .o e e cee
3 2.19 2.43 2.38 2.87
4 2,34 2.39 2.43
5 2,37 2.33
6 2,21
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nets near their TCP’s.* What happens as T, is ap-
proached from below? Here MFT does in fact pre-
dict a divergent x, but only at the TCP. Along the
rest of the second-order phase boundary up to 7,
MFT yields a finite x as the critical temperature
is approached from either above or below.

Tricritical scaling will be discussed for both the
meta and the nnn model in Paper II.
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The nnn model is an Ising model with nearest-neighbor antiferromagnetic interactions (J, < 0) but
also next-nearest-neighbor ferromagnetic exchange (J, > 0). This model is analyzed in external magnetic
field using the same techniques as applied to the meta model of Paper I. Again, the staggered.
susceptibility x,, appears to diverge along the critical line in the H-T plane with a constant exponent
Y« = 5/4, consistent with the universality hypothesis. However, in contrast to the meta model, it is
found that the direct susceptibility x diverges at the tricritical point with an exponenty = /4,
Implications of the scaling hypothesis at the tricritical point are discussed and the results for both the
meta and nnn models are utilized to obtain the scaling power a, corresponding to the “weak”
direction (in the sense of Griffiths and Wheeler). Included in this discussion is the double-power-law
form, predicted to hold within the crossover region by tricritical-point scaling.

I. INTRODUCTION

A next-nearest-neighbor (nnn) spin-3 Ising model
with tricritical behavior was introduced in Eq.
(2.4) of the preceding paper® (Paper I). The Ham-
iltonian is

nn nnn
W=, 20 8185~y 20838, - BH sy . (1,1)
g tn i
Here J; <0 (antiferromagnetic), J,>0 (ferromagnet-
ic), and the first and second sums are over near-

est-neighbor (nn) and nnn spins, respectively. H is
a direct external field, and u is the magnetic mo-
ment per site. The Hamiltonian is considered on
the simple-cubic lattice.

We apply the same series-expansion techniques
to this model (with J,=—1, and J,=+3) as were ap-
plied to the meta model of Paper I. We therefore
do not repeat the discussion of the method of ob-
taining the series and of the various methods of
analysis, but rather go directly to the results., The
coefficients of the reduced-susceptibility and stag-



