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The relatively long spin-spin force range in the ferromagnet GdNi, renders it a prototypal system in
which to compare critical exponents with calculations for a system where second-nearest-neighbor
interactions are important. We have measured the low-field magnetic susceptibility of GdNi, in the
reduced temperature interval 1073 < € < 4, where € = (T — T)/T . The observation of mean-field
behavior over an unusually large temperature interval has allowed experimental determination of the
high-temperature parameters needed for a straightforward application of the series expansions. Hence,
we approximate the long-range forces by including first- and second-nearest-neighbor interactions in our
Hamiltonian. High-temperature series are calculated for four different models and the experimental
results are compared in detail with the classical Heisenberg and spin-infinity Ising models. The
combined experimental and theoretical study suggests that universality, if it holds for this material, does
so in a temperature interval sufficiently narrow about the critical point to be both experimentally and

theoretically inaccessible.

I. INTRODUCTION

There exists considerable controversy over the
hypothesis of universality’’? of critical-point expo-
nents at second-order phase transitions. Most of
the effort has centered around the generation of
high-temperature series expansions for the Hei-
senberg and Ising Hamiltonians. One recent study®
has used indirect evidence to conclude that the
critical exponents are probably independent of the
strength of the second-nearest-neighbor interac-
tion. This conclusion is contrary to numerous ex-
isting experimental results, which show a con-
siderable variation in critical exponents.** 1t is,
of course, possible that these experimental vari-
ations arise because the measurements were not
made sufficiently close to 7. Our purpose is to
provide a comparison of theory and experiment
for the magnetic material GdNi,.

There are two specific difficulties which have
prevented definitive comparisons between existing
experiments and theories: (i) A critical exponent
(say y) must be defined, in the context of data an-
alysis, in a manner that allows for both 7. inde-
pendence and the flexibility to have y vary as T
-~ T¢. (ii) There exists a number of free parame-
ters. The parameters needed to define x (the
susceptibility) in a high-temperature expansion,
including second-nearest-neighbor interactions,
are (a) T (the mean-field critical temperature),
(b) xo (the Curie constant), and (c) R'=J,/J; (the
ratio of the second- to the first-nearest-neighbor
exchange constants). It will be seen that the mean-
field parameters T¥F and x, of GdNi, are well de-
fined from the experimental results.

1o

II. EXPERIMENTAL RESULTS

GdNi, is a cubic Laves-phase compound with well-
localized spins on the Gd sites and no measurable
moment on the Ni sites. Thus, the spin structure
in GdNi, has the symmetry of the Gd sublattice,
which is the diamond structure. Experimentally,
we have measured the susceptibility of GdNi, with
a Faraday balance in the reduced-temperature in-
terval 10® ses4, where e=(T- T.)/Tc. As T
-« one expects the susceptibility to be described
by mean-field theory. That is,

X =xMT-T¥) (2.1)
or

1 1 I&‘f)

xT_xo(l <), (2.2)

A search for mean-field behavior by plotting x™!

vs T, as suggested by Eq. (2.1), can often be mis-
leading since significant changes in the behavior
of the data can always be expected in the interval
between the last data point and T=~, A more
fruitful procedure is to plot 1/x7T vs 1/T, as sug-
gested by Eq. (2.2). Thus, with T'=<on the
graph, a valid judgment can be made as to whether
or not the infinite-temperature limit has been ob-
tained. The results on GdNi, are compared with
previous work on EuO® and Ni® in Fig. 1. Note
that only in the case of GdNi, is there an appre-
ciable mean-field region (straight-line behavior)
from which x, (T =« intercept) and T¥* (1/xT=0
intercept) can be determined. This feature of
GdNi, was first observed by Cannon et al.” The
straight-line behavior is borne out by the agree-
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ment with the high-temperature-series curves
shown in the solid and dashed lines, Also, the
large region of mean-field behavior is consistent
with the electrical resistivity of GdNi,,® which ex-
hibits de Gennes-Friedel® (mean-field) behavior
for €20.1. As a consistency check we have ob-
tained a value of 7.95u 5 for the Gd moment from
Xo (the Curie constant). Within experimental error
this is equal to the Gd free ion moment and is con-
sistent with experiments!? suggesting that the Ni
atoms do not carry a moment in this intermetallic
compound.

For T sufficiently close to the critical tempera-
ture T, we expect

x1'=Ae”, (2.3)

where A is a temperature-independent constant,
The critical-point exponent can then be obtained
by plotting x™ vs € as in Fig. 2. Problems arise
with curves of the type shown in Fig. 2 if y is al-
lowed to vary as T—~ T.. The difficulty arises be-
cause experimental uncertainty in T (in our case
6T, =+ 30 mK) will always mask a change in y suf-
ficiently close to T¢. This is schematically shown
by the dashed lines in Fig. 2. To avoid this diffi-
culty we have chosen an approach similar to that
suggested by Kouvel and Fisher.!! We note that if
X!« €” with y constant, then In(dx™'/dT) is linear
in Iny™, with a slope given by (y-1)/y. We can
then use this slope to define y in the regions where
v is slowly varying. The exponent y, defined in
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FIG. 1. Susceptibility of GdNiy, EuO (Ref. 5), and Ni
(Ref. 6). Dashed line: 1/xT determined from the exact

tenth-order series expansions for the §== Ising model on
a diamond lattice. Solid line: 1/xT determined by extrap-
olating the exact tenth-order series to 50th order using
the binomial-expansion coefficients of x = C/T(1 = To/T)!*?
for terms 11 through 50.
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FIG. 2. Inverse susceptibility vs reduced temperature.

Solid circles: experimental dataonGdNi,. Dashed lines:
qualitative estimate of uncertainty in € due to an uncer-
tainty in T¢ of 30 mK,

this manner, is manifestly independent of 7. The
result of such an analysis is shown in Fig. 3. The
following points are worth noting: (i) for €< 107!,
y=1.19+0.02; (ii) as x™ (and hence €) grows large,
the curve flattens and approaches the mean-field
value of ¥=1.0; and (iii) as 7= T, there is, with-
in experimental error, no detectable tendency for
v to change with temperature. Thus, Fig. 2 ex-
plicitly demonstrates the change in ¥ from a mean-
field value to a “critical” one without convoluting
effects from T, renormalization. Furthermore,
there is no detectable trend for y to change toward
a universal value as T~ T,. We have found that
both this small apparent value of ¥ and the large
reduced transition temperature (7./T¥F =0.913
+0.012) may be consistent with the high-tempera-
ture series expansions.

III. THEORY AND COMPARISONS
We define the interaction Hamiltonian as

D
K== 2JE%SE, @.1)

(46) a=1

where S§ is the ath component of the spin located
at the 6th site. The spin coupling parameter J§
in general may be different for different 6’s and
a’s. Here the summation over lattice sites (i5)
is not necessarily restricted to first nearest neigh-
bors, and the sum over a determines the symme-
try of the spin space. For instance, if D=3 and

i=dy=Jd{=J3=J3%=J3; the Hamiltonian represents
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FIG. 3. (d/dT) lox™ vs x™ for GdNi,. Straight lines
indicate power-law behavior (viz., x" a€”) for various
values of 7.

the classical Heisenberg model with first- and
second-nearest-neighbor interactions of equal in-
teraction strength.

The ferromagnet GdNi, is of the cubic Laves-
lattice structure with the Gd atoms on the diamond
lattice. Since the spin-spin interactions are be-
lieved to be of long-range nature, we will approxi-
mate the interactions by allowing the restricted
sum (i6) to be over first and second nearest neigh-
bors on the diamond lattice with arbitrary inter-
action strengths J, and J,. Using a program based
upon the renormalized linked-cluster theory of
Wortis et al.,'*® we have calculated the two-spin
correlation functions G(r) as high-temperature
expansions in J,/kgT for a judiciously chosen set
of values of R'=J,/J;. From these we obtain
expansions for the reduced susceptibility

_k .
xe—f,%—=§cz(r), 3.2)

the second moment

pst?) |7]2¢,(F) , (3.3)
and the reduced specific heat!?®

C,= T—}fi:— %T%?JGCZ(G) (3.4)
as double power series in J,/kT and R'. This
was accomplished using the expansions for specific
values of R’ as a “basis set” and then solving
simultaneous equations to obtain the general ex-
pansions. Hence the physical quantities take the
form

S hein) () 0.9

We have calculated these general-R’ high-tem-
perature expansions for four different models, all
on the diamond lattice.'*® The first model is the
traditional spin-3 Ising model, which is obtained
by putting D=1 in Eq. (3.1) and allowing S=+ 3.
Series for this model were expanded to tenth order.
The second ‘model is known as the “classical pla-
nar’” model. The Hamiltonian portrays this model
when D=2 and J;=J3, and these series were ob-
tained to ninth order. The third model is the more
familiar and perhaps more physical classical Hei-
senberg model. As mentioned earlier, this is ob-
tained from the Hamiltonian (3.1) by placing D=3
and J3=J3=J§. The eighth-order series for ¥ and
EH were obtained. Lastly, motivated by the un-
usually high experimental values of T./T¥F, we
considered the spin-infinity Ising model. This is
obtained by using the classical Heisenberg model
with J§=J§=0. These tenth-order series can be
found in NAPS. ®® Since the magnetic Gd atoms
have a spin quantum number equal to  we believe
the spin-infinity Hamiltonians to be a realistic ap-
proximation to GdNi, .

All the susceptibility series were analyzed by
the standard-ratio, Neville, and Padé-approxi-
mant (PA) methods? for many values of R’ in an
attempt to find,a value of R’ for which both y and
To(R')/ TY¥F(R’) agreed with experiment. In gen-
eral, it was found that as R’ ranged from zero to
infinity, To(R')/T¥¥(R') rose from its diamond-
lattice nearest-neighbor (nn) value to a broad
maximum around R’ 21, then eventually fell back
to the predicted fcc-lattice limit. Figure 4 shows
this general behavior for the Ising spin-infinity
and the classical Heisenberg models. The other
two models gave curves whose central behavior
was very similar to the Heisenberg curve and so
these are not shown.!* The general behavior of
the exponent y also seemed to have the consistent
behavior of falling off as R’ increased and even-
tually coming back to the universal three-dimen-
sional limits as R’ reached infinity. It is interest-
ing to note that for values of R’ slightly away from
the fcc limit, the Padé tables failed to show con-
vergence. We believe this to be characteristic of
the fact that for these values of R’ the lattice ap-
pears to be two loosely coupled fcc lattices and
the series are attempting to show certain lattice
dimensionality crossover effects.'® In Tables
1(a) and I(b) of this paper we show Padé approximations
to (8/8x) Ink(x), where x=J,/kyT for the spin-
Ising model for R'=1 and R’ =2, respectively.'®
The values of T/ T¥F and ¥ from both tables are
compatible with the experimental values. The
Heisenberg model [cf. Table I(c)] also showed
increasing T¢(R’)/ T¥F(R’) and decreasing v, but
the To(R')/T¥F(R’) are still much too small and
the exponent too large. We believe the general
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TABLE I, Estimates for the reduced inverse critical temperature To/T¥F (upper) and the
critical exponent ¥ (lower) from Padé approximates of d [Inx (x)]/dx for R’=1, (a) and (c), and

*=2, (b), where Jy=1/kgT. In this method the function is approximated by the ratio of two
polynomials; N and D refer to the number of terms retained in the numerator and denominator,
respectively. In (a) and (b) we present the spin-infinity Ising model results from which we es-
timate To/TH¥ =0.9074+ 0,001, Y=1.185% 0, 01 and 7/TH¥F =0, 9074 + 0. 0005, ¥=1.196 = 0. 01,
respectively. In (c) we present the results for the classical Heisenberg model and we esti-
mate that To/THF=0,845+ 0. 002 and Y=1.31% 0, 01,

D\N 1 2 3 4 5 6 7 8
(a)
1 0.9226 0.9166 0.9137 0.9119 0.9107 0.9098 0.9092 0.9088
1.0867 1.1083 1,1222 1.1335 1.1428 1.1504 1.1567 1.1618
2 0. 9266 0.9111 0. 9086 0.9079 0.9079 0.9076 0.9075
1.0805 1.1416 1.1661 1.1752 1.1763 1.1792 1.1814
3 0.9110 0. 9092 0.9078 0.9078 0.9079 0.9074
1.1425 1.1595 1.1770 1.1764 1.1746 1.1859
4 0. 9087 0.9077 0.9079 0.9078 0.9071
1.1654 1.1779 1.1764 1.1769 1.1914
5 0. 9079 0.9078 0.9078 0.9074
1.1754 1.1764 1.1774 1.1856
6 0.9079 0.9079 0.9071
1.1764 1.1749 1.1917
7 0. 9076 0.9073
1.1792 1.1863
8 0.9075
1.1815
(b)
1 0.9197 0, 9147 0.9134 0.9125 0.9117 0.9112 0.9106 0.9107
1.0881 1.1058 1.1126 1.1180 1.1234 1.1288 1.1342 1.1393
2 0. 9206 0.9128 0.9110 0.9077 0.9076 0.9072 0.9075
1.0864 1.1763 1.1322 1.1889 1.1914 1.2011 1.1916
3 0.9127 0.9117 0.9050 0.9076 0.9077 0.9074
1.1167 1.1245 1.2718 1.1914 1.1880 1.1960
4 0.9111 0.9016 0.9077 0.9073 0.9074
1.1314 1.4460 1,1883 1.1993 1.1961
5 0. 9072 0.9074 0.9072 0.9074
1.2011 1.1942 1.2004 1.1957
6 0.9074 0.9074 0.9074
1.1941 1.1975 1.1970
7 0.9072 0.9074
1.2015 1.1970
8 0.9075
1.1915
(c)
1 0.8636 0.8586 0.8543 0.8511 0.8492 0.8479
1.1732 1.1938 1.2184 1.2407 1.2583 1.2719
2 0. 8546 Ve 0. 8432 0.8455 0.8454
1.2215 1. 3450 1.3088 1.3098
3 e 0. 8414 0. 8462 0. 8454
1.3802 1.2955 1.3097
4 0. 8433 0. 8461 0. 8452

1.3441 1.2970 1,3116
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(Continued)

D\N 1 2 3

5 0.8454 0.8454
1.3091 1.3099
6 0.8454
1.3099

(c)

trend of approaching the experimental values ex-
ists, and if it were possible to add third- and per-
haps fourth-nn interactions one might also obtain
agreement with the experimental results.!”

As a further comparison of data with theory, we
have plotted the theoretical prediction of 1/xT vs
1/T on Fig. 1. Here we have used the spin-infinity
Ising-model series with R’ =2.'® The dotted line
corresponds to the calculated first ten terms of
the expansion normalized to the experimental val-
ues of X, and of TX¥F.®® We should like to point out
that our method lends support to the accuracy of
the experimental T¥¥. The normal method of
curve fitting the series to the data to obtain the
value of J; is not needed, as merely scaling the
first series coefficient equal to the mean-field
temperature is sufficient to obtain excellent agree-
ment with the data.?® The reader is cautioned that
curves such as 1/xT vs 1/T are relatively insensi-
tive to R’ for R’ large and positive; hence Fig. 1
alone is not adequate to specify a particular value
of R’.

In the above analysis we have implicitly ignored
the temperature dependence of the exchange inter-
actions which arise from thermal expansion of the
lattice. In studies of the present kind, where criti-
cal exponents are studied over large temperature
ranges, this effect may be formally handled by
allowing the parameter 7, to be temperature de-
pendent. We estimate dT./dT by noting that

Spin = o, Ising

09 ﬁ‘\;
= L
|z, 4
o
f Spin = o0, Heisenberg
0.8 /
- 'l’

0.7 N N Y S T S S TU TR N S SN A SN W '
0 02 04 06 08 10 08 06 04 02 0
R | /R

FIG. 4. Theoretical estimates for T¢/THF for various
values of R’ (=J,/dy) or 1/R’ for the diamond lattice.

1 dT (1 2)@ :”L)(L o) G.6)
T dT aL/\L aT/\T; oP )’ :
where L 8P/8L = E (Young’s modulus) and
(1/L)8L/dT = a (the coefficient of thermal expan-
sion). Values of E typical of metals are (9+£5)

x 10" dyn/cm?® The value of 8T/ 8P for GdNi,
is taken as 0.0 +0.05 mK/bar,?? and from the lat-
tice-expansion data of Zumsteg and Parks® we
use @=1x10"2 Using the above results, we es-
timate, for GdNi,, dT./dT=(0.0+£0.65)> 1073,
which gives a maximum variation in 7, of +0.2 K
over the entire experimental temperature range
(76 < T7<350 K). Such a small shift in T, has a
negligible effect on the results in Figs. 1-3.

1V. DISCUSSION AND CONCLUSIONS

In summary, we have demonstrated that the ex-
perimental mean-field region has been reached,?
yielding an accurate value of 7o/ T¥F. Further-
more, the comparison of experiment and series
has shown that the large experimental T,/TY¥ and
low y values are consistent with series predictions.
The significance of this comparison is not so much
in the detailed numerical agreement with the Ising
model, but in the general tendency of the Padé
tables to converge toward nonuniversal values of y.
This convergence (see below) is equivalent to a
large experimental temperature region where y
is approximately a nonuniversal constant. This
general trend also exists in the Heisenberg model.
While the spin-infinity Ising model yielded critical
indices comparable to experimental values, there
is no a priori theoretical reason to believe the spin
space is so anisotropic. In fact, experimental re-
sults for other Gd compounds indicate an isotropic
Heisenberg interaction.?® Hence one is left with the
following question: Is the agreement with the spin-
infinity Ising model accidental or does the combina-
tion of Gd and Ni somehow produce and anisotropic
spin space while maintaining the free magnetic mo-
ment of Gd? The second-nn classical Heisenberg
model also shows critical indices moving toward
the experimental values, but falling far short. Per-
haps if, for the Heisenberg model, it were tech-
nically feasible to obtain lengthy series for third-
(and even higher) neighbor interactions,?” then the
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experimental results could be matched equally well.
The question of whether universality has been
violated can be answered on two levels. First, the
apparent convergence of the Padé tables to values
of ¥ similar to the experimental values would ap-
pear to suggest a possible violation. This idea is
reinforced by the experimental observation of a
sharp crossover from mean-field to critical be-
havior and by the lack of any visible temperature
dependence in y as T— T, (cf. Fig. 3). However,
on a second level, the following observations
should be noted: (i) for R’ small (i.e., short-range
forces), the value of y appears to approach a uni-
versal value (cf. Ref. 3). (ii) As R’ gets larger
[cf. TableI(a)of this paper for R’=1], the convergence
of ¥ to anonuniversal value is not good. In fact,
careful scrutiny of Table I(a) reveals the suggestion
of a bend toward a larger ¥ as n (number of terms
in the series) increases. (iii) Given a large inter-
spin force range [cf. Table I(b) of this paper for
R’=2], the convergence of ¥ to a nonuniversal val-
ue is quite good. Experimentally this corresponds

to a large region in temperature where the critical
exponent is constant and nonuniversal. This would
seem to be consistent with the fact that the critical
region is expected to decrease as the inverse sixth
power of the force range (see, e.g., Ref. 4).
Thus when the force range gets large, as in the
present situation, the critical region becomes
quite small and what may be left is a large region
where the exponents are approximately tempera-
ture-independent nonuniversal constant. If this is
indeed the experimental situation, one might ask
whether or not the critical exponents in this region
obey the usual scaling equalities.

Playing our own “devil’s advocate,” we cannot
exclude the possibility that the interactions in
GdNi, might not be of the general form specified by
Eq. (3.1). That is, the interactions may be so
long ranged that indeed one does not expect the
ideas of universality to hold.2®

To elucidate these questions, we are presently
measuring other critical exponents since one might
hope to reach the true critical region below 7T..%
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