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There exists a robust day�night pattern in the incidence of adverse

cardiac events with a peak at �10 a.m. This peak traditionally has

been attributed to day�night patterns in behaviors affecting cardiac

function in vulnerable individuals. However, influences from the

endogenous circadian pacemaker independent from behaviors may

also affect cardiac control. Heartbeat dynamics under healthy condi-

tions exhibit robust complex fluctuations characterized by self-similar

temporal structures, which break down under pathologic conditions.

We hypothesize that these dynamical features of the healthy human

heartbeat have an endogenous circadian rhythm that brings the

features closer to those observed under pathologic conditions at the

endogenous circadian phase corresponding to �10 a.m. We investi-

gate heartbeat dynamics in healthy subjects recorded throughout a

10-day protocol wherein the sleep�wake and behavior cycles are

desynchronized from the endogenous circadian cycle, enabling as-

sessment of circadian factors while controlling for behavior-related

factors. We demonstrate that the scaling exponent characterizing

temporal correlations in heartbeat dynamics does exhibit a significant

circadian rhythm (with a sharp peak at the circadian phase corre-

sponding to �10 a.m.), which is independent from scheduled behav-

iors and mean heart rate. Cardiac dynamics under pathologic condi-

tions such as congestive heart failure also are associated with a larger

value of the scaling exponent of the interbeat interval. Thus, the

sharp peak in the scaling exponent at the circadian phase coinciding

with the period of highest cardiac vulnerability observed in epide-

miological studies suggests that endogenous circadian-mediated in-

fluences on cardiac control may be involved in the day�night pattern

of adverse cardiac events in vulnerable individuals.

detrended fluctuation analysis � forced desynchrony protocol � heartbeat

dynamics � correlations � scaling

Adverse cardiac events are the leading cause of mortality in
the United States (1). These events do not occur randomly

during the day. Epidemiological studies demonstrate that myo-
cardial infarction (2–6), stroke (7, 8), angina (9), ventricular
arrhythmias (10), and sudden cardiac death (11, 12) have a 24-h
day�night pattern with a primary occurrence peak around
10 a.m. This 24-h pattern of cardiac risk is widely assumed to be
caused by day�night patterns in behaviors that affect cardiovas-
cular variables such as autonomic balance, blood pressure, and
platelet aggregability in vulnerable individuals. The suprachias-
matic nuclei of the anterior hypothalamus contain the principal
endogenous circadian pacemaker, which is normally synchro-
nized with the light�dark cycle and the sleep�wake cycle but also
has independent effects on the sympathovagal balance of the
autonomic nervous system (13, 14). These last effects raise the
possibility that the circadian pacemaker contributes to the 24-h
pattern of adverse cardiac events in vulnerable individuals.

Recent studies based on approaches derived from statistical
physics have examined the extent of heartbeat fluctuations (the
sum of the deviations in interbeat intervals after detrending)
over a broad range of time scales (15–18). These studies revealed
that heartbeat fluctuations in healthy subjects possess a self-
similar temporal structure characterized by long-range power-

law correlations over a range of time scales. This statistical
feature changes with sleep�wake states (19) and under patho-
logic conditions such as congestive heart failure (20, 21). More-
over, the scaling exponent associated with these power-law
correlations was shown to be one of the most sensitive markers
for predicting mortality in a population-based study of heart
failure subjects in the Framingham Heart Study (22). These
findings suggest that the scaling exponent characterizing the
temporal correlations in heartbeat fluctuations is a robust
marker of cardiac dynamics that may be useful for the prediction
of cardiac vulnerability. Such marked change in the temporal
structure of cardiac dynamics may alter the timing of descending
depolarization fronts in the myocardium, thus allowing for an
occurrence of abnormal ventricular contractions triggered by
preexisting lesions in the myocardium, the disruptive function of
which would remain suppressed under a normal regime of
heartbeat fluctuations.

Because of the robust day�night pattern of adverse cardiac
events, we hypothesize that the dynamical features of human
cardiac control exhibit an endogenous circadian rhythm, inde-
pendent of activity. We also hypothesize that the exponent
quantifying the scale-invariant temporal organization in heart-
beat fluctuations changes with the circadian phase. Further, we
specifically hypothesize that the scaling exponent will increase at
the circadian phase corresponding to �10 a.m., the time of
greatest cardiac vulnerability, thereby shifting this marker of
cardiac dynamics closer to the values observed under pathologic
conditions (20, 21). Because the sudden onset of adverse car-
diovascular events occurs in ostensibly healthy asymptomatic
people (23, 24), the study of healthy subjects can yield informa-
tion concerning circadian or behavior-related mechanisms in
cardiac vulnerability. To test these hypotheses, we analyze the
heartbeat fluctuations of healthy subjects at different circadian
phases in a protocol that accounts for changes in behavior to
determine the independent endogenous circadian influences on
normal cardiac control.

Data Collections and Methods

Subjects. We studied five healthy subjects (four males and one
female), with a mean age of 25.8 years (range, 20–33 years). All
subjects had no medical disorders as assessed by history, physical
examination, overnight polysomnography, psychological exami-
nation, pulmonary function tests, a 12-lead ECG, and routine
blood and urine chemistry. The study was approved by the
relevant institutional human subjects internal review board. All
subjects provided written informed consent before participation.

Abbreviations: CBT, core body temperature; DFA, detrended fluctuation analysis; RR

interval, interval between two consecutive R waves.
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Forced Desynchrony Protocol. To distinguish the effect on the
cardiac dynamics of the intrinsic circadian system while control-
ling for the daily behavior pattern, we collected physiologic data
throughout a 10-day ‘‘forced desynchrony protocol’’ with sub-
jects living in an individual suite (25–27). In this protocol, there
were two initial baseline acclimatization days with 8-h sleep
opportunities and 16 h of wakefulness. Subjects’ sleep�wake
behavior cycles were then adjusted to 28 h, with 9 h and 20 min
of sleep opportunity and 18 h and 40 min of scheduled wake-
fulness. This 28-h recurring sleep�wake schedule was repeated
for seven cycles (Fig. 1) in the absence of known zeitgebers, such
as bright light, so that the body clock oscillated at its inherent
rate. Light was kept at �10 lux, and the subjects had no external
cues regarding the time of day. Room temperature was main-
tained at 23°C. Subjects repeated the same behavior schedule in
all wake periods so that, statistically, the same behaviors, in-
cluding the sleep�wake cycle, occurred evenly across all circa-
dian phases by the end of the protocol. During the periods of
wakefulness, activity was limited to walking around the suite,
sitting, and resting. In addition, as part of a separate aim
assessing circadian cardiopulmonary rhythmicity, noninvasive
cardiopulmonary measurements were made every 2–4 h, includ-
ing during two 30-min scheduled arousals from sleep during each
sleep period.

Measurements. To provide a marker of the endogenous circadian
pacemaker, core body temperature (CBT) was recorded
throughout the 10-day protocol by using a rectal temperature
sensor (YSI 20463, Yellow Springs Instruments) with values
stored to a computer once per minute.

For an assessment of the cardiac interbeat interval, a chest

lead ECG was recorded on an ambulatory recording device
(Vitaport, Temec Instruments, Kerkrade, The Netherlands) at
256 Hz over 196 h throughout the forced desynchrony protocol.
Cardiac interbeat intervals were obtained from the ECG by
using a QRS wave detector based on the Aristotle algorithm (28).

Estimation of Circadian Phases. CBT was used as the marker of the
circadian phase (25). Each subject’s phase and period of the CBT
circadian rhythm was estimated by nonlinear least-squares re-
gression (27), and a circadian phase was assigned to hourly
averages of heartbeat data relative to the time of the minimum
CBT (CBT minimum � 0° circadian phase corresponding to
�5 a.m.).

Detrended Fluctuation Analysis (DFA). To estimate correlations in
the heartbeat fluctuations, we used the detrended fluctuation
analysis (29, 30). Compared with traditional correlation analyses
such as autocorrelation, power-spectrum analysis, and Hurst
analysis, the advantage of the DFA method is that it can
accurately quantify the correlation property of signals masked by
polynomial trends (31, 32, 41). The DFA method quantifies the
detrended fluctuations F(n) of a signal at different time scales n.
A power-law functional form F(n) � n� indicates the presence
of self-similar organization in the fluctuations. The parameter �,
called the scaling exponent, quantifies the correlation properties
in the signal: if � � 0.5, there is no correlation and the signal is
white noise; if � � 1.5, the signal is a random walk; if 0.5 � � �

1.5, there are positive correlations, where large heartbeat inter-
vals are more likely to be followed by large intervals (and vice
versa for small heartbeat intervals).

Analysis of Circadian Rhythmicity in Cardiac Dynamics. We separated
all RR interval data into 1-h windows, and for each window, we
calculated the values of the DFA scaling exponent � and the
mean RR interval. We chose 1 h as the size of the window
because the DFA method needs �3,000 data points for an
accurate estimate of the scaling exponent �. For each 1-h data
segment, we estimated the scaling exponent � over the same
range of time scales, from 20 to 400 heartbeats. For each subject,
we analyzed �124 h for wake periods and �62 h for sleep-
opportunity periods throughout the forced desynchrony protocol
(Fig. 1). After considering missing data caused by occasional
interruptions during recording (e.g., when subjects were show-
ering or during scheduled arousals from sleep) and removing the
segments of noisy data, for each subject, we obtained �100
values for the DFA exponent � for wakeful periods and �60
DFA exponent values for sleep-opportunity periods. To each 1-h
data point representing the DFA exponent value of interbeat
intervals and mean RR intervals, we assigned a circadian phase
(established from the analysis of CBT). Because sleep and wake
states have different effects on cardiac dynamics (19), we
analyzed wake and sleep-opportunity periods separately (Figs. 2
and 3).

Averaging the data according to the circadian phase yields
effects caused by endogenous circadian rhythms independent of
behavioral factors, because in the forced desynchrony protocol,
each behavior is represented at each circadian phase. We
assessed circadian rhythmicity for individuals’ and group data by
using cosinor analysis, which incorporates a circadian funda-
mental and a harmonic term (�12 h cosine) (33). This analysis
obtains a best-fit periodic function of the points (represented by
the ‘‘model’’ curves in Figs. 2 and 3) and provides a probability
(P value) that the rhythm is statistically significant (33). For
group analyses, we expressed each individual’s 1-h data points in
normalized units (i.e., percentage difference from each subject’s
mean) and aligned with respect to CBT minimum before aver-
aging for cosinor analysis. A graphical example of the cosinor
analysis is shown for one individual in Fig. 2 and for the group

Fig. 1. Heartbeat RR interval (the interval between two consecutive R waves

in the normal sinus rhythm) time series during the forced desynchrony pro-

tocol in one individual. The sleep�wake cycle is adjusted to 28 h with a

continuous wake period of 17 h and 40 min (marked by white background)

followed by a period of 10 h and 20 min (marked by gray background)

including 9 h and 20 min of sleep opportunity and two 30-min scheduled

arousals from sleep. Gaps in the signal indicate missing data (e.g., when

subjects were showering or during scheduled arousals from sleep). During

each wake period, the same schedule is repeated so that, statistically, all

behaviors are balanced across all circadian phases.
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in Fig. 3. For graphical purposes, data were divided into six
circadian bins (60° or �4 h for each bin) and averaged within
each bin (�16 points for wake periods and �10 points for
sleep-opportunity periods per bin per subject) (Fig. 2). Because
we scheduled events corresponding to different behaviors within
each 4-h period for each cycle in the forced desynchrony protocol
and because these scheduled events repeat in every cycle at
different circadian phases, introducing 4-h circadian bins elim-
inates variations in the 1-h � values due to (i) scheduled events
with different levels of activity (34) and (ii) transitions between
sleep stages during the sleep periods (35).

Results

In Fig. 2 A, we show the scaling behavior in heartbeat f luctu-
ations for a single subject as assessed by the DFA method at
different circadian phases (corresponding to 2 a.m., 10 a.m.,
and 5 p.m.). We observe a systematic change in the slope � of
the scaling curve F(n), indicating that the self-similar�fractal
structure of heartbeat f luctuations changes with the circadian
phase. In Fig. 2B, we show the average deviation �� of the
scaling exponent � from its mean value for the same subject as
in Fig. 2 A throughout all circadian phases during wake periods.

Fig. 2. Circadian rhythms in the correlation property of heartbeat dynamics.

(A) DFA results of 1-h RR intervals for an individual at three different times

representing different circadian phases during wake periods. The scaling

curves are vertically shifted for clarity. The power-law form of the fluctuation

function F(n) � n� with � � 0.5 indicates presence of long-range correlations

in the heartbeat signals. The value of � in each 1-h window is obtained by

fitting F(n) in the range 20 � n � 400 beats. Significant circadian rhythms are

observed in the deviation of the � value for individual data during both wake

periods (B) and sleep-opportunity periods (C). The data are shown as symbols,

and the cosinor model fits are shown as lines. The results of � in B and C are

double-plotted to better visualize rhythmicity. The results are consistent for all

five subjects during wake periods and sleep-opportunity periods. The individ-

ual’s habitual sleep period when living outside the laboratory is indicated

(gray shaded boxes).

Fig. 3. Circadian rhythms in the group average of the scaling exponent � for

wake periods (A) and sleep-opportunity periods (B). Consistent and significant

circadian rhythms are observed for wake periods (P � 0.01) and sleep-

opportunity periods (P � 0.0003). Note the well pronounced peak at between

60° and 90° (9–11 a.m.). (C) The deviations of mean RR intervals also show

significant circadian rhythms for both wake periods (P � 3.6 � 10�10) and

sleep-opportunity periods (P � 2.1 � 10�9). However, this 24-h pattern of

mean RR is extremely different from the pattern of the � value in A and B,

showing a minimum value at between 180° and 240° (corresponding to a

broad plateau in the heart rate at 5–9 p.m.) and a maximum at �0° (corre-

sponding to the lowest rate at 5 a.m.). The results of are double-plotted to

better visualize rhythmicity. The group average habitual sleep period when

living outside the laboratory is indicated (gray shaded boxes).
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We find a strong, statistically significant circadian rhythm with
an amplitude of 11% of the average scaling exponent �, i.e.,
�5.7% � �� � 5.6%. For this subject, we find that the
minimum � value occurs at 330° (corresponding to 3 a.m.),
whereas the maximum value of � occurs at 70° (corresponding
to 9:40 a.m.). Further, we observe that a strong circadian
rhythm is present not only during wake periods but also during
the sleep-opportunity periods for the same subject (Fig. 2C).

We find that this circadian rhythm in the scaling exponent �

is consistent for all five subjects. Moreover, we find a consistent
and significant 24-h pattern in the group average � variation for
both wake periods (P � 0.01, Fig. 3A) and the sleep-opportunity
periods (P � 0.0003, Fig. 3B), with the average range of deviation
being similar in both states (�10%). We find that the maximum
value of � occurs at between 60° and 90° during both awake and
sleep-opportunity data sets. This period corresponds to �9–11
a.m., as hypothesized based on the time window of highest
cardiac risk observed in epidemiological studies. We find that the
minimum value of � occurs at between 300° and 360°. This period
corresponds to �1–5 a.m., which is close to the center of the
subjects’ habitual sleep periods when living outside the labora-
tory but occurred during both wake and sleep-opportunity
periods.

In addition, we find a consistent and significant circadian rhythm
in the mean value of the RR intervals during both wake periods
(P � 3.6 � 10�10) and sleep-opportunity periods (P � 2.1 � 10�9)
(Fig. 3C) with a minimum at 180–240° (a broad plateau in the heart
rate corresponding to 5–9 p.m.) and a maximum at �0° (lowest
heart rate corresponding to �5 a.m.). We note that this 24-h pattern
in the mean RR intervals (Fig. 3C) is different from the one we find
for the heartbeat scaling exponent � (Fig. 3 A and B), which
indicates separate circadian-mediated influences on these two
statistical properties of cardiac dynamics.

Discussion

Our investigations demonstrate the presence of a strong circa-
dian rhythm influence upon the dynamical and correlation
properties of heartbeat fluctuations. Specifically, we find a
pronounced peak in the heartbeat scaling exponent � at the
circadian phase around 60–90°, corresponding to 9–11 a.m., a
well known window of cardiac vulnerability. Because the scaling
exponent � quantifies a robust scale-invariant�fractal structure
in heartbeat fluctuations and has been shown to reflect under-
lying mechanisms of cardiac dynamic control (36, 37), our
findings of a significant change in � at a specific circadian phase
indicate a direct influence of the circadian pacemaker on cardiac
dynamic control. Further, we find that the peak in � at 60–90°
is not related to the circadian-mediated influence on the average
heart rate, which displays a very different circadian rhythm with
a broad plateau at between 180° and 240° (corresponding to 5–9
p.m.). Moreover, the circadian rhythm in the heartbeat scaling
exponent � is not due to changes in behaviors, as all behaviors
are balanced across the entire circadian cycle during the forced
desynchrony protocol. It is interesting to note that the group
average of the scaling exponent � exhibits a minimum during the
habitual sleep period, regardless of whether or not the subjects
were awake or asleep (Fig. 3 A and B). This finding supports
previous reports of a decreased exponent � during sleep, com-
pared with wakefulness (19), and during non-rapid eye move-
ment sleep, compared with rapid eye movement sleep (35, 38,
39). Further, our observations suggest that the decrease in the
exponent � during sleep observed in these previous studies may
in part be caused by an endogenous circadian effect rather than
by an effect of sleep alone. The decrease in the exponent �

during the habitual sleep period observed in the present study is
generally accompanied by an increase in the mean RR interval
(decreased heart rate, Fig. 3C). These findings of a decrease in
the exponent � and decreased heart rate during the usual sleep

period are consistent with an increased parasympathetic cardiac
tone. However, this is not a simple relationship across the entire
circadian cycle, because the circadian peaks in � at 60–90° during
both sleep and wakefulness are not accompanied by a peak in
heart rate. This important dissociation between mean heart rate
and the exponent � is notable because � provides a unique
insight into cardiac dynamic regulation by quantifying scale-
invariant structures in the nonequilibrium heartbeat fluctuations
beyond the traditional concept of homeostatic equilibrium (40).
Moreover, the information contained in the temporal structure
of heartbeat fluctuations as measured by � appears to have
considerable clinical relevance.

Previous studies have demonstrated that healthy heartbeat reg-
ulation is characterized by values of the scaling exponent � � 1,
whereas pathologic conditions such as congestive heart failure are
characterized by significantly higher values of � (between 1.25 and
1.4). Because � � 1.5 corresponds to a process of integrated random
fluctuations, values of � close to 1.5 as observed for some heart
failure subjects indicate a relative loss of correlations associated
with altered dynamics of cardiac control. Our findings of strong
circadian rhythms leading to �10% amplitude variations around
the average value of � for healthy young subjects indicates that the
underlying mechanism of cardiac regulation is strongly influenced
by the endogenous circadian pacemaker. It is possible that a similar
circadian effect in vulnerable individuals (e.g., those with underly-
ing cardiovascular disease such as cardiac arrhythmia, prior myo-
cardial infarction and�or congestive heart failure) would contribute
to the day�night pattern of adverse cardiac events previously
observed in epidemiological studies, with a peak around the circa-
dian phase corresponding to �10 a.m. This hypothesis is visualized
schematically in Fig. 4, where a similarly strong circadian effect in
subjects with heart disease may adversely alter their heartbeat
dynamics, bringing the value of their exponent � even closer to the
critical value of 1.5 at the circadian phase that corresponds with
9–11 a.m. We note that external behavioral factors such as exercise
can further increase the exponent � (34), independent of the
endogenous circadian influence on � that we describe here. Al-
though the relative contribution of the independent behavioral and
circadian effects is unknown, it is likely that both factors summate
to produce the morning peak in adverse cardiac events. Whereas
the exponent � has been shown to increase with disease (21) and
to be a sensitive marker of survival (22), the mechanism by which

Fig. 4. Illustration of circadian influences on long-range correlation prop-

erties of heartbeat fluctuations at the vulnerable circadian time between

9 a.m. and 11 a.m. Because of circadian influences in this specific time window,

the long-range correlations for healthy subjects change toward the direction

of a random walk, an integration of uncorrelated fluctuations that is associ-

ated with a random process without any underlying feedback control and

characterized by �0 � 1.5. The heartbeat correlation properties in cardiac

diseases such as congestive heart failure are characterized by much higher

values of the scaling exponent � � 1.3 (16, 22). For these vulnerable subjects,

it is plausible that identical circadian influences as observed in our healthy

group could further shift the scaling index � (open diamond) toward the

critical point �0 � 1.5 corresponding to a random walk, potentially contrib-

uting to the peak in adverse cardiac events at 9–11 a.m.
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impaired cardiac dynamic control can contribute to adverse cardiac
events including sudden cardiac death remains to be elucidated.
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