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ABSTRACT

We give two soluble models which contain critical points of order four —
one order more complex than tricritical points or the tetracritical point
presented to this conference two years ago by Nagle and Bomner. The
models are one dimensional Ising models with a long-range interaction; one
contains one staggered magnetic field, the other two such fields. The
formal solutions are given.

The geometric theory of phase transitions and critical phenomena1 has
led to the discovery of systems where several lines of critical points
intersect.“ Points where three lines of critical points meet have been
called tricritical pointsz, and ‘foints where four lines of critical points meet,
tetracritical points3 and so on4.

It has been showns, however, that in the particular case considered by
Nagle and Bonner, which was reported on at this conference® two years ago,
the tetracritical point is a point on a single smooth curve of tricritical
points from which it is topologically indistinguishable. This is because
tricritical points are the endpoints oflines of points where three phases are
in equilibrium and the same is true of the fetracritical point. A more com-
plex point will be the endpoint of a line of points where four (or more)
phases are in equilibrium, and which is also the endpoint of lines of tri-
critical points. A necessary condition for the existence of a more complex
point is, therefore, a line of points where four phases coexist and this is
not satisfied by the Nagle-Bonner modelS.

A new classification of critical ?oints using strictly topological quan-
tities has therefore been proposedd:/. Critical points are classified by an
index called the order €, which turns out to be equal to the dimensionality
n of the total spaced of field variables, minus the dimensionality d of the
critical space considered: @ = n-d. Thus for ordinary critical points

0 =2, and for tricritical points (and the Nagle-Bonner tetracritical point)

0 =3.9 To find a critical point of order 4, it is necessary to find a system
where four phases coexist on a line of points for varying temperature;
furthermore, the end of this line of points must also be the endpoint of four
lines of tricritical points. This critical point will be topologically different
from and one dimension less than the lines of tricritical points.

* Supported by a Lindemann Fellowship. Present address: Stanford
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Motivated by these considerations we have found several systems
containing lines of tricritical Points. Among them are two exactly soluble
one dimensional Ising modelsi0 which contain intersecting lines of tri-
critical points and thus’ a critical point of order four. The solutions of
these models are presented here.

The first model is a variation on the model of Nagle and Bonner. To
make four phases stable in the region T > 0 (two ferromagnetic and now
two antiferromagnetic instead of a single disordered phase), we split the
long-range interaction so that it acts separately on the two sublattices of
odd numbered and even numbered spins. The Hamiltonian is:

#=-Jsp 21: Si8i+1” 12‘1' I() S9i80i49p" 12;, I) 895 +1504x 2r +1

(1)
- Hzisi - Hy zl: (‘)Hlsi

Here Hy is the staggered magnetic field of wavelength 2 lattice sites and
J(r) is the usual long-range interaction J(r) = Lim (y—0)aye~ YT. This
Hamiltonian has an important discrete symmetry which will necessarily be
reflected by the phase diagram of the solution of the model. It is defined
by the operation sj—(-}sj, H -~ Ha, Hg — H, Jgg ~ -JgR. That means
that the solution for positive Jgp is related to that for negative Jgp by

G(H, Hy, Ts +3gp) = Gy, H, Ts - Jgp) @)

sothat M(H, Hp, T; +JgRr) = M2 (H2,H, T; -JgRr)- In particular the well-
known3 lines of tricritical points in the JsRr, H, T hyperplane for Jgg < 0
will be complimented by lines of fricritical points in the Jgg, Hy, T hyper-
plane for Jgg > 0: these will intersect on the T axis which therefore passes
through a critical point of order four. The partition function for the
Hamiltonian (1) is easily calculated using the same methods as Nagle and
Bomner3. The additional complication of a second long-range interaction is
easily dealt with by defining magnetisations. MO= /2 s9i+1, ME =

/2 sgj and the corresponding fields HO = (H+H2)//§, HE = (H- Hy)/ /2.
The Gibbs function can now be thought of either as a function of H, Hp or
of HO, HE. The Gibbs function is first calculated with zero long-range
interaction. This gives GNN(HQ, H2¢, T) (the same as in reference 3); the
corresponding Helmholtz potential is then given by ANN(M, Mg, T) =
GNN(Hg, H20, T) + MHg + MgH2¢. Note that by our definitions MH + MaH2 =
MOHO + MEHE, The effects of the long-range interaction can now be sub-
tracted off as EfR = -a(MO2 + ME2) = -a(M< + Mg) Hence the solution of
the problem is given by

_ 2
A(M, My, T) = CE{GNN(HO,HZO,T)+MHO+ M2H20—a(M2+M2)} ®)

where CE denotes convex envelope. The physical fields H, Hp minimise
A-MH-M2Hy giving
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H

H, = H20—2aM2 (4b)

At the special point 4 lines of tricritical points, bounding 6 surfaces of
critical points intersect. For JSR= 0 the interaction is the same as in the
Weiss model — and the same exponents result. This is in contradiction
with the analysis of multicritical point exponents provided by Theumann
and Hoyell.

HO- 2aM (4a)

The second model follows a suggestion of reference 4 and introduces a
second staggered magnetic field — one of wavelength four lattice sites Hy.
This simplifies the calculation because we only have to treat a block of
four spins.1 The Hamiltonian is now

H = 'JSREi:SiSHl— PIELLILII
lr
(5)
i+1
-H Zi:si— szi:(-) 5; - H4zi:cisi

where ¢j=+1 if i = (4dn+1), (dn+2); cij=-1if i = (4n+3), 4n. Th1s is solved
by the usual methods applied to one dimensional Ising models. 3,4 First it

is solved without the long-range interaction by introducing four 2 x 2 transfer
matrices representing interactions between spins (4n+1,4n+2) ...

(4n, 4n+1).

rl = rEXp[B (J+H+H,)] Exp[8 (-J+H2):ﬂ 7 ;‘:xp[ﬂ (J +H)] Exp[B(-J- H2+H4)j

Exp[8(-J- H,)] Exp[B (J-H-H,)] | Exp(B (- J + Hy-H,)] Exp(8 (J - H)]
- S 6)
T’ = [-Exp[ﬁ (@ +H-H,)] Exp[B(-J+H,)]| T Eixp[ﬂ (7 +H)) Exp[B(-J-H,-H,)]

| Exp[B (- J - Hy)] Exp[B 3-H+H,)] | [Exp[s(-I+Hy*H ] Exp[B (0-H)]

These are multiplied together to give the 2 x 2 matrix M acting between
neighboring blocks of four spins. The larger eigenvalue A™ of this matrix
will give the partition function when the number of blocks of spins becomes
infinite. The Gibbs function per spin is then given by

G(H, Hy, H,, T) = EI/znA = 1kTn (X +/X + Det) ()

where Det = DetM = (¢ 2pd_ e—z'@J)4.

X = e*cnupm) + e *Plchgm,) + 1 + chapm )
+ 4Ch(2BH)Ch(2BH,)Ch(26H,) ®)
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The same method as for the first model is now applied, but as for Nagle
and Bonner, one must take the convex envelope not of the full Helmholtz
potential A(M, Mz, M4, T) but of the mixed function Gl(M’ H2, H4, T) so that

Gy, By, Hy, T) =|CE G(Hg, Hyg Hyg, T) + HoM -aM?] (9)

where the three magnetic fields are related to the bare fields by

H =H,-2aM, H, = H

0 0

An analysis of the T =0 plane of this model5 reveals points where 5
and 6 phases coexist. The former is the end of 3 lines where 3 phases
coexist and one line where 4 coexist. As T is increased these lines sweep
out surfaces of points which must be bounded for increasing T. The
boundaries should be lines of critical points of order 3 and they will inter-
sect at a critical point of order 4.
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