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ABSTRACT 

We give two soluble models  which contain c r i t i ca l  points of o r d e r  four  - -  
one o rde r  m o r e  complex  than t r i c r i t i ca l  points o r  the t e t r ac r i t i ca l  point 
p resen ted  to this conference  two y e a r s  ago by Nagle and Bonner.  The 
models  a r e  one dimensional  Ising models  with a long- range  interaction; one 
contains one s taggered  magnet ic  field, the o ther  two such fields.  The 
fo rmal  solutions a r e  given. 

1 
The geomet r i c  theory of phase  t ransi t ions  and cr i t ica l  phenomena has 

led to the d i scovery  of s y s t e m s  where  s eve ra l  l ines  of c r i t i ca l  points 
in te rsec t .  2 Points  where  th ree  l ines  of c r i t i ca l  points m e e t  have been 
called t r i c r i t i ca l  pqints 2, and points where  four  l ines  of c r i t i ca l  points mee t ,  
t e t rac r i t i ca l  points 3 and so on 4. 

It has been shown 5, however ,  that in the pa r t i cu l a r  case  cons idered  by 
Nagle and Bonner,  which was repor ted  on a t  this conference  6 two y e a r s  ago, 
the t e t r ac r i t i ca l  point is a point on a single smooth  cu rve  of t r i c r i t i ca l  
points f r o m  which it is topologically indist inguishable.  This is because  
t r ic r i t i ca l  points a r e  the endpoints of l ines  of points where  three phases  a r e  
in equi l ibr ium and the s a m e  is t rue of the t e t r ac r i t i ca l  point. A m o r e  c o m -  
plex point will be  the endpoint of a l ine of points where  four (or more )  
phases  a r e  in equi l ibr ium, and which is also the endpoint of l ines  of t r i -  
c r i t i ca l  points. A n e c e s s a r y  condition for  the exis tence  of a m o r e  complex  
point is, therefore ,  a l ine of points where  four  phases  coexis t  and this is 
not sat isf ied by the Nagle-Bonner  model  5. 

A new c lass i f ica t ion  of c r i t i ca l  points using s t r i c t ly  topological quan- 
t i t ies has there fore  been proposed5,  7. Cr i t ica l  points a r e  c lass i f ied  by an 
index cal led the o r d e r  ~ ,  which turns  out to be equal to the d imensional i ty  
n of the total space  8 of field va r i ab les ,  minus  the d imensional i ty  d of the 
cr i t ica l  space  considered:  ~ = n-d. Thus for  o rd ina ry  c r i t i ca l  points 
(~ = 2, and for  t r i c r i t i ca l  points (and the Nagle-Bonner  t e t r ac r i t i ca l  point) 

=3 .9  To find a c r i t i ca l  point of o rde r  4, it is n e c e s s a r y  to find a s y s t e m  
where  four  phases  coexis t  on a l ine of points for  vary ing  t empera tu re ;  
f u r t he rmore ,  the end of this l ine of points mus t  also be the endpoint of four 
l ines  of t r i c r i t i c a l  points. This  c r i t i ca l  point will be  topologically d i f ferent  
f rom and one dimension l e s s  than the l ines  of t r i c r i t i ca l  points. 
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Motivated by these considerat ions we have found severa l  sys tems  
containing l ines of t r i c r i t i ca l  points.  Among them are  two exactly soluble 
one dimensional Ising models  I0 which contain in tersect ing l ines of t r i -  
c r i t ica l  points and thus 7 a c r i t ica l  point of o r d e r  four.  The solutions of 
these models  a r e  presented  here .  

The f i r s t  model is a var ia t ion  on the model of Nagle and Bonner.  To 
make four phases stable in the region T > 0 (two fe r romagne t ic  and now 
two ant i fer romagnet ic  instead of a single d i sordered  phase}, we spli t  the 
long-range interact ion so that it acts  separa te ly  on the two sublat t ices of 
odd numbered and even numbered spins. The Hamiltonian is: 

~ =  - JSR . ~  s i s i+  1 - ~ J(r)  s2is2i • 2 r -  ~ J(r)  s2i + 1 s2i• 2r  + 1 
1 i ,  r i~ r 

Hrsi 
1 1 

(i) 

Here  H 2 is the s taggered magnetic  field of wavelength 2 la t t ice  s i tes  and 
J(r)  is the usual long-range  interact ion J(r)  = Lira (?--- 0) a~,e- ? r .  This 
Hamiltonian has an impor tant  d i sc re t e  symm et ry  which will neces sa r i l y  be 
ref lec ted  by the phase diagram of the solution of the model.  It is defined 
by the operat ion si--* (-)~si, H ~ H2, H2 --- H, JSR "* - JSR. That  means  
that the solution for  positive JSR is re la ted  to that for  negative JSR by 

G(H, H 2, T; +JsR) = G(I4_ 2, H, T; - JSR ) (2) 

so thatM(H, H2, T; +JsR) = M2 (H2, H, T; - JSl~. In par t icu la r  the well-  
known 3 l ines of t r ic r i t i ca l  points in the JSR, H, T hyperplane for  JSR < 0 
will be complimented by lines of t r ic r i t i ca l  points in the JSR, H2, T hyper -  
plane for  JSR > 0: these will in te r sec t  on the T axis which the re fore  passes  
through a cr i t ica l  point of o rde r  four. The part i t ion function for  the 
Hamiltonian (1) is easi ly  calculated using the same methods as Nagle and 
Bonnet  3. The additional complicat ion of a second l o n g ~ a n g e  interact ion is 
eas_fly deal t  with by defining magnetisat ions.  M O= Y~ .~s2 i+  1 , M E = 
~ _ ~  s2i and the corresponding fields H O = (H+I-I2)//2, HE = (H-  H2)/~Y-2. 
The Gibbs function can now be thought of e i ther  as a function of H, H2 o r  
of H O, H E. The Gibbs function is f i r s t  calculated with zero  long-range  
interaction.  This gives GNN(H0, H20, T) (the same as in r e f e r en ce  3); the 
corresponding Helmholtz potential is then given by ANN(M, M2, T) = 
GNN(H 0, H20, T) + MH0 + M2H20. Note that by our  definitions MH + M2H2 = 

:OT= O + E E e s f h M H M H . Th effect  2 o t e long-rangex2 interact ion can now be sub- 
t racted off as ELR = -a(MO + ME2) = -a (M + M~) Hence the solution of 
tile problem is given by 

where CE denotes convex envelope. 
A-MH-M2H 2 giving 

The physical f ields H, H 2 min imise  
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H = H 0- 2aM (4a) 

: rh0-2a  2 ( bl 

At the special  point 4 l ines of t r icr i t ical  points, bounding 6 sur faces  of 
cr i t ical  points intersect .  For  JSR = 0 the interaction is the same as in the 
Weiss model -- and the same exponents result .  This is in contradiction 
with the analysis  of mult icr i t ical  point exponents provided by Theumann 
and H o y e l l .  

The second model follows a suggestion of re ference  4 and introduces a 
second s taggered magnetic field -- one of wavelength four latt ice si tes  H4. 
This s implif ies  the calculation because  we only have to t reat  a block of 
four spins. 12 The Hamiltenian is now 

j t f=  _JsR~sisi+ 1- ~. j(r)siSi~r 
I S. 

l , r  

1 1 1 

(5) 

where c i=  +1 if i = (4n+1), (4n+2); c i=  -1  if i = (4n+3), 4n. This is solved 
by the usual methods applied to one dimensional Ising models .  3,4 F i r s t  it 
is solved without the long-range interaction by introducing four 2 x 2 t ransfer  
mat r ices  represent ing interactions between spins ( 4 n + l ,  4n+2) . . .  
(4n, 4n + 1). 

J+H2 J 
~[~(- J- H2) ] ~p[~ (J~-H4)] 

T 3 = Exp[~ (J + H -  H4) ] Exp[fl ( - J  + H2) ~ 

Exp[~(-J-H2) ] Exp[fl (J-H+H4) ] 

T2=fxp[fl  (J +H)] Exp[fl ( -J-H2+H4)]]  

m]] 
4 r + (6)-i 

T =~xp[~(J  H)] Exp[f l ( - J -H2-H4)] I  

~xp[~ (- J + H 2 + H 4)] Exp[~ (J-H)]J 

These a re  multiplied together to give the 2 x 2 mat r ix  M acting between 
neighboring blocks of four spins. The la rger  eigenvalue ~+ of this mat r ix  
will give the parti t ion function when the number  of blocks of spins becomes  
infinite. The Gibbs function per  spin is then given by 

G(H, H2,H4, T) = ~ s  + = � 8 8  (X +~}-X+ Det) 

where Det = Det M = (e 2flJ- e-2BJ) 4. 

(7) 

X = e4#Jch(4flH) + e-4flJch(4flI-I2 ) + 1 + Ch(4flH4) + 

+ 4Ch(2flH)Ch(2flH2)Ch(2flH 4) 
(8) 
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The same method as for the f i rs t  model is now applied, but as for Nagle 
and Bonnet, one must take the convex envelope not of the full Helmholtz 
potential AiM, M 2, M 4, T) but of the mixed function GI(M, H 2, H 4, T) so that 

GI(M, H2, H 4, T) =ICE G(H0, H20, H40, T )+  HoM-aM 2} (9) 

where the three magnetic fields are  related to the bare fields by 

H = H0-2aM, H 2 = H20, H 4 =H40 (10)  

An analysis of the T=0 plane of this model 5 reveals points where 5 
and 6 phases coexist. The former  is the end of 3 lines where 3 phases 
coexist and one line where 4 coexist. As T is increased these lines sweep 
out surfaces of points which must  be bounded for increasing T. The 
boundaries should be lines of crit ical points of order  3 and they will inter- 
sect at a crit ical point of order  4. 
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