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In view of experimental considerations, we give a model-independent argument that the novel tricritical
points in multicomponent fluid mixtures, where three phases simultaneously become critical, are points
on the boundary of a single two-dimensional surface of critical points. This result is corroborated by the
Landau model suggested by Griffiths. The relationship between these tricritical points and the complex
“higher-order” critical points proposed to exist in certain magnetic systems is elucidated.

I. INTRODUCTION

In 1970 Griffiths! proposed the concept of a
tricritical point as being the point of intersection
of three lines of critical points in a phase diagram
using intensive thermodynamic variables. He
further suggested, as examples, metamagnets,?
He®-He* mixtures,® and ammonium chloride.*
There has also been considerable speculation!’®
that similar points might exist and might be found
in the phase diagrams of complex fluid mixtures.
That such points have already been proposed and,
indeed, that they had been investigated prior to
1970 has recently been pointed out by Widom and
Griffiths.®"® A full and very complete discussion
of experimental evidence for these points has been
given in Refs. 6-8, and we refer the reader to
these papers for details.

A different way in which critical points more
complex than tricritical points can occur has been
shown to involve intersecting lines of tricritical
points, and a classification of critical points has
been introduced to differentiate these points from
tricritical points or ordinary critical points.® The
question has been raised®® as to how the new points
discovered in fluids are related to such a classifi-
cation.

Properties of the phase diagram® were the basis
of the approach we suggested previously.5*'° In
particular, we emphasized the importance of the
connectivity properties of different spaces of
critical points and tricritical points. Accordingly
it is the connectivity of the different critical points
of multicomponent fluid mixtures in the space of
truly intensive or “field” variables that we empha-
size here.

II. DEMONSTRATION THAT ALL CRITICAL POINTS
FORM A SINGLE CONNECTED SURFACE

The basic idea is to consider a system where
three distinct phases can be in equilibrium. These
might be three liquids or two liquids and a vapor
phase. On changing the thermodynamic variables
(temperature, pressure, chemical potentials of
different components) one pair of phases will be-
come critical, in the presence of the third. Ina
binary system the point where this occurs is the
end point of a line of critical points which bounds
the surface of points where the two phases coexist.
There are no degrees of freedom and such a point
is unique in the phase diagram.”

In a ternary, quaternary, or more complicated
system this point has one or more degrees of
freedom. Thus a line of “critical end points”
is possible. Such a line is the boundary of a sur-
face of critical points where two phases are criti-
cal.

In the particular systems of interest it is pos-
sible, by varying physical conditions, to make a
different pair of the three phases become critical
in the presence of the third, thus producing a
second line of critical end points.

Finally, by achieving exactly the correct physi-
cal conditions it is possible for all three phases
to become critical simultaneously. In a ternary
system such a point is unique; there are zero
degrees of freedom. Here, only this and similarly
simple cases are considered.

Experimentally there is the following arrange-
ment. A tube containing a three-component mix-
ture with a three-phase system is cooled to ob-
serve the appearance of successive phases. We
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will call these phases «, 8, and y, where for
purposes of argument p,<pg<p,. The ratio of the
various components is varied until the second
meniscus appears via a critical mode. This could
be the lower meniscus in which case phases y and
B become critical at a lower temperature. If
pressure, temperature, and ore other intensive
parameter are allowed to vary, a phase diagram
of the type shown in Fig. 1(a) will be observed.

At the point P, the phases y and 8 become critical
in the presence of a third phase a. If pressure is
increased, the lightest phase « will disappear and
a line of critical points between phases y and 3
will develop. For increasing temperatures above
P, there will be a line of critical points bounding
the surface of coexistence points which separates
the region of light phase a from the region of the
heavier phase yj.

By varying the ratios of components appropriate -
ly, it is possible, in the physical systems of
interest, to make the upper meniscus, separating
phase B from phase @, appear second on cooling.
The corresponding phase diagram is shown in
Fig. 1(c). Again there is a special point P’ which
is the end point of a line of critical points for
phases B and a, and which is also the end point
of the line of points where three phases coexist.

If the temperature is increased above P’ then the
coexistence surface separating phase y from the

combined phases pa will terminate in a line of
critical points.

If the transition to the phase diagram of Fig.
1(c) happens by a continuous variation from Fig.
1(a) then there must be a situation where both
menisci become critical simultaneously.

The corresponding phase diagram is shown in
Fig. 1(b). It may be seen that the point P of Fig.
1(a) has migrated along the coexistence surface
to the point P, on the boundary. At the point P, all
three lines of critical points, a (y8 critical),

b (ya critical), and ¢ (B« critical) meet.

The purpose of constructing Figs. 1(a)-1(c) is
to consider the behavior of the critical surface in
the immediate neighborhood of the tricritical point
P,, and the figures should therefore be understood
to represent the phase diagram close to P, and not
far away from the tricritical point. Also, since
our primary interest is the connectivity of the
surface of critical points, and not its specific
shape, we do not have to choose the variables
precisely, since the connectedness would remain
unchanged even if different variables were chosen.
[Similar remarks apply to Figs. 2(a) and 2(b) in
what follows. |

We can now demonstrate that the lines of critical
points a, b, ¢ in Figs. 1(a)-1(c) form a single con-
tinuous surface of critical points bounded by the
line of critical end points P-P,-P’. Consider a

FIG. 1. Three-dimensional subspaces of the full four-dimensional space of field variables of a three-component
system (or of five dimensions for four components). The variable ! may be thought of as the temperature, the variable
v as the pressure, and the third variable « as a suitable combination of chemical potentials. We use the notation of Ref.
5 to indicate lines and surfaces of critical points in the diagram. Lines of critical points are indicated 2R1 (order 2,
dimension 1). Coexistence surfaces are indicated by 2X2 (two phases and dimension 2). (a) Section containing a point P
where the two heavier phases vy, 8 are critical in the presence of the lightest ¢, as represented by the schematic tube
showing the yB meniscus critical and the B meniscus stable. (b) Section through the point P, where all three phases
become critical simultaneously, the y8 and Ba menisci are simultaneously critical in the schematic tube. (¢) Section
containing a point P’ where the lighter phases §8, « are critical in the presence of the heaviest ¥, as shown in the

schematic representation.
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point on line a in Fig. 1(a); move continuously
through Figs. 1(b) to 1(c). Now move along the
line a-b to a point at the “b” end, and now move
along continuously through Figs. 1(b) to 1(a). Still
being on line b, we can move along the line b-c
to the “c” end. Now move continuously through
Figs. 1(b) to 1(c) and our assertion is demon-
strated. We have not passed through the point P,
and so the lines a, b, c form sections of a single
continuous surface of critical points bounded by
lines of critical end points P - P, - P’.

The fact that there is only a single surface of
critical points is also corroborated by the model
of Griffiths® (see his Fig. 3). This fact is in strong
contrast to the metamagnet where it is not possible
to go from a point on the wing boundaries to a
point on the physical critical line without passing
through a tricritical point!''° and the spaces of
critical points are distinct and separate.

It will be plausible to conjecture that since all
the critical points form a single surface, the criti-
cal-point exponents are the same at all critical
points except the tricritical point itself. In con-
trast, for a metamagnet no reasons have been
presented for why the critical-point exponents
should be the same along all three of the critical
lines meeting at the tricritical point. However,
it has been suggested!! that for most tricritical
points the existence of a hidden variable linking
the wing boundaries to the physical critical line
(the variable called a, by Griffiths®) might force
the equality of exponents.

III. MODEL SURFACE OF CRITICAL POINTS

The phase diagrams of Figs. 1(a)-1(c) were
three dimensional and so parametrizing them with
an extra field variable introduces a fourth dimen-
sion to the phase diagram. The connectivity, and
other properties, of the surface of critical points
formed by the critical lines a, b, ¢ of Fig. 1, are
most easily studied in a three-dimensional sub-
space of the full phase diagram which contains the
whole critical surface. The shape of the critical
surface in such a subspace may be determined as
follows.

Consider the critical lines as they appear on the
paper in Figs. 1(a)-1(c) and consider how these
lines would form a smooth surface in three di-
mensions if the extra parameter were used to plot
the height of the paper, with Fig. 1(c) above 1(b)
above 1(a). By this combined projection and
motion we generate a single connected surface of
critical points with a boundary formed by the line
of points P-P,-P’.

A surface, which is topologically equivalent to
the surface of critical points thus obtained, is

shown in Figs. 2(a) and 2(b). Fig. 2(a) is a con-
tour map of the surface, and the heights % of the
contours are given by the hyperbolae xy =h. The
boundary of the surface P-P,-P’ is represented by
the parabola y = —cx? in the lower half of Fig. 2(a).
The topological equivalence of the surface of Fig.
2(a) to the surface of critical points may be seen
as follows.

Consider a section of Fig. 2(a) at constant height
h. I r>0 there are two hyperbolae, one in the
upper right quadrant and one which terminates on
the portion of the parabola labeled P in the lower
left. This is a representation of Fig. 1(a) for
which there are two critical lines, one labeled
(a) terminating at P and another labeled (b-c).

If h<0 there are again two hyperbolae, one in
the upper left quadrant which corresponds to the
line of critical points (a, b) of Fig. 1(c), and one
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FIG. 2. Section of the four-dimensional space of field
variables containing the full surface of critical points.
The surface is represented by a contour map of hyper-
bolae and is fully explained in the text. The variables x
and y are suitable field variables. (a) Boundary of the
surface is smooth at P;. The lines of critical end points
P, P’ form a smooth line in the four-dimensional space.
(b) Boundary of the surface is cusplike at P,. The lines
of critical end points P, P’ form a cusp in the four-di-
mensional space.
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in the lower right quadrant of Fig. 2 which cor-
responds to the critical line ¢ terminating at P
in Fig. 1(c).

When /% =0 the hyperbolae degenerate into the
three axes, for x<0, ¥>0, and x>0 corresponding
to the lines a, b, ¢ of Fig. 1(b) which terminate at
p,.
Accordingly, in Fig. 2, the ends of the hyper-
bolae are labeled a, b, ¢ according to the parts of
the critical lines in Fig. 1 to which they corre-
spond.

The complete topological correspondence be-
tween the sections of the surface in Fig. 2 and the
critical lines of Fig. 1 is therefore clear. The
points P, P, , P’ are a line forming a boundary of
the surface of critical points, and the point P, ,
which is the tricritical point, corresponds to a
saddle point of the surface in the projective space
of Fig. 2.

It may seem that a very special space has been
chosen, and that the boundary has been made to go
in a very special fashion—through the saddle point.
However, this is merely in accordance with the
following general physical requirements: (i) Only
one point P occurs in each phase diagram; there-
fore the boundary Zas to pass from the lower left
quadrant to the lower right quadrant without
passing through the upper two quadrants; (ii) Criti-
cal lines only split or end at a point like P. Thus
the point P has to pass through the origin where
the section would otherwise necessarily give four
lines of critical points intersecting.

This analysis of the critical points as a single
surface provides another viewpoint from which to
understand the fact that only two pairs of the three
possible pairs of phases became critical in the
presence of the third. The simplest viewpoint is
that of the test tube itself. If the phases a, 3,y
are ordered in increasing density, then (¢, 8) can
be critical (same density) in the presence of v,
and (By) can be critical in the presence of @, but
(ay) cannot be critical and of equal density without
the phase 8 having a density equal to both. Thus
the possibility (a@y) critical in the presence of 8
is eliminated. Widom?” has related this fact to the
geometric asymmetry of the solid figure containing
three distinct phases a, 3, v at constant tempera-
ture less than the tricritical temperature.

In terms of the phase diagrams in spaces of
truly intensive variables (Widom used densities,
or extensive variables), the existence of two lines
of critical end points instead of three has a very
simple topological interpretation: the boundary of
a single surface is locally divided into fwo sepa-
rate parts by the removal of a single point. Thus
the tricritical point P, divides the boundary of the
surface of critical points into two lines of critical

end points but cannot divide it into three different
lines of critical end points.

IV. SPECIAL DIRECTIONS

It was shown by Griffiths® that in his model there
are four variables of scaling, each with different
exponents at the special point. From a purely
phenomenological point of view one can define
four different directions at the special point P, in
the same spirit as Griffiths and Wheeler.® From
Fig. 2 it may be seen that these directions are
(i) the limiting “strong” direction for the surface
of critical points, (ii) the limiting “weak” direc-
tion for the surface of critical points, (iii) the
tangent to the line of critical end points at the
tricritical point, and (iv) the limiting second direc-
tion parametrizing the surface of critical points.
These correspond to the variables called a,, a,,

a,, and a,, respectively, by Griffiths.?

V. TRANSLATION TO COMPOSITION VARIABLES

The variables over which the experimentalist
has easy control are unfortunately not the intensive
field variables like the chemical potentials, but
only the densities. In these variables the phase
diagrams have been discussed by Widom.” It has
been pointed out by Griffiths® that the precise
composition of the tricritical point P, probably
does not coincide with the composition of the
regions of coexistence of three phases at tempera-
tures smaller than the temperature at P, .

Such behavior has probably been observed in the
system carbon-dioxide-methanol-water because
when a constant volume specimen (i.e., a sealed
tube) of precisely the correct composition is in-
creased in temperature, one does not observe the
simultaneous disappearance of two menisci. In-
stead'? one meniscus disappears critically and
simultaneously a second appears critically. This
remarkable behavior does not change any of our
geometric conclusions, because it can be inter-
preted as follows: the constant volume, constant
composition path does not follow the line of points
where three phases coexist in Fig. 1(b), but rather
it passes from one coexistence surface (y, 8) to
another (a, 8) directly through the point P, .

VI. RELATIONSHIP TO OTHER COMPLEX SYSTEMS

In previous work®'!° we have given several ex-
amples of complex magnetic systems and we have
attempted to systematically classify all the coex-
istence and critical points in such systems. For
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points where several phases coexist without being
critical this is relatively simple, since the ap-
propriate quantities are the number of coexisting
phases and the dimensionality of the space. These
are related to the total number of thermodynamic
intensive variables by the phase rule.®

For critical points, it can be argued that every
phase that becomes critical after the first two
implies the loss of an extra degree of freedom
in addition to the one lost because of coexistence.”
Hence if there is a system with n thermodynamic
variables possessing a point where p phases are
in coexistence, of which g are critical (altogether
rather than in two separate groups ¢, and ¢,, al-
though the generalization to such cases is simple).
The dimensionality of the space on which this
occurs will be given by

d:n—(p—l)—my (1)

where m =max(q -1, 0) since the case ¢ =1 is not
meaningful and m =0 if ¢ =0. As a special case if
all p of the phases are critical we obtain d=n+2
-2p.

While this equation holds for fluids, it is vio-
lated by the original tricritical points, for which
n=p =3, d=0 and also by certain magnetic models!®
which contain highly symmetric points where lines
of tricritical points intersect, and n=p =4 and
d=0. Before giving the equation which correctly
describes both fluids and the complex magnetic
systems let us contrast the two ways of classifying
more complicated critical points that have been
proposed.

For fluids Widom” has proposed that the impor-
tant quantity is the number of phases becoming
critical, and that this number should be used as
the order of the critical points.

For complex magnetic systems we have proposed
an apparently different scheme which is based on
the original proposal for tricritical points! where
three different lines of critical points intersected.
Accordingly we gave examples of systems where
different lines of tricritical points intersected,
and gave the points of intersection an order dif-
ferent from (one larger than) that of tricritical
points. Because of the symmetry of the various
systems we investigated, there were no lines
of critical end points, i.e., points where one or
more phases coexist with others that are critical.
Consequently the number of variables n needed to
obtain a point where four phases are simultaneous-
ly critical was reduced from six to four.

For tricritical points in fluids, it is possible to
artificially reduce the number of variables and
eliminate the lines of critical end points from the
phase diagram. For example, Fig. 1(b) is an
illustration of this since it is a three-dimensional

section of the four-dimensional field space with

all lines of critical points ending at the tricritical
point. Similarly the % =0 section of Fig. 2 produces
the same result. Griffiths® has shown how a simi-
lar phase diagram can be obtained by taking the
section a, =0 of his four-dimensional phase dia-
gram with variables a,, a,, a,, a,.

Let us now return to the case of the intersecting
lines of tricritical points in the variable inter-
action metamagnet. It has been shown!® that the
point of intersection (the point of order 4) is a
point where four phases become simultaneously
critical. Thus in this case the definition of order
suggested by us coincides with the definition sug-
gested by Widom.” This fact may be generalized,
because the only reason there should be more than
one line of tricritical points is because there are
more than three phases available. The different
lines of tricritical points will intersect at points
where more than three phases become simulta-
neously critical.

To obtain a version of Eq. (1) which is satisfied
by all the cases considered so far, it is necessary
to consider the number of variables which possess
nonzero scaling power at the point under consider-
ation. It is important to note that this number may
be less than the number of significant directions
picked out by the phase diagram. For example,
on an ordinary line of critical points three direc-
tions are determined, but only two (the strong
and weak) are associated with variables which
scale. Alternatively, on the line of critical end
points P,P,,P’, all four of the directions (i)-(iv)
are defined but only (i) and (ii) are associated
with variables which scale (except at P, where all
four enter the scaling equation). The implications
of the simple Landau model® are that for fluids
the number of scaling directions s =2(g —1).
Another quantity that is important is the number
of phases which are in equilibrium but which are
not critical, x =p —¢. In terms of the variables
s and x, Eq. (1) may be rewritten as'®

S+x+d=n. (2)

It will be seen that this equation also holds for
the old tricritical points, and the intersection of
lines of tricritical points. It is satisfied by con-
struction from (1) by all the points in generaliza-
tions of Widom’s scheme for which the order is
given by ©®=¢ = 3s+1 and by all the points in our
scheme® for which the order is given by O=s.
These two possibilities express, respectively,
the maximum and minimum number of scaling
variables at a point where © phases became criti-
cal, 0<s<2(9-1). For ©=2 there is only one
possibility, s =2; for ©=3 there are two cases,

s =3,4; and for ©> 3 there are many possibilities.
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Thus we have proposed® a minimal scheme for
complex critical points whereas Widom and Grif-
fiths have proposed a maximal scheme.

In conclusion it should be reiterated that while
the definition of order for critical points suggested
in Ref. 5 does not appear to be applicable to fluids,
it is consistent with the definition in terms of the
number of phases becoming critical.”

ACKNOWLEDGMENT

We would like to thank Professor B. Widom and
Professor R. B. Griffiths for drawing our atten-
tion to the references cited in the Soviet literature
in this manuscript and for stimulating conversa-
tions. Also thanks are due to R. B. G. for com-
ments on a previous version of this paper.

*Supported in part by the U.S. Atomic Energy Commis-
sion, the National Science Foundation, the National
Aeronautics and Space Administration, the Office of
Naval Research, and the Air Force Office of Scientific
Research.

"Lindemann Fellow.

IPermanent address: Riddick Laboratories, North
Carolina State University, Raleigh, N.C. 27607.

§Addre:uss to whom requests for reprints should be sent.

'R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).

®V. A. Schmidt and S. A. Friedberg, Phys. Rev. B 1,
2250 (1970); F. Harbus and H. E. Stanley, Phys. Rev.
Lett. 29, 58 (1972); Phys. Rev. B 8, 1141 (1973) and
B 8, 1156 (1973).

3G. Goellner and H. Meyer, Phys. Rev. Lett. 26, 1543
(1971).

C. W. Garland and B. B. Weiner, Phys. Rev. B 3, 1634
(1971).

’(a) T. S. Chang, A. Hankey, and H. E. Stanley, Phys.
Rev. B 8, 346 (1973); (b) A. Hankey, T. S. Chang, and

H. E. Stanley, Phys. Rev. B 8, 1178 (1973). Prelimi-
nary accounts of this work are given by A. Hankey,
T. S. Chang, and H. E. Stanley, AIP Conf. Proc. 10,
889 (1972).

B. Widom and R. B. Griffiths, Phys. Rev. A 8, 2173
(1973).

B. Widom, J. Phys. Chem. 77, 2196 (1973).

8R. B. Griffiths, Cornell University Material Science
Center Report No. 1995 (unpublished).

’R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2,
1047 (1970).

0F, Harbus, A. Hankey, H. E. Stanley, and T. S. Chang,
Phys. Rev. B 8, 2273 (1973).

HR. B. Griffiths (private communication).

2G, D. Efremova and A. V. Shvarts, Russ. J. of Phys.
Chem. 43, 968 (1969).

3we are much indebted to J. Nicoll for discussions
leading to this equation. A more complete account
will be given in a separate paper.



FIG. 1. Three-dimensional subspaces of the full four-dimensional space of field variables of a three-component
system (or of five dimensions for four components). The variable ¢ may be thought of as the temperature, the variable
v as the pressure, and the third variable « as a suitable combination of chemical potentials. We use the notation of Ref.
5 to indicate lines and surfaces of critical points in the diagram. Lines of critical points are indicated le (order 2,
dimension 1). Coexistence surfaces are indicated by 2X2 (two phases and dimension 2). (a) Section containing a point P
where the two heavier phases y, § are critical in the presence of the lightest «, as represented by the schematic tube
showing the v meniscus critical and the S meniscus stable. (b) Section through the point P; where all three phases
become critical simultaneously, the yj and fo menisci are simultaneously critical in the schematic tube. (¢) Section

containing a point P’ where the lighter phases j, « are critical in the presence of the heaviest ¥, as shown in the
schematic representation.



