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We introduce a novel two-component random network. Unit resistors are placed at random
along the bonds of a pure superconducting linear chain, with the distance / between successive
resistors being chosen from the distribution P(/)~I/~“*!D where ¢>0 is a tunable parameter.
We study the transport exponents d, and { defined by (x)~t" and p~L%, where (x?) is the
mean-square displacement, p the resistivity, and L the system size. We find that for =1 both
d,, and ¢ stick at their value for a nonzero concentration of resistors. For a <1 they vary continu-
ously with a: d,=2a and Z=a. In the presence of a bias field, we find d,=a. This is the first
exactly soluble model displaying “anomalous ballistic diffusion,” which we interpret physically in
terms of a Lévy-flight-type random walk on a linear chain lattice.

How are the laws of electrical transport for a two-
component random network changed when one of the con-
ducting species has zero resistance? This question has re-
cently been the object of many investigations,'~?® focusing
on the simple case in which the superconducting species is
present in finite concentration p. A basic quantity which
describes the transport properties of the system is the
mean-square displacement (x2) of a random walker. The
macroscopic diffusion constant D =d{x?)/dt is related to
the electrical conductivit?l by the Einstein relation. In gen-

2 /d,, . . .

eral, one finds {x*)~¢" *, with the diffusion exponent
d,=2 in Euclidean lattices. Anomalous diffusion,>13
with d,, greater than 2, occurs when diffusion is slowed
down in a self-similar fashion (e.g., if the diffusion is con-
strained to occur on a fractal substrate).” Also, random
distributions of transition rates can increase the diffusion
exponent (see, e.g., Refs. 8 and 14). In this article, we re-
port a new physical system with a tunable “anomalous
ballistic diffusion,” for which d,, is less than 2. 14

Our system is a d =1 lattice, each bond of which is a su-
perconducting element. The bonds of this lattice are ran-
domly “diluted” by unit resistors, according to the rule
that after every string of / superconducting bonds a unit-
resistance bond is placed. The random variable / is chosen
from the distribution

PU)~1~@*D (¢>0) , (1a)

where a is a tunable parameter. Thus, very small values of
a correspond to extremely long strings of superconducting
bonds. Notice that in this system the concentration of unit
resistors is strictly zero, in contrast to the case of percola-
tion, in which the unit-resistance bonds (empty bonds) ap-
pear with a nonzero concentration 1 —p=eg. In fact, the
distance / between empty bonds for d =1 percolation is

34

distributed according to

Py()~exp(—1/¢) . (1b)

Thus, the clusters of superconducting bonds are vastly
larger in our system than in d =1 percolation.

The superconductors in the mixture can be regarded as
short circuits; thus, the resistance p scales as

p~N(L)~L% ()

where N (L) is the number of resistors included in a sys-
tem of total length L and { is the resistivity exponent.
In order to find N =N (L ) we write

N lmax
L=31,=N [Pl 3)

i=]

We must distinguish two regimes of a depending on the
“range” of the probability distribution. For a=1 (“short
range”), we recover the conventional result for a nonzero
concentration of resistors, L~N. For a<1 (“long
range”), however, the integral in (3) is dominated by its
upper integration limit / _, , which itself depends on N. To
see this, we first note that if we choose /N random numbers
R,0<R =<1, then

rgé{lR 1/N . (4a)
Since R is homogeneously distributed, P (/)d/ =1xdR and
we have

I7%=R . (4b)
Combining (4a) and (4b), we find
o ~NYe )
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Hence, (3) becomes L~N (/. )! ™2 so, in general,

max

N, a=1
L~ ’ b
{N‘/", a<l. ©
Combining (2) and (6) we find
~ 1, a=1,
¢ {a, a<l. ™

To study the diffusion exponent d,,, we note that in our
model the walker performs a random walk on the resistors
only (actually a type of Lévy flight!>). Thus, the number
N or resistors visited by the random walker scales as
N2~t. Hence, from (6) we obtain t~N2~L?* (a<1)
and t ~N2~LZ% (a>1). Therefore,

2, a=1,
d“’-{Za, a<l. ®)

Thus, for a <1 we obtain ballistic diffusion that is d,, <2,
while for a=1 we again obtain the conventional result
d,, =2 which is the value for a nonzero concentration of
resistors.

When an external field E is applied on this system in
any dimension, the time required to make a displacement
L is proportional to the number of sites visited N(L); i.e.,
t~N(L)~L%fora=<1,and t~L for a > 1. Hence,

4 = I, a=1,
Y e, a<l, ©)

for biased diffusion in the superconducting-resistor mix-
ture.

In summary, then, we have seen that in our model sys-
tem we find critical exponents d,, and ¢ that are (a) in-
dependent of a system parameter over a wide range of a
values, sticking at their “classical” values d, =2 and {=1,
for a>a,, and (b) then become “unstuck” for a<a,,
varying continuously with a.

How general is this sort of phenomenon?

(i) A parallel phenomenon has been seen in the case of
diffusion in a random resistor network where the resis-
tance values are not all unity but rather are chosen from a
power-law distribution P(R)~R ~1*%) where 0<R ™!
=<1; d, was also found to stick at its classical value for
a < a. and to become unstuck and vary continuously with
a for a > q,.%1617

(i) Suppose one grows a percolation cluster by a
method whereby sites are added to a cluster one at a time
according to a power-law probability distribution which
determines the growth sites chosen (the so-called “random
butterfly” method). One finds that the fractal dimension
d, of the growth sites sticks at its classical value for a <a,
and depends continuously on a for a > a..'®

(iii) Consider diffusion in a random structure (like a
random comb) where the dangling ends are distributed ac-
cording to an exponential distribution.!? Let the diffusion
have a topological bias, with a probability p , «1+E for
taking a step that increases the path length from a source,
and a probability p_«1—E for taking a step that de-
creases the path length. For E <E_, d, sticks at its classi-
cal value d,, =1, while for E > E_, d,, depends continuous-
ly upon E.'

We note, in conclusion, that, in general, all critical ex-
ponents depend on the “‘system’” dimension d in a fashion
quite analogous to the dependence upon a of the exponents
for the systems considered here. For d >d_, exponents
stick at their mean-field values, while for d > d_, they vary
continuously with the tunable parameter d. Thus, our
work suggests that one seek to identify the essential
features that determine when a system has this charac-
teristic behavior.
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