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LE'ITER TO THE EDITOR 

Number of scaling factors in incommensurate systems 

Greg Huber, Preben Alstram and H Eugene Stanley 
Center for Polymer Studies and Department of Physics, Boston University, 590 Common- 
wealth Avenue, Boston, MA 02215, USA 

Received 10 November 1988 

Abstract. We study the scaling properties of an incommensurate system which obeys simple 
clustering rules, the one-dimensional tight-binding Schrodinger equation with a Fibonacci 
sequence potential. We find that the clustering rules do not guarantee a finite number of 
scaling factors. We find the energy spectrum by recursion. The clustering rules and 
recursion relations suggest different descriptions of the Same spectrum. Based on the 
thermodynamic formalism, we compare these descriptions, calculate their associated scaling 
functions, and construct the mapping between them. 

How many scaling factors fully characterise incommensurate systems? This question 
has received considerable attention in recent years [l-71. Much of this attention has 
focused on the one-dimensional discrete Schrodinger equation with a periodic hull 
function V ( x )  = V ( x  + 1): 

$ n + l +  $n-1+ V(n+)$n = E$n (1) 

where n is a lattice site label. One important example is Harper's equation [8] where 

V ( x )  = A cos(2m). (2) 

This has been adopted to describe non-interacting electrons in a two-dimensional 
crystal in a magnetic field with 4 being the number of flux quanta through a unit cell. 
At A = 2 the states change from being extended to being localised for almost all values 
of 4, leaving a fractal spectrum of allowed energies E. 

The spectrum was observed by Hofstadter [ 11 to obey hierarchical 'clustering rules': 
at a field 4 the spectrum divides into three regions separated by two gaps, one central 
region which is a copy of the spectrum at +'= {4/(1-24)}, and two side regions 
which are copies of the spectrum at 4" = {1/4}. (If 4 > f then first replace 4 with 
1 - 4.) Here {x} denotes the fractional part of x. The clustering rules impose a natural 
division of the energy bands, defining a tree structure (figure l ( a ) )  where a band at 
one level of the tree branches into two side bands and a central band at the next level. 
We note, however, that neither the relative positions of the subbands nor their sizes 
relative to the separating gaps follow from the above rules. 

Recently, the spectrum has been perceived to be multifractal for any irrational 
value of 4 [2,7], meaning that it is not fully characterised by one exponent (for 
example, the fractal dimension) but by a whole distribution of exponents. However, 
based on a proof of Hofstadter's clustering rules [l], which imply self-similarity, 
Stinchcombe and Bell [6] suggested that this distribution of exponents could be 
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Figure 1. Tree structures and associated labelling for (a)  the three-scale tree and ( b )  the 
'Fibonacci' tree in the plot of iterations m against allowed energies E. 

extracted from a finite number of scaling factors when 4 is a quadratic irrational?. 
For the golden mean, 4 = 4,  = f(8- 1) = 0.618 033 9 . .  . where 4 f  = $'f = 4, the spec- 
trum was conjectured to be determined solely by two scaling factors, one for the central 
band and one for the two side bands. This result would seem to imply an immense 
simplification in the description of incommensurate systems. 

In this letter we examine critically the idea of scaling governed by a finite number 
of scaling factors. In order to simplify the problem and increase the numerical accuracy 
in evaluating the allowed states, we use the square-well potential at 4 = with 

if - 4, < x < 1 - 2& 
if 1 -24,< x s  1 - $g 

V ( x )  = (3) 

first considered by Kohmoto et a1 [3] and Ostlund et a1 [4]. The potential V(n4, )  is 
equivalent to the Fibonacci chain + - + + - + - + + - + + - . , , in the two step heights 
+A and -A. To generate this chain recursively, consider it as the limit of a sequence 
of partial chains +, + -, ... where the nth chain is the concatenation of the ( n  - 1)th 
and ( n  - 2)th chains. 

The main advantage of the potential (3) is that it yields to an exact renormalisation- 
group analysis [3,4]. The transfer matrices expressing (1) can be multiplied to form 
chains of matrices analogous to the above chains of *A. Accordingly, the nth product 
matrix is itself the product of the two previous product matrices. Thus the transfer- 
matrix equations can be reduced to a polynomial recursion relation on the traces of 
these matrix products. As a result, the energy spectrum can be calculated from the 
simple recursion relation 

U i + l =  2 u i u , - ,  - u i - 2  (4a) 

(46) U - ,  = 1 

with initial conditions 
-1 

U0 = 4( E + A )  1 - 2 ( E  - A )  

where ui is half the trace of the ith product matrix. The allowed energies E are those 
that put um between -1 and 1. Here the potential strength A is chosen to be 2. The 

t Irrational roots of quadratic polynomials with integer coefficients. For this kind of irrational, iteration of 
4" (as well as 4') cycles through a finite number of irrationals. 
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choice is largely arbitrary since the wavefunctions are known to be critical, i.e. neither 
localised nor extended, for all non-zero step sizes. By contrast, Harper’s potential is 
critical only at the special value A = 2 .  

The recursion relation (4a)  defines a natural tree structure on the allowed energy 
bands after a given number of iterations m (figure l(b)). According to (4a), the 
number of bands at level m is given by the Fibonacci number F,, where F,+]= 
F, +F,-,, Fo= Fl = 1. At each level, every band is restricted to lie within the edges 
of either its ‘parent’ band or its ‘grandparent’ band. Hence, the same energy spectrum 
is described by two distinct trees. Involing the thermodynamical formalism [lo] we 
demonstrate below how these two structures are related. In particular, we find the 
appropriate scaling functions, and show that the clustering rules do not imply the 
existence of a finite number of scaling factors. 

From the tree structures presented in figure 1, a natural ‘thermodynamics’ [9] is 
defined. Every path through a tree can be labelled by a sequence j = ( j o , j l ,  . . .). For 
the ‘Fibonacci’ tree (figure l ( b ) ) ,  j o=  0, and j i  =0,1,  with the constraint that a one 
must be followed by a zero, i.e. j i  = 1 implies ji+] = 0. For the ‘three-scale’ tree (figure 
l(b)),  j i = O ,  1,2. Denote the sizes of the intervals at level m by A,(j,), where 
j m  3 ( j o , .  . . ,Jm). A partition function Z,(P) is defined by 

z m ( P )  A m ( j m ) ’ *  ( 5 )  
i, 

In the limit of large m, ‘the thermodynamic limit’, Z,(P) scales according to exponents 
given by the ‘free energy’ F ( P )  

( 6 )  F ( P )  = - lim (In Z,(p)/ln N,)  
m+co 

where N ,  is the number of intervals at level m, i.e. N ,  = F, for the Fibonacci tree, 
and N ,  = 3“ for the three-scale tree. We note that F ( 0 )  = -1, and that the fractal 
(Hausdorff) dimension Df is the value of P at which F ( P )  = 0. 

The Legendre transform of F ( P ) ,  the ‘entropy’ S(E) 

S(E) = PE - F(P)  E = F ’ ( P )  (7) 
gives the density of exponents E, i.e. for every exponent 

E = E ( j )  = lim E, = - lim (In A,(j,)/ln N,)  
m+P) m-tm 

S(E) yields the degeneracy 
S(E)= lim lim [ln(N,(E)SE)/ln N,] 

6 E - 0  m+P) (9) 

where N,(E)SE denotes the number of times the exponent E, occurs between E, -;SE 
and E, +;SE. Since S ’ ( E )  = P, the maximal value of S ( E )  is one. Moreover, according 
to (8) and (9), D ( E )  = S ( E ) / E  is the fractal dimension of the subfractal characterised 
by the exponent E. In particular, the (total) fractal dimension Df is the maximal value 
of D(E), as is also clear from (7). 

For the three-scale tree the two side-band scales are supposed to be equal [ 6 ] .  Call 
the two equivalent scaling factors a and the other scaling factor b. At level m this set 
(consisting of 3” intervals) is divided into subsets, each containing 2k(9 intervals of 
size This immediately enables us to write down the entropy in the large-m 
limit where Stirling’s formula is valid: 
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where 

The bounds on the exponents are, assuming 1 > a > b, 

= Iln al/ln 3 E,,, = lln bl/ln 3. (11 )  
From (loa) and (lob) we note that the two coinciding scaling factors give rise to a 
finite entropy S( Emin) = In 2/ln 3 at E = Emin. 

Also the form of the free energy is very simple for the three-scale set: 

F ( p )  = - lim In 
m-m 

= -1n(2aP + bP)/ln 3. (12) 
Hence, Df is found as the value of p for which 2aP + bP = 1. 

To estimate the free energy for the Fibonacci tree from finite-level calculations, 
one must consider the possibility of an amplitude multiplying Z m ( p )  in ( 6 ) ,  as well 
as its variation. In figure 2 we show the behaviour of the partition function Z m ( p )  for 

- 
1o-'O - - 

I I I I % I I ,  

1 2 5 10 20 50 100 
Fm 

Figure 2. Partition function Z, ( p )  plotted against Fibonacci number 
The free energy F(P) is the negative of the limiting slope. Note that 
linear, but show a slight oscillation of period -+,*. 

F m  
the 

(log-log plot). 
curves are not 
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p = *4 as m, and thereby Fm, increases. The free energy F(*4) is the negative of the 
limiting slope. The oscillations seen in figure 2 have a period corresponding to a factor 
-+;* = 2+  &. Figure 3(a) shows two entropy curves obtained by (i) calculating the 
partition function Z,,,(p) (equation ( 5 ) )  at two levels, (ii) determining an approximate 
value of the free energy F ( P ) ,  assuming Zm(p)CCF;F(P), and (iii) calculating the 
Legendre transform. To diminish the effect of the oscillations (figure 2) the two entropy 
curves are evaluated from levels 7, 9 and levels 8, 10, respectively. Although the 
variation is clear, there is no sign of the emergence of a finite entropy at the lower 
bound Emin. From the related dimension curves (figure 3(b))  the fractal dimension 
Df is estimated to be Df = 0.4545 f 0.0002. 

The spectrum can be studied further by means of the scaling function a( t )  

where 

for the Fibonacci tree, and 

for the three-scale tree. For the latter, we immediately obtain (figure 4(a)) 

We find that the scaling function obtained from (13a) and (13b) is much more 
complicated. In figure 4( b )  we have plotted the approximation determined from levels 

L." L.' L.* 2.6 
E 

Figure 3. ( a )  Entropy functions S ( E )  obtained from the Fibonacci tree structure with 
intervals found from equation (4). ( b )  The associated dimension functions D ( E ) .  The 
maximum value of D ( E )  equals the fractal dimension. The labels 7, 9 and 8, 10 refer to 
the levels from which the curves are calculated (see text). 
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Figure 4. Scaling function a(t).  ( a )  For the three- 
scale set in figure l(a),  the scaling function has a 
simple form. ( b )  Approximated scaling function 
obtained from levels 6-10 of the Fibonacci tree 
(figure 1( b) ) .  ( c )  The scaling function in ( b )  mapped 
onto the three-scale construction. 

6-10. However, to compare the two scaling functions we must first find the mapping 
between them. We do this by finding a.translation between the paths in the form of 
a short dictionary from one j sequence to the other. From the Fibonacci tree to the 
three-scale tree this mapping is given by 

o,o+o 0, 1, o+ 1 1 , 0 + 2  (15) 

starting at j ,  . Using (15) the scaling function in figure 4(b) is mapped to the function 
shown in figure 4(c). Unlike the simple step function of figure 4(a) ,  this new scaling 
function manifests many distinct scales. Two scales predominate, but a great deal of 
fine structure is evident and indications of self-similarity are clearly visible. The fractal 
nature of figure 4(c) implies that u(r)  assumes an infinite number of distinct values. 
However, since the deviations seem to decay quickly, the three-scale set is not a bad 
approximation. A similar situation arises in studies of the logistic map. There the tree 
structure is well approximated by a two-scale set, with a central-band scale a-' and a 
side-band scale [lo]. Although this provides a useful estimate of the fractal 
dimension, it does not capture the full scaling behaviour. 
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In summary, we have considered the one-dimensional tight-binding model with a 
Fibonacci sequence potential. For this system the energy spectrum is found by recur- 
sion. The clustering rules and recursion relations suggest diferent descriptions of the 
same spectrum. Based on the thermodynamic formalism, we have compared these 
descriptions, calculated their associated scaling functions, and constructed the mapping 
between them. Our analysis shows that incommensurate systems which obey simple 
clustering rules do not, in general, have a finite number of scaling factors. 
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