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enhanced Grüneisen parameter in 
Supercooled Water
Gabriel o. Gomes1, H. eugene Stanley2 & Mariano de Souza3

We use the recently-proposed compressible cell ising-like model to estimate the ratio between 
thermal expansivity and specific heat (the Grüneisen parameter Γs) in supercooled water. near the 
critical pressure and temperature, Γs becomes significantly sensitive to thermal fluctuations of the 
order-parameter, a characteristic behavior of pressure-induced critical points. Such enhancement of 
Γs indicates that two energy scales are governing the system, namely the coexistence of high- and 
low-density liquids, which become indistinguishable at the critical point in the supercooled phase. the 
temperature dependence of the compressibility, sound velocity and pseudo-Grüneisen parameter Γw 
are also reported. Our findings support the proposed liquid-liquid critical point in supercooled water 
in the No-Man’s Land regime, and indicates possible applications of this model to other systems. In 
particular, an application of the model to the qualitative behavior of the Ising-like nematic phase in Fe-
based superconductors is also presented.

Because it is biologically fundamental to the maintenance of all life, liquid water is one of the most important 
substances on the planet. Water exhibits a number of anomalous physical properties (see Fig. 1, refs1,2 and refer-
ences cited therein), and over the last 25 years, much attention has been paid to the study of water on its so-called 
supercooled phase. The initial work on supercooled water in 1992 used molecular dynamics simulations3. A 
subsequent research has explored the No-Man’s Land region in the phase diagram (see Fig. 1 and ref.2). This topic 
has generated much debate (cf. refs2,4–7 and references therein).

One scenario describing supercooled water assumes the existence of two liquid phases at low-T, being each 
phase associated with either a high- or low-density6. Recently fs x-ray scattering was used on water droplets to 
determine the maximum isothermal compressibility, the correlation length, and the structures of water and heavy 
water. Experimental evidence of a second-order critical end-point in the Widom line was found7, but no clear-cut 
divergence in the quantities was observed. Here we study the liquid-liquid critical point for supercooled water by 
analysing the behavior of the Grüneisen parameter (Γs), see Methods. Such approach has already been success-
fully applied to other systems8–11. In the case of supercooled water, we find evidence supporting a liquid-liquid 
critical point. We use a recently-proposed compressible cell Ising-like model12–14 to obtain Γs. Essentially, the model 
proposed in ref.12 assumes the coexistence of two possible volume values for each cell on the lattice, represented 
by =−v v0 and δ= ++v v v0 . These volumes are responsible for the change between high- and low-density liquids 
in the system. The two free volumes, i.e., the volume where a particle inside the cell can move, for each cell are 

< <+ +v v0  and < <− −v v0  and their ratio is λ = + − v v/ , see Methods.
It is worth mentioning that a structurally similar model was originally proposed in ref.15 and employed in the 

study of a large number of fluids, cf. ref.16. Taking such studies into account, we emphasize that the originality of 
the present work lies not only on the choice of the model for the analysis of supercooled water, but also on its 
application in the analysis of Γs to a regime where experimental results are lacking as a consequence of the rapid 
crystallization of water under such conditions17. Our analysis of Γs is complemented by the discussion of the 
pseudo-Grüneisen parameter (Γw)18, see Methods.

Results and Discussion
The obtained expressions for the observables (see Methods), namely the isobaric thermal expansion αp, the iso-
baric heat capacity cp and the isothermal compressibility κT together with Γs enable us to study the behavior of the 
system on the verge of the critical point. Because the equations for cp, αp, κT and T depend on the pressure and 
volume of the system, they constitute a parametric system. This characteristic of the model prevents us from 
obtaining an analytical expression for v. Note that Eq. (3) (Methods) clearly indicates a transcendental equation 
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for v. We thus analyze the behavior of the various observables by varying v, which causes variations in T. We fix 
the critical point parameters by employing the corresponding expressions, see Methods. The parameters were 
adjusted12 so that T 180 Kc , which is in the No Man’s Land region2, but a bit lower than Tc reported in ref.7 and 
that shown in Fig. 1. Note that the free parameters of the model reported in ref.12 could be changed in order to 
explore other systems of interest. Here, we focus on the analysis of Γs and Γw (see Methods) to the supercooled 
phase of water. Also, for the sake of completeness, we stress that we have recalculated both thermal expansion and 
specific heat, already reported in ref.12. Figure 2(a,b) show the p–v phase diagram for a range of temperatures and 
the T–v diagram. Note that when T = 0 K the resulting mapping =p T v( 0, ) is a straight line. This is obtained 
using Eq. (3). When the temperature is high, the pressure for ≈v v0 is higher than the case for low temperatures. 
For δ≈ +v v v0 , however, higher temperatures decrease the pressure for fixed values of v. Figure 2(b) shows that 
in a particular range of values of volume, for given pressure values, physical temperature values are inaccessible. 
Figure 2(a) shows that the point where the pressure is the same for every temperature value (blue vertical line) is 
the limiting value for the volume (v) for which physical values of the temperature are obtained. As discussed 
above, we cannot analytically obtain an expression v T p( , ) because Eq. (3) is transcendental in v. Hence, we have 
a mapping of these physical quantities [see Eq. (4)], and we can find the corresponding v and T values for each 
pressure value (p). The same holds true for any other desired order of these three parameters. Figure 3(a–f) depict 
the behavior of the observables for the system considering 16 pressure values, varied in uniform steps from 
p = 1.17 kbar to 0.17 kbar. The panels a) and b) show the observables αp and cp, which were presented and dis-
cussed in ref.12 for a different range of pressure values. Here, we focus on an analysis of these observables near the 
critical point. Remarkably, the absolute values of αp and cp increase significantly for =p pc and =T Tc, a finger-
print of a phase transition and/or critical point. Figure 3(c) shows the behavior of αΓ = c/s p p, see Methods. Note 
the effect of pressure on Γs and its distinct behavior upon approaching the critical point, when comparing with cp 
and αp. In the immediate vicinity of the critical point, Γs is extremely sensitive to thermal fluctuations. Figure 3(d) 
shows the so-called pseudo-Grüneisen parameter Γ = Γww s

2 18 (see Methods). Note that for the data set corre-
sponding to =p pc, Γ → 0w  for =T Tc. The vanishing of Γw can be understood in terms of the behavior of the 
normalized speed of sound w/wc (where ≈ . −w 6 513 m sc

1), shown in Fig. 3(e). In the vicinity of the critical point, 
→w 0c , whereas its value for temperatures far from Tc increases to approximately 100wc. Physically, this finding 

suggests that, near the critical point, the propagation of sound waves is significantly suppressed. Interestingly, an 
anomalous behavior of the sound velocity was also observed close to the Mott critical end-point in strongly cor-
related electronic systems and associated with a diverging compressibility of the electronic degrees of freedom19,20. 

Figure 1. Temperature versus pressure phase diagram of water, lg-cp refers to liquid-gas critical point, wlp is 
the Widom line point and ll-cp indicates the liquid-liquid critical point, which is the focus of the present work. 
We have used in our analysis T 180 Kc , see main text. Picture after2,6.

https://doi.org/10.1038/s41598-019-48353-4


3Scientific RepoRtS |         (2019) 9:12006  | https://doi.org/10.1038/s41598-019-48353-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3(f) shows that the compressibility also presents an enhanced behavior near the critical point. Our findings 
are in perfect agreement with those reported in ref.21 for the various observables.

The Maxwell-relation = −∂
∂

∂
∂( )( )v

T p

S
p T

 and the negative thermal expansivity shown in Fig. 3 indicate that the 

entropy (S) of the system is enhanced when approaching the liquid-liquid critical point, i.e., by applying pressure, 
the high- and low-density phases mix and the entropy increases. It is noteworthy to point out that we also find this 
in the finite-T critical end-point reported for molecular conductors8,9 and the quantum critical points in 
heavy-fermion compounds22,23. The high- and low-density phases produce two different energy scales. Because 
the degree of H-bonding depends on temperature and pressure, a scaling cannot be applied successfully24,25. 
Reference6 indicates that water molecule interactions create an open H-bond structure that has a lower density 
than other configurations. We can capture the energy scales associated with the H-bond configurations that cor-
respond to the low- and high-density phases using a compressible Ising-like model and two accessible system 
volumes. In particular, the capture of the energy scales associated with H-bonds is, in our analysis, represented by 
the vanishing of one of the possible volumes associated with the sites. Using the Landau theory26, we find that, by 
decreasing the order parameter fluctuations, a divergence in both the correlation length7 and relaxation time27 are 
expected. Reference28 reports a connection between the entropy-dependent relaxation time and Γs. We here sug-
gest that this is also true for supercooled water.

In what follows, we use the compressible cell Ising-like model to study the Ising-nematic phase recently 
detected in the low-doping regime of Fe-based superconductors29. An electronic nematic phase is essentially a 
melted stripe phase30. Figure 4 shows that as the pressure is increased for δ= +v v v0 , the temperature decreases. 
The limiting volume value for such a behavior is δ= + .v v v0 170  for λ = .0 2.

In the case of the proposed nematic phase in Fe-based superconductors, the pressure variation is caused by the 
chemical pressure introduced in the system by the doping effect on the crystal lattice. As the pressure (doping) is 
varied, the critical point signature vanishes (see Fig. 3). We obtain the same behavior shown in Fig. 4 (red curve) 
experimentally for the 122 doped Fe-based superconductors31. In particular, the thermal expansion signatures are 
suppressed upon doping31. Comparing the pressure versus temperature phase diagram reported in ref.31 for the 
122 doped Fe-based superconductor with our results, we see that the regime that better illustrates the nematic 

Figure 2. (a) Pressure (p) versus volume (v) phase diagram obtained from Eq. (3) for different values of 
temperature. The temperature was uniformly varied from 0 to 200 K, with steps of 10 K. The straight line is 
related to T = 0 K. Similar results were reported in ref.12. (b) Temperature (T) versus volume (v) for different 
values of pressure, which were also varied uniformly as in panel (a). The parameters used were the same as in12, 
namely =c 6, δε = −1000 J mol 1, = × − −v (2 10 ) m mol0

5 3 1, δ = . × − −v (0 5 10 ) m mol5 3 1 and λ = .0 2. The 
blue solid line indicates the lower physically valid volume in our analysis.

https://doi.org/10.1038/s41598-019-48353-4


4Scientific RepoRtS |         (2019) 9:12006  | https://doi.org/10.1038/s41598-019-48353-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

phase is the one where δ= + .v v v0 70 , since the critical point signature is shifted for lower values of T as p 
increases (see Fig. 4). Because there is a substantial number of free parameters that compose the current Ising-like 
model, we leave the fitting of the experimental results reported in ref.31 to future research. Here we used the com-
pressible cell Ising-like model to simulate the doping effect in single crystals by assuming there are only two 

Figure 3. (a) Isobaric thermal expansivity αp, (b) isobaric heat capacity cp, (c) Grüneisen parameter αΓ = c/S p p, 
(d) Grüneisen parameter αΓ = w c/w p p

2 , (e) speed of sound w normalized by its value on the critical point, 
namely ≈ . −w 6 513 m sc

1, (f) isothermal compressibility κT for different values of pressure. The employed 
parameters were the same as presented in the caption of Fig. 2. The critical temperature is indicated by the 
vertical blue solid lines. Further details are discussed in the main text.

Figure 4. Temperature (T) versus pressure (p) phase diagram for three different values of volume (v), as 
indicated in the label. A linear relation is observed between T and p for all values of v. For values close to the 
upper limit of the volume, the pressure reaches negative values and the angular coefficient of the mathematical 
relation between T and p changes sign. For high values of v (more precisely, for δ> + .v v v0 170  in the case 
where λ = .0 2), the angular coefficient is negative, indicating a decrease in temperature as pressure increases. 
The values of v0 and δv employed here are the same as in Fig. 2.
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different volumes in the melted electronic nematic phase30. When the system is doped, the electronic nematic 
phase associated with two coexisting volumes (see the figure in ref.30) is suppressed, and the reported supercon-
ductivity appears, e.g., for Ba(Fe1−xCox)2As2 single crystals31,32. Yet, it is worth mentioning that for the limit case 
where δ= + .v v v0 170 , we have no pressure variations for a wide range of temperature values. Since pressure and 
volume are conjugated variables, this behavior can be associated to the Invar effect, which has been widely inves-
tigated in iron-nickel alloys, see e.g.33.

Finally, we highlight our main findings. We have used an energy-volume coupled Ising-like model to calculate 
the Grüneisen parameter for the liquid-liquid transition in supercooled water12. We find that the behavior of the 
Grüneisen parameter is enhanced near pressure and temperature values that display anomalous behavior and 
thus supports the presence of a liquid-liquid critical point governed by two distinct energy scales. Yet, such 
proposal is corroborated by the singular behavior of the isothermal compressibility, sound velocity and pseudo- 
Grüneisen parameter in the vicinity of the liquid-liquid critical point. Since the first submission of this 
manuscript, the compressible cell Ising-like model employed here has been used to describe the two-critical-point 
scenario34. In addition to exploring the critical behavior of water and its other phases, our model can also be 
applied to other systems by adjusting its parameters. The application of the model to describe the nematic phase 
in the low-doping regime of Fe-based superconductors revealed that the low-doping regime is well-described by 
choosing values near the upper boundary values of the volume of each cell, namely, δ≈ +v v v0 . The latter corre-
sponds to a lower-density configuration, in agreement with the theoretical description of the nematic phase for 
Fe-based superconductors32. Our analysis of the Grüneisen parameter Γs and pseudo-Grüneisen parameter Γw can 
be applied to investigate the critical behavior in any two-state system. One needs only to adjust properly the crit-
ical parameters according with the system of interest.

Methods
We recall some of the results obtained in the model proposed in ref.12, which consist the basis of our analysis.

The system has N sites and coordination number c, where c is an adimensional parameter responsible for 
dictating the influence of the interaction among the sites when compared to its intrinsic energy εcN /20 , where ε0 
is an arbitrary energy value. In each site, we suppose the existence of a cell. Each cell is characterized by its volume 
(and, consequently, its density). The interaction between sites is dictated by a constant energy coupling δε. The 
total energy of the system is E n{ }i , where =n 1i  if the volume of the respective cell is δ+v v0  and =n 0i  if its 
volume is v0. The expression for the energy reads

∑
ε

δε= − .
〈 〉

E n cN n n{ }
2 (1)

i
ij

i j
0

The volume of the system is the sum of the volume of each cell. Since the minimum volume that each cell 
occupies is v0, all cells contribute to the total volume with a magnitude of Nv0. Adding the contribution of the K 
sites having a volume δ+v v0 , the expression for the total volume reads12

δ= +V n Nv K v{ } , (2)i 0

Thus each particle is located in a site, and the volume has two possible values. We associate these two volumes 
with the low- and high-density phases and thus with two distinct energy scales. The association of different 
energy scales with the volume of each cell and, consequently, by their densities, is the key to understanding why 
Γs is enhanced near the liquid-liquid critical point. The energy has two boundary values, corresponding to two 
limiting configurations of the system. When =K 0, ε=E cN /2max 0  results, whereas for =K N , 

ε δε= − −E cN N N[ ( 1) ]/2min 0 . The associated minimum and maximum values for the volumes are =V Nvmin 0 
for =K 0 and δ= +V N v v( )max 0  for =K N . Physically, the limiting cases represent the scenarios where all cells 
occupy the minimum (maximum) volume, corresponding to =K 0 ( =K N ). We obtain all the observables 
related to the system from Eqs (1) and (2), cf. ref.35. We carry out an isothermal-isobaric analysis and sum −e E k T/ B  
and −e pV k T/ B  to the partition function, where kB is the Boltzmann constant and p and T are the pressure and tem-
perature of all possible microstates of the system, respectively.

The resulting partition function =Z Z N p T( , , ) has the same mathematical structure as the Ising canonical 
partition function. Because we have not yet solved the three-dimensional Ising model, we use an approximate 
mean-field solution12 to obtain the observables. The mean-field theory can be applied to a wide range of systems, 
including the Ising model and the van der Waals theory for liquid-gas systems35. Using it we replace the functional 
integral ∫= −Z N Dm e( ) E m H[ , ] with the maximum value of the integrand, the so-called saddle-point approxima-
tion. The parameter m is the order-parameter density, and Dm is the volume element. Because this approximation 
assumes that the only important configuration near the critical point is the one of uniform density, we expect that, 
because the density fluctuations in the order parameter are strong in this regime, this study of critical phenomena 
will exhibit artifacts. However ref.12 indicates that consistent results can be obtained in this framework. The equa-
tion of state for the system is12

δ
λ

δ δε
δ δ

=





+ −
−






+
−p T v Tk

v
v v v

v v
c

v
v v

v
( , ) ln ,

(3)
B 0

0

0

from which we deduce
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We use Eq. (3) to determine the critical point coordinates =p v T( , )c c c , following ref.35:
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We apply these conditions and the critical point parameters are:

δ δε δε
δ

λ= + = = + .v v v T c
k

p c
v

1
2

;
4

;
4

(2 ln )c c
B

c0

Employing the basic thermodynamic relations35 and using λ= δ+ −
−( )f v( ) ln v v v

v v
0

0

12 we obtain the isobaric 
thermal expansion αp, the heat capacity cp and the isothermal compressibility κT

α δ δε
δ

δε
δ

=












− −






−






−

v
v

k f v
g v p c

v
v v c

k vf v
1

( )
( ) ( )

( )
,

(8)
p

B B

2

2 2 0

1

δ
δ δε

δ
δε

δ
=













− −






−






−

c T k
v

f v v
k f v

g v p c
v

v v c
k vf v

( )
( )

( ) ( )
( )

,
(9)

p
B

B B

2

2 2 0

1

κ δε
δ

= −






−






−

v
c
v

Tk g v1 ( ) ,
(10)T B2

1

δ
=
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( )( ) (11)0 0

From Eqs 8 and 9 we see that the T-dependence of αp and cp are distinct. Thus, we expect a different singu-
lar behavior of these observables upon approaching the critical point, which can be explored by means of the 
Grüneisen parameter (see below). This is one of the main findings of this work, see Results.

We use Eqs (8) and (9) to determine the expression of the ratio αΓ = c/s p p and the pseudo-Grüneisen param-
eter Γ = Γww s

2 16,18,21, where w is the speed of sound, with

ρ
=

∂
∂

≈
∂

∂
.w p p

v(1/ ) (12)
2

The calculations are straightforward and we obtain:
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Both quantities, namely Γs and Γw were used in our analysis, see Fig. 3(c,d).
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