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Firms having similar business activities are correlated. We analyze two different cross-correlation matrices C
constructed from ~i! 30-min price fluctuations of 1000 US stocks for the two-year period 1994–95 and ~ii!
one-day price fluctuations of 422 US stocks for the 35-year period 1962–96. We find that the eigenvectors of
C corresponding to the largest eigenvalues allow us to partition the set of all stocks into distinct subsets. These
subsets are similar to business sectors, and are stable for extended periods of time. We find that price fluctua-
tions of these subsets are characterized by power-law decaying time correlations, reminiscent of strongly
interacting systems.
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The internal structure of a complex system manifests it-
self in correlations among its constituents. In complex physi-
cal systems, interactions between constituents cause ‘‘collec-
tive modes’’ having special statistical properties which reflect
the underlying dynamics. Can we quantify collective move-
ment of stock prices in analogous terms?

To address this question, we analyze the equal-time cor-
relation matrix C constructed from the price fluctuations of a
large number of stocks. First, we find that the ‘‘collective
modes’’ for the stock market problem partition the set of all
stocks studied, into distinct subsets. Typically, these subsets
are formed by combinations of related industries, and in
some cases, they go beyond grouping by industry. Due to
company diversification, the traditional partitioning of firms
into subsets by products and services is difficult and some-
times arbitrary, and thus our results could be viewed as a
‘‘statistical alternative to traditional industry classification’’
@1#. Furthermore, we find that the price fluctuations of the
collective modes display long-range power-law time correla-
tions, in sharp contrast to individual stocks @2#. Collective
modes in physical systems display time correlations which
persist on much larger time scales than any individual unit.
Motivated by this analogy, we start with an interacting-
stocks framework and outline one possible mechanism that
could prove useful in understanding the distinct statistics of
collective price fluctuations.

We first define the cross-correlation matrix C with ele-
ments C i j[@^G iG j&2^G i&^G j&#/s is j , where s i is the
standard deviation of price fluctuations G i(t)[ln Si(t1Dt)
2ln Si(t) ~returns!, S i(t) denotes the price of stock i
51, . . . ,N , and ^ . . . & denotes a time average over the pe-
riod studied. To investigate correlations on different time
scales, we analyze ~i! 30-min returns of N51000 largest
stocks for the two-year period 1994–95 and ~ii! daily returns
of N5422 stocks for the 35-year period 1962–96 @3#.

Next, we diagonalize C and rank-order its eigenvalues lk
such that lk11.lk ; the corresponding eigenvectors are de-
noted uk. We then analyze the components of those deviating
eigenvectors whose eigenvalues are larger than the upper
bound for uncorrelated time series @4,5#. A direct examina-
tion of these eigenvectors, however, does not yield a straight-

forward interpretation of their economic relevance. To inter-
pret their meaning, we note that the largest eigenvalue is an
order of magnitude larger than the others, which constrains
the remaining N21 eigenvalues since Tr C5N . Thus, in or-
der to analyze the contents of the deviating eigenvectors, we
first remove the effect of the largest eigenvalue @6#.

To analyze the information contained in the eigenvectors
uk, we partition the 1000 stocks into groups labeled l
51 . . . ,75 ~comprising N l stocks each! according to the first
two digits of their Standard Industrial Classification ~SIC!
code, which classifies major industry groups. We define a
projection matrix P, with elements P li51/N l if stock i be-
longs to group l and P li50 otherwise. For each deviating
eigenvector uk, we compute the contribution X l

k

[( i51
N P li(u i

k)2 of each industry group l @7#. The above pro-
cedure of computing X l

k is analogous to the analysis of wave
functions in disordered systems, where one calculates the
probability of finding a particle in a given region.

Figure 1 shows X l
k for the ten largest eigenvectors after

excluding the influence of the largest eigenvalue. The contri-
bution X l

999 shows several industries. We examine the signifi-
cant contributors and find mainly stocks with large market
capitalization ~Fig. 2!. We analyze X l

k for the remainder of
the deviating eigenvectors and find a significant ‘peak’ at
distinct values of the SIC code, suggesting that these eigen-
vectors correspond to distinct industry groups @8#.

One deviating eigenvector u995 displays large values of
X l

k for the heavy construction and telecommunication indus-
tries. An examination of these firms shows significant busi-
ness activity in Latin America @9#. Another interesting case
corresponds to eigenvectors u996 and u997, both of which
contain a mixture of stocks of gold-mining firms and banking
firms, which separate when we compute the symmetric and
antisymmetric combinations 1/A2(u996

6u997). The other de-
viating eigenvectors display technology, metal mining, bank-
ing, petroleum refining, auto manufacturing, drug manufac-
turing, and paper manufacturing firms ~Fig. 1!.

We next focus on the interpretation of the largest eigen-
value l1000 . Using the eigenvector u1000, we construct a time
series G (1000)(t)[( i51

1000u i
1000G i(t). We then compare
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G (1000)(t) with the returns GSP(t) of the S&P 500 index, a
benchmark for gauging the performance of the entire US
stock market. Regressing G (1000)(t) against GSP(t) shows a
scatter around a linear fit with slope 0.8560.09 ~Fig. 3!.
Thus, we interpret the eigenvector u1000 as the influence of
the entire market that is common for all stocks @4,5#.

Next, we examine whether the eigenvectors uk corre-
sponding to business sectors remain stable in time @10#. Par-
titioning the year 1994 into two six-month periods, A and B,
we calculate the corresponding eigenvectors uA and uB of
the cross-correlation matrices and quantify the time stability
by calculating the magnitude of the scalar products O i j

[uuA
i uB

j u for the 20 largest eigenvalues. Perfect time stability
would mean O i j5d i j . For i51000, we find O ii50.93, indi-
cating almost perfect stability. We find that O ii decreases as
i decreases from 1000 ~Fig. 4!. Extending this analysis to

FIG. 1. Contribution X l
k to industry sector l of eigenvector uk for

the deviating eigenvectors shows marked peaks at distinct values of
SIC code, for all but u999 which contains stocks with large capitali-
zations as significant contributors.

FIG. 2. All 103 eigenvector components of u999 plotted against
market capitalization ~in units of US Dollars! shows that large firms
contribute more than small firms. The straight line, which shows a
logarithmic fit, is a guide to the eye.

FIG. 3. S&P 500 returns GSP(t) regressed against the return
G (1000)(t) of the portfolio defined by the eigenvector u1000. Both
axes are scaled by their respective standard deviations. A linear
regression yields a slope 0.8560.09, showing a large degree of
correlation.

FIG. 4. Comparison of eigenvectors for different time periods A
~first half of 1994! and B ~second half of 1994! by means of their
scalar product O i j , represented on a greyscale, where zero ~black!

corresponds to no overlap, and white ~one! to perfect overlap. Note
that the eigenvectors corresponding to the four largest eigenvalues
have a large degree of time stability.
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daily returns using database ~ii! shows that the eigenvectors
corresponding to the largest three eigenvalues are stable for
as many as ten years.

How can we understand correlations between stocks? In
physical systems, one starts from the interactions between
the constituents, and then relates interactions to correlated
‘‘modes’’ of the system. Here, we ask if an analogous mecha-
nism involving ‘‘interactions’’ can give rise to the correlated
behavior that we find. Interactions arise when two companies
are doing business together, compete for the same market, or
when they are perceived by investors to be linked.

One generic model for interacting physical systems is the
soft spin model @11#, which we apply to describe the dynam-
ics of ‘‘instantaneous’’ returns g i(t)[d/dt ln Si(t); we write a
stochastic differential equation for g i(t),

to] tg i~ t !52r ig i~ t !2kg i
3~ t !1(

j
J i jg j~ t !1

1

to
j i~ t !,

~1!

where j i(t) are Gaussian random variables with correlation
function ^j i(t)j j(t8)&5d i jtod(t2t8), and to sets the time
scale of the problem. In the context of a soft spin model, the
first two terms on the right-hand side of Eq. ~1! arise from
the derivative of a double-well potential, enforcing the soft-
spin constraint. The interaction among soft spins is given by
the couplings J i j . In the absence of the cubic term, and
without interactions, to /r i are relaxation times of the
^g i(t)g i(t1t)& correlation function. A similar differential
equation, without the couplings, was derived in a financial
context to describe the dynamics of returns, using a quadratic
instead of a cubic term @12#.

As the coupling strengths increase, the soft-spin system
undergoes a transition to an ordered state with permanent
local magnetizations @11#. At the transition point, the spin
dynamics are very ‘‘slow’’ as reflected in a power law decay
of the spin autocorrelation function in time. To test whether
this signature of strong interactions is present for the stock
market problem, we analyze the autocorrelation functions
c (k)(t)[^G (k)(t)G (k)(t1t)&, where G (k)(t)[( i51

1000u i
kG i(t)

is the time series defined by eigenvector uk. Instead of ana-
lyzing c (k)(t) directly, we apply the detrended fluctuation
analysis ~DFA! method @13#. Figure 5 shows that the corre-
lation functions c (k)(t) indeed decay as power laws for the
deviating eigenvectors uk, which is in sharp contrast to the
behavior of c (k)(t) for the rest of the eigenvectors and the
autocorrelation functions of individual stocks, which show
only short-range correlations. We interpret this as evidence
for strong interactions.

In the absence of the cubic term, we obtain only exponen-
tially decaying correlation functions for the ‘‘modes’’ corre-
sponding to the large eigenvalues, which is inconsistent with
our finding of power-law correlations.

In summary, given only the change in price of a stock, and
no additional information about that stock, we can partition
the set of all 103 stocks studied into subsets whose identities
correspond well to conventionally identified sectors of eco-
nomic activity. Motivated by the concept of critical slowing

down in correlated physical systems, we analyze the time
evolution of ‘‘collective modes’’ corresponding to these sec-
tors, and find that they are characterized by power-law de-
caying correlation functions, which is consistent with the
possibility that cross-correlations in the stock market arise
not just from common influences such as relevant news-
breaks ~the common view!, but also from interactions be-
tween stock price fluctuations.

We thank P. Cizeau, E. Derman, T. Guhr, J. Hill, L. Vi-
ceira, and especially L. A. N. Amaral and X. Gabaix for
stimulating discussions. B.R. is supported by Forschungssti-
pendium of the DFG. The Center for Polymer Studies is
supported by the National Science Foundation and British
Petroleum.

FIG. 5. ~a! Autocorrelation function c (k)(t) of the time series
defined by the eigenvector u999. The solid line shows a fit to a
power-law functional form t2gk, whereby we obtain values gk

50.6160.06 for k5999. ~b! To quantify the exponents gk for all
k51, . . . ,1000 eigenvectors, we use the method of DFA analysis
@13# often used to obtain accurate estimates of power-law correla-
tions. We plot the detrended fluctuation function F(t) as a function
of the time scale t for each of the 1000 time series. Absence of
long-range correlations would imply F(t);t0.5, whereas F(t)
;tn with 0.5,n<1 implies power-law decay of the correlation
function with exponent g5222n . We plot the exponents n as a
function of the eigenvalue and find values exponents n significantly
larger than 0.5 for all the deviating eigenvectors. In contrast, for the
remainder of the eigenvectors, we obtain the mean value n50.44
60.04, comparable to the value n50.5 for the uncorrelated case.
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