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Abstract

We discuss the results of three recent phenomenological studies focussed on understanding the
distinctive statistical properties of �nancial time series – (i) The probability distribution of stock
price uctuations: Stock price uctuations occur in all magnitudes, in analogy to earthquakes –
from tiny uctuations to very drastic events, such as the crash of 19 October 1987, sometimes
referred to as “Black Monday”. The distribution of price uctuations decays with a power-law
tail well outside the L�evy stable regime and describes uctuations that di�er by as much as 8
orders of magnitude. In addition, this distribution preserves its functional form for uctuations
on time scales that di�er by 3 orders of magnitude, from 1 min up to approximately 10 days.
(ii) Correlations in �nancial time series: While price uctuations themselves have rapidly de-
caying correlations, the magnitude of uctuations measured by either the absolute value or the
square of the price uctuations has correlations that decay as a power-law, persisting for several
months. (iii) Volatility and trading activity: We quantify the relation between trading activity –
measured by the number of transactions N�t – and the price change G�t for a given stock, over
a time interval [t; t+�t]. We �nd that N�t displays long-range power-law correlations in time,
which leads to the interpretation that the long-range correlations previously found for |G�t | are
connected to those of N�t . c© 2000 Elsevier Science B.V. All rights reserved.
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0. Introduction

The distinctive statistical properties of �nancial time series are increasingly attract-
ing the interest of statistical physicists, both from the point of view of data analy-
sis and modeling [1–62]. Apart from its practical importance and its importance in
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modern economics, the scienti�c interest in studying �nancial markets stems from
the fact that there is a wealth of data available for �nancial markets which makes
it arguably the one complex system most amenable to quanti�cation and ultimately
scienti�c understanding. In addition, it is also possible that the dynamics underly-
ing �nancial markets are “universal” as exempli�ed in several studies [63,64] that
have noted the statistical similarity of the properties of observables across quite di�er-
ent markets. Moreover, a precise statistical description of price movements is impor-
tant in practical applications such as Value-at-Risk estimations and derivative pricing
[65–73].
Several recent studies attempt to uncover and explain the peculiar statistical prop-

erties of �nancial time series such as stock prices, stock market indices or currency
exchange rates. This talk reviews recent results on (a) the distribution of stock price
uctuations and its scaling properties, (b) time-correlations in �nancial time series, and
(c) relation between price uctuations and intensity of trading.

1. Distribution of price uctuations

The nature of the distribution of price uctuations in �nancial time series is a long
standing open problem in �nance which dates back to the turn of the century. In 1900,
Bachelier proposed the �rst model for the stochastic process of returns – an uncorrelated
random walk with independent, identically Gaussian distributed (i.i.d) random variables
[1]. This model is natural if one considers the return over a time scale �t to be the
result of many independent “shocks”, which then lead by the central limit theorem
to a Gaussian distribution of returns [1]. However, empirical studies [4,37–40] show
that the distribution of returns has pronounced tails in striking contrast to that of a
Gaussian. Despite this empirical fact, the Gaussian assumption for the distribution of
returns is widely used in theoretical �nance because of the simpli�cations it provides
in analytical calculation; indeed, it is one of the assumptions used in the classic Black–
Scholes option pricing technique [74].
In his pioneering analysis of cotton prices, Mandelbrot observed that in addition to

being non-Gaussian, the process of returns shows another interesting property: “time
scaling” – that is, the distributions of returns for various choices of �t, ranging from
1 day up to 1 month have similar functional forms [4]. Motivated by (i) pronounced
tails, and (ii) a stable functional form for di�erent time scales, Mandelbrot [4] pro-
posed that the distribution of returns is consistent with a L�evy stable distribution
[2,3].
Recent studies [75–79] on considerably larger time series using larger databases

show quite di�erent asymptotic behavior for the distribution of returns. Our recent
work [75] analyzed three di�erent data bases covering securities from the three major
US stock markets. In total, we analyzed approximately 40 million records of stock
prices sampled at 5 min intervals for the 1000 leading US stocks for the 2-year period
1994–1995 and 35 million daily records for 16,000 US stocks for the 35-year period
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Fig. 1. (a) The daily records of the S&P 500 index for the 35-year period 1962–1996 on a linear-log scale.
Note the large jump which occurred during the market crash of October 19, 1987. Sequence of (b) 10min
returns and (c) 1month returns of the S&P 500 index, normalized to unit variance. (d) Sequence of i.i.d.
Gaussian random variables with unit variance, which was proposed by Bachelier as a model for stock returns
[1]. For all three panels, there are 850 events – i.e., in panel (b) 850 min and in panel (c) 850 months.
Note that, in contrast to (b) and (c), there are no large events in (d).

1962–1996. We study the probability distribution of returns (Fig. 1a–c) for individual
stocks over a time interval �t, where �t varies approximately over a factor of 104 –
from 1 min up to more than 1 month. We also conduct a parallel study of the S&P
500 index.
Our key �nding is that the cumulative distribution of returns for both individual

companies (Fig. 2a) and the S&P 500 index (Fig. 2b) can be well described by a
power-law asymptotic behavior, characterized by an exponent �≈ 3, well outside the
stable L�evy regime 0¡�¡ 2. Further, it is found that the distribution, although not a
stable distribution, retains its functional form for time scales up to approximately 16
days for individual stocks and approximately 4 days for the S&P 500 index (Fig. 2a).
For larger time scales our results are consistent with break-down of scaling behavior,
i.e., convergence to Gaussian [75]. Similar results have also been found for currency
exchange data [79].
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Fig. 2. (a) Log–log plot of the cumulative distribution of normalized returns of the S&P 500 index. The
positive tails are shown for �t = 16; 32; 128; 512 mins. Power-law regression �ts yield estimates of the
asymptotic power-law exponent � = 2:69 ± 0:04, � = 2:53 ± 0:06, � = 2:83 ± 0:18 and � = 3:39 ± 0:03 for
�t=16; 32; 128 and 512 mins, respectively. (b) The positive and negative tails of the cumulative distribution
of the normalized returns of the 1000 largest companies in the TAQ database for the 2-year period 1994–
1995. The solid line is a power-law regression �t in the region 26x680.

2. Time correlations in price uctuations

In addition to the probability distribution, an aspect of equal importance for the
characterization of any stochastic process is the quanti�cation of correlations. Studies
of the autocorrelation function of the returns show exponential decay with character-
istic decay times of only 4 min [80] consistent with the e�cient market hypothesis
[81]. This is paradoxical, for in the previous section, we have seen that the distribu-
tion of returns, in spite of being a non-stable distribution, preserves its shape for a
wide range of �t. Hence, there has to be some sort of correlations or dependencies
that prevent the central limit theorem to take over sooner and preserve the scaling
behavior.



366 P. Gopikrishnan et al. / Physica A 287 (2000) 362–373

Fig. 3. Plot of (a) the power spectrum S(f) and (b) the detrended uctuation analysis F(t) of the absolute
values of returns g(t), after detrending the daily pattern [82,83] with the sampling time interval �t =1min.
The lines show the best power-law �ts (R values are better than 0:99) above and below the crossover
frequency of f× = ( 1

570 )min
−1 in (a) and of the crossover time, t× = 600min in (b). The triangles show

the power spectrum and DFA results for the “control”, i.e., shu�ed data.

Indeed, lack of linear correlation does not imply independent returns, since there
may exist higher-order correlations. Recently, Liu and his collaborators found that the
amplitude of the returns, the absolute value or the square – closely related to what
is referred to in economics as the volatility [84–88] – shows long-range correlations
[42–46,82,83,89–91] with persistence [92] up to several months, Fig. 3a and b. They
analyzed the correlations in the absolute value of the returns [82,83] of the S&P 500
index using traditional correlation function estimates, power spectrum and the recently
developed detrended uctuation analysis (DFA). All the three methods show the exis-
tence of power-law correlations with a cross-over at approximately 1.5 days. For the
S&P 500 index, DFA estimates for the exponents characterizing the power-law cor-
relations are �1 = 0:66 for short time scales smaller than ≈ 1:5 days and �2 = 0:93
for longer time scales up to a year (Fig. 3b). For individual companies, the same
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methods yield �1 = 0:60 and �2 = 0:74, respectively. The power spectrum gives consis-
tent estimates of the two power-law exponents (Fig. 3a).
The long memory in the amplitude of returns suggests that it is useful to de�ne

another process, referred to as the volatility. Volatility of a certain stock measures
how much it is likely to uctuate. It can also be related to the amount of information
arriving at any time. The volatility can be estimated for example by the local average of
the absolute values or the squares of the returns. In their recent work on the statistical
properties of volatility Liu et al. [83,91] show that the volatility correlations show
asymptotic 1=f behavior [82,83,91]. Using the same data bases as above, Liu and his
collaborators also study the cumulative distribution of volatility [82,91] and �nd that
it is consistent with a power-law asymptotic behavior, characterized by an exponent
�≈ 3, just the same as that for the distribution of returns. For individual companies
also, one �nds a similar power-law asymptotic behavior [83]. In addition, it is also
found that the volatility distribution scales for a range of time intervals just as the
distribution of returns.

3. Possible approaches

We have looked mainly at two empirical results: (i) the distribution of uctuations,
which shows a power-law behavior well outside the stable L�evy regime, and yet pre-
serves its shape – scales – for a range of time scales and (ii) the long-range correlations
in the amplitude of price uctuations. How are the two results related?
Previous explanations of scaling relied on L�evy stable [4] and exponentially-truncated

L�evy processes [5,37]. However, the empirical data that we analyze are not consistent
with either of these two processes. In order to con�rm that the scaling is not due
to a stable distribution, one can randomize the time series of 1 min returns, thereby
creating a new time series which contains statistically independent returns. By adding
up n consecutive returns of the shu�ed series, one can construct the nmin returns. Both
the distribution and its moments show a rapid convergence to Gaussian behavior with
increasing n, showing that the time dependencies, speci�cally volatility correlations,
are intimately connected to the observed scaling behavior [75].
Using the statistical properties summarized above, can we attempt to deduce a sta-

tistical description of the process which gives rise to this output? Let us �rst focus on
the observed long-range correlations in |G|. One can express G= sgn(G)|G|. The fact
that G has only short-range correlations implies sgn(G) is uncorrelated. This can be
expressed more generally in the form G= �V , where � is an uncorrelated variable with
some distribution, and V is the instantaneous standard deviation, often called volatil-
ity (this hypothesis is often called the stochastic volatility hypothesis). Note that the
reason to consider V as a variable in its own right comes from the empirical fact that
estimated local variances seem to uctuate signi�cantly with time, and from the obser-
vation that |G| is long-range correlated. In order to account for time dependencies in
V , one can either postulate a deterministic dependence of V on past values of V or G2
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which leads one to ARCH [63,93] class of models. However it assumes �nite memory
of past events and hence is not consistent with long-range correlations in volatility. A
consistent statistical description may involve extending the traditional ARCH model to
include long-range volatility correlations [94]. The alternative would be to treat V as
a stochastic variable, which leads to stochastic volatility models.
How can we physicists approach this problem? One approach to understand the

mysterious statistical features of price uctuations is in the spirit of Bachelier who de-
veloped Gaussian di�usion description of price movements, and ask where the Gaussian
description went wrong. Bachelier’s model was to consider price changes G in a time
interval �t as being composed out of several changes �pi, which can be e�ectively
considered as occurring in continuous time. In other words

G ≡
N�t∑

i=1

�pi ; (1)

where N�t is the number of transactions in �t. If N�t/1, and �pi have �nite variance,
then one can apply the classic version of the central limit theorem, whereby one would
obtain P(G) as Gaussian. It is implicitly assumed in this description that N�t is not
varying too much, i.e., N�t has only Gaussian uctuations around a mean value. Let
us start by asking to what extent this is true.
In a typical day, there might be as many as N�t=1000 trades for an actively traded

stock. Fig. 4a shows the time series of N�t for an actively traded stock sampled at 15
min intervals contrasted with a series of Gaussian random numbers. From the presence
of several events of the magnitude of tens of standard deviations, it is apparent that
N�t is distinctly non-Gaussian [95–104]. Let us �rst quantify the statistics of N�t . We
�rst analyze the distribution of N�t . Fig. 3b shows that P(N�t) decays as a power-law

P(N�t) ∼ N−(1+�)
�t ; (2)

where �≈ 3:5 for �ve actively traded stocks. A more extensive analysis on 1000 stocks
[104] gives values of � around the average value � = 3:4. Thus N�t behaves in a
remarkably non-Gaussian manner.
We also analyze correlations in N�t Instead of analyzing the correlation function di-

rectly, we use the method of detrended uctuation analysis [105]. We plot the detrended
uctuation function F(�) as a function of the time scale �. Absence of long-range corre-
lations would imply F(�) ∼ �0:5, whereas F(�) ∼ �� with 0:5¡�61 implies power-law
decay of the correlation function,

〈[Q�t(t)][Q�t(t + �)]〉 ∼ �−�cf ; [�cf = 2− 2 �] : (3)

We obtain the value �≈ 0:85 for the same �ve stocks as before (Fig. 5). On extending
this analysis for a set of 1000 stocks we �nd the mean value �cf≈ 0:3 [104].
It is possible to relate this to the correlations in |G|, which is related to the variance

V 2 of G. From Eq. (1), we see that V 2 ˙ N�t under the assumption that �pi are in-
dependent. Therefore, the long-range correlations in N�t is one reason for the observed
long-range correlations in |G|. In other words, highly volatile periods in the market
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Fig. 4. Statistical properties of N�t . (a) The lower panel shows N�t for Exxon Corporation with �t=30min
and the average value 〈N�t〉≈ 52. The upper panel shows a sequence of uncorrelated Gaussian random num-
bers with the same mean and variance, which depicts the number of collisions in N�t for the classic di�usion
problem. Note that in contrast to di�usion, N�t for Exxon shows frequent large events of the magnitude of
tens of standard deviations, which would be forbidden for Gaussian statistics. (b) The cumulative distribution
of N�t for �ve stocks: Exxon, General Electric, Coca Cola, AT&T, Merck show similar decay consistent
with a power-law behavior with exponent �≈ 3:4:

persist due to the persistence of trading activity, that is in turn related to how news
inuences stock prices. Indeed, a remarkable consequence of our study is to quantify
how price changes are related to N�t , which is connected to how news “drives” trading
activity N�t . News comes in all magnitudes – from drastic “newsbreaks” to tiny pieces
of information.
Could it be that the tail exponent � of the P(N�t) is connected to the exponent �

of P(G)? We have seen that the distribution P{N�t ¿ x} ∼ x−� with �≈ 3:4 (Fig. 4).
Therefore, P{√N�t ¿ x} ∼ x−2� with 2�≈ 6:8. Therefore, N�t alone cannot explain
the value �≈ 3. Instead, �≈ 3 must arise from elsewhere. Upon examining the behavior
of Eq. (1), we can see that in addition to G depending on N�t , it should also depend
on W 2

�t , the variances of the individual transaction changes �pi. In fact, we can carry
the analysis through to W�t [104], whereby we �nd that the distribution of W�t , which
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Fig. 5. Detrended uctuation function F(�) for the same �ve stocks as before. Regressions yield values of
the slope �≈ 0:85, consistent with long-range correlations.

decays with approximately the same exponent ≈ �≈ 3. Thus the power-law tails in
P(G�t) appear to originate from the power-law tail in P(W�t).
In sum, we have related volatility to two di�erent microscopic quantities: (a) the

transaction frequency, that is the number of transactions N�t that occur in a time
interval and (b) the “impact” of a transaction, measured by the variance W 2

�t of price
changes due to all transactions, in a time interval. One can view this result using an
analogy with classic di�usion, where the spread of an ink drop is determined by two
microscopic quantities: (a) the collision frequency, that is the number of collisions N�t
that occur in a time interval and (b) the impact of collisions, measured by the variance
W 2
�t of the displacements between collisions in that time interval. For stock prices, N�t

and W�t behave remarkably di�erently from their analogs in classic di�usion. Thus, one
could summarize by saying that price movements are equivalent to a complex variant
of classic di�usion, where the price evolves through transactions in much the same
way as an ink drop spreads through molecular collisions, not in a quiet container of
water (as in classic di�usion), but rather in a bubbling hot spring, where the bubbling
characteristics depend on a wide range of time and length scales.
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