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Abstract

We empirically quantify the relation between trading activity—measured by the number of
transactions N—and the price change G(t) for a given stock, over a time interval [t; t+5t]. We
relate the time-dependent standard deviation of price changes—volatility—to two microscopic
quantities: the number of transactions N (t) in 5t and the variance W 2(t) of the price changes
for all transactions in 5t. We 9nd that the long-ranged volatility correlations are largely due
to those of N . We then argue that the tail-exponent of the distribution of N is insu:cient to
account for the tail-exponent of P{G¿x}. Since N and W display only weak inter-dependency,
our results show that the fat tails of the distribution P{G¿x} arises from W, which has a
distribution with power-law tail exponent consistent with our estimates for G. c© 2001 Elsevier
Science B.V. All rights reserved.
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Stock price �uctuations display distinctive statistical features that are in stark contrast
to those of a simple random walk (“di<usion”) model [1–4]. Consider price change
G(t) ≡ ln S(t + 5t) − S(t)—de9ned as the change in the logarithm of price S(t)
over an interval 5t. Empirical work shows that the distribution function PG{G¿x}
has tails that decay as a power law PG{G¿x} ∼ x−
, with 
 larger than the upper
bound (
=2) for LBevy stable distributions [5–7]. In particular, studies on the largest
1000 US-stocks [6] and 30 German stocks [5] show mean values of 
 ≈ 3 on time
scales 5t6 1 day. Secondly, it is found that although the process G(t) has a rapidly
decaying autocorrelation function 〈G(t)G(t + �)〉, which at time scales �¡ 30 min,
shows signi9cant anti-correlations (bid–ask bounce) for individual stocks, but cease
to be statistically signi9cant for larger time scales. Higher-order two-point correlation
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functions show quite di<erent behavior. For example, the autocorrelation function of the
absolute value of price changes show long-range persistence 〈|G(t)| |G(t + �)|〉 ∼ �−,
with  ≈ 0:3 [8–10].
The problem of understanding the origin of these features is a challenging

one [3,11,12]. This paper, reviews recent work which focusses on a much more
modest goal of trying to understand, starting from transactions, how these statistical
features—fat-tailed distributions and long-ranged volatility correlations—originate. We
shall show that the price changes when conditioned on the volatility have tails that are
consistent with those of a Gaussian. In addition, we shall show that the long-ranged
correlations in volatility arise from those of trading activity measured by the rate of
occurrence of trades N . However, the distribution characteristics of trading activity
implies that the fat tails of G cannot arise solely due to N . We relate the fat-tailed
behavior of G to those of “transaction-time” volatility W which, roughly speaking,
measures the impact of trades.
Let us start by examining the conventionally-used “geometric”-variant of Bachelier’s

“classic di<usion” model. The rationale for this model arises from the central limit
theorem by considering the price changes G ≡ 5ln S(t) in a time interval 5t as being
the sum of several changes �pi, each due to the ith transaction in that interval,

G ≡
N∑
i=1

�pi ; (1)

where N is the number of transactions (trades) in 5t. If N�1, and �pi have 9nite
(constant) variance W 2, then one can apply the central limit theorem, whereby one
would obtain the result that PG(G) is Gaussian with variance �2 =W 2N , and therefore
prices evolve with Gaussian increments. It is implicitly assumed in this description that
N is almost constant, or more precisely N has only narrow (standard deviation much
smaller than the mean) Gaussian �uctuations around a mean value. Let us start by
asking to what extent this is true.
In a typical day, there might be as many as N =1000 trades for an actively traded

stock. Fig. 1a shows the time series of N for an actively traded stock sampled at 15 min
intervals contrasted with a series of Gaussian random numbers. From the presence of
several events of the magnitude of tens of standard deviations, it is apparent that N
is distinctly non-Gaussian [13–19]. Let us 9rst quantify the statistics of N . We 9rst
analyze the distribution of N . Fig. 1b shows that P(N ) decays as a power law,

PN{N ¿x} ∼ N−� ; (2)

where � ≈ 3:5 for 9ve actively traded stocks. A more extensive analysis on 1000
stocks [19] gives values of � around the average value �=3:4.
Since, N behaves in a non-Gaussian manner, one can ask whether the exponent 


for the distribution of price changes PG{G¿x} ∼ x−
 arises from the exponent � for
PN . To address this problem, we must 9rst quantify the relationship between G and
N . Consider the conditional distribution PG|N;W (G|N;W ) for given values of N and
W . If we assume that the changes �pi due to each transaction in 5t are i.i.d., then
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Fig. 1. Statistical properties of N . (a) The lower panel shows N for Exxon Corporation with 5t=30 min and
the average value 〈N 〉 ≈ 52. The upper panel shows a sequence of uncorrelated Gaussian random numbers
with the same mean and variance, which depicts the number of collisions in N for the classic di<usion
problem. Note that in contrast to di<usion, N for Exxon shows frequent large events of the magnitude of
tens of standard deviations, which would be forbidden for Gaussian statistics. (b) The cumulative distribution
of N for 5 stocks: Exxon, General Electric, Coca Cola, AT& T, Merck show similar decay consistent with
a power-law behavior with exponent � ≈ 3:4.
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the variance of G(t) in that time interval will be W 2N . Thus the width of the condi-
tional distribution PG|N;W (G|N;W )—probability density of G for given values of N
and W—will be the standard deviation W

√
N , which measures the local volatility. If we

next hypothesize that the functional form of PG|N;W (G|N;W ) does not depend on the
values of W or N , then we can express PG|N;W (G|N;W )= 1=(W

√
N )f(G=(W

√
N )),

where the function f has the same form for all values of W and N . 1 In other words,
during periods of large W

√
N the conditional distribution PG|N;W (G|N;W ) will have

large width.
We seek to quantify the functional form of the conditional distribution PG|N;W . Under

our hypothesis, determining the conditional distribution is tantamount to determining
the functional form f, which is accomplished by considering a “scaled” variable

� ≡ G

W
√
N

; (3)

which is free of the e<ects of �uctuating W
√
N . Our examination of the

distribution P�(�) shows that it is consistent with Gaussian behavior [19]. Thus the
conditional distribution is consistent with the functional form PG|N;W (G|N;W ) � 1=
(
√
2�W

√
N ) exp(−G2=2W 2N ). 2

We are now in a position to relate the statistical properties of G and N . One can
express the distribution of price changes PG in terms of the conditional distribution
PG|N;W (G|N;W ), or equivalently in terms of f,

PG(G)=
∫

1
�
f
(

G

W
√
N = �

)
PW

√
N (�) d� ; (4)

where PW
√

N denotes the probability density function of the variable W
√
N . Since f

is consistent with Gaussian, it is clear that the fat tails in G must arise due to the
mixing of the conditional distribution, averaged over all possible widths W

√
N .

Next, we examine how the statistics of W and N relate to the statistics of G. First,
we examine the equal-time dependence of W and N and 9nd that the equal-time cor-
relation coe:cient is small, suggesting only weak interdependence [19]. Therefore the
contribution of N to the distribution PW

√
N in Eq. (4) goes like the distribution of√

N . We have already seen that the distribution PN{N ¿x} ∼ x−� with �≈ 3:4.
Therefore, P√

N{y≡√
N ¿x} ∼ x−2� with 2� ≈ 6:8. Therefore, N alone cannot

explain the value 
 ≈ 3. Instead, 
 ≈ 3 must arise from elsewhere. In fact, when
we repeat the analysis through to W5t [19], we 9nd that the distribution PW{W5t ¿ x}
decays with an exponent � ≈ 3, which is also the contribution of W to the distribution
PW

√
N . Therefore, the averaging in Eq. (4) gives the asymptotic behavior of PG to be a

power-law with an exponent �. Indeed, our mean estimates of � and 
 are comparable

1 The hypothesis that the conditional distribution has the same form for all W and N might strike the reader
as surprising since one expects the conditional distribution to be increasingly “closer” to a Gaussian for
increasing N . Strictly speaking, if W and N are independent, then the hypothesis would be exact only for
a stable distribution for �pi such as a Gaussian (consistent with our 9ndings later in the text).
2 The � sign is used because although the tails of the conditional distribution are consistent with Gaussian,
the central part is a<ected by discreteness of price changes in units of 1=16 or 1=32 of a dollar.
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Fig. 2. Detrended �uctuation function F(�) for the same 9ve stocks as before. Regressions yield values of
the slope � ≈ 0:85, consistent with long-range correlations.

within error bounds [6,19]. Thus the power-law tails of PG(G) appear to originate from
the power-law tail in PW (W ).
We also analyze correlations in N . Instead of analyzing the correlation function di-

rectly, we use the method of detrended �uctuation analysis [20]. We plot the detrended
�uctuation function F(�) as a function of the time scale �. Absence of long-range
correlations would imply F(�) ∼ �0:5, whereas F(�) ∼ �� with 0:5¡�6 1 implies
power-law decay of the correlation function,

〈[N (t)][N (t + �)]〉 ∼ �−�cf [�cf =2− 2 �] : (5)

We obtain the value � ≈ 0:85 for the same 5 stocks as before (Fig. 2). On extending
this analysis for a set of 1000 stocks we 9nd the mean value �cf ≈ 0:3 [19]. It is
possible to relate this to the correlations in |G|, which is related to the variance V 2 of
G. From Eq. (1), we see that V 2˙N under the assumption that �pi are independent.
Therefore, the long-range correlations in N is one reason for the observed long-range
correlations in |G|. In other words, highly volatile periods in the market persist due to
the persistence of trading activity.
Naturally, the mechanisms that give rise to the observed long-range correlations in

N are of great interest. In Ref. [21], this problem is investigated using a continuous
time asynchronous model. Recently, it was argued that these correlations could arise
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from the fact that agents in the market have the choice between active and inactive
strategies [22].
Lastly, we discuss the role of the share volume traded in explaining the statistical

properties of price �uctuations. Intuitively, one expects that the larger the trade size,
the greater the price impact, and hence larger the volatility. Therefore one expects the
volatility to be related to the number of shares traded (share volume). Indeed, it is a
common Wall Street saying that ‘it takes volume to move stock prices’. In our recent
study [23], we 9nd that the number of shares qi traded per trade has a power-law
distribution with tail-exponents  which are in the LBevy stable domain. Therefore one
can express the number of shares Q traded in 5t as Q=

∑N
i=1 qi. Due to the LBevy

stable tails of the distribution of q; Q scales like Q= N+N 1= �, where � is a one-sided
LBevy stable distributed variable with zero mean and tail exponent  , and  ≡ 〈qi〉.
Analyzing equal-time correlations, we 9nd, surprisingly, that the correlation coe:-

cients 〈�N 〉; 〈�W 〉 are small (average values of the order of ≈ 0:1). This means that
even if the number of shares traded are large (large �), volatility V =W

√
N need

not be. Thus the previously found [13,15,16,24] equal-time dependence of volatility
V =W

√
N and share volume arises largely because of N . This is quite surprising

since it means that the size of the trade, on average, does not seem to have a direct
in�uence in generating volatility [25].
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