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Abstract – The behaviors of fat-tailed distribution, linear long memory, and nonlinear long
memory are considered as possible sources of apparent multifractality. Which behavior should be
preserved in null models plays an important role in statistical tests of empirical multifractality.
In this paper, we compare the performance of two null models on testing the existence of mul-
tifractality in fractional Brownian motions (fBm), Markov-switching multifractal (MSM) model,
and financial returns. One null model is obtained by shuffling the original data, which keeps the
distribution unchanged. The other null model is generated by the iterative amplitude adjusted
Fourier transform (IAAFT) algorithm, which insures that the surrogate data and the original data
sharing the same distribution and linear long memory behavior. We find that the tests based on
the shuffle null model only reject the multifractality in fBm with H = 0.5 and the tests based
on the IAAFT null model reject the multifractality in fBms (except for H = 0.1). And the mul-
tifractality in MSM and financial returns are significantly supported by the tests based on both
null models. Our findings also shed light on the necessity of choosing suitable null models to test
multifractality in other complex systems.

Copyright c⃝ EPLA, 2019

Introduction. – Multifractality in financial markets
has attracted considerable research interest both from the
economic and the physical perspective in the last twenty
years. The contributions of the existing literature are
briefly listed as follows (refer to the review [1] for more
information).

Many methods are proposed to empirically uncover
the multifractality, such as the partition function ap-
proach [2], the structure function approach [3], the wavelet
transform approach [4–6], the detrended fluctuation ap-
proaches [7–9], multifractal natural time analysis [10] and
so on. By employing the above-mentioned methods, it is
found that many financial time series (returns, volatili-
ties, bid-ask spreads, to list a few) from different markets
around the world exhibit significant multifractal charac-
teristics [11–20], which not only inspires people to con-
struct models (multifractal random walk (MRW) [21,22],
Markov-switching multifractal (MSM) models [23,24], and

(a)E-mail: zqjiang@ecust.edu.cn

so on) to replicate such important stylized facts, but also
motive researchers to find the sources of multifractality.

The behaviors of fat-tailed distributions and (linear and
nonlinear) long-range dependence are considered as pos-
sible origins of multifractal characteristics in financial se-
ries [25–31]. However, many empirical results reveal that
the series generated from monofractal models can produce
spurious multifractality [32–36], which calls for strict sta-
tistical tests in empirical analysis of multifractality. As
we know, the results of statistical tests on the empirical
multifractality strongly depend on how we choose the null
models. If the multifractality is only attributed to the fat
tail distributions, statistical tests based on the null models
of shuffled series may fail. Thus, it is important to com-
pare the performance of different null models in testing
multifractality.

In this paper, we compare the performance of two null
models in testing the existence of multifractality in frac-
tional Brownian motions (fBm), MSM model, and finan-
cial returns. One null model is obtained by shuffling the
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original data, which keeps the distribution unchanged.
The other null model is generated by the IAAFT algo-
rithm, which insures that the surrogate data and the
original data sharing the same distribution and linear long-
memory behavior. Our results show that an improper
choice of null models will lead to incorrect conclusions.

Methods. – We describe here the mathematical mod-
els for data generation, whose fractal or multifractal prop-
erties are known, and the null models applied for statistical
tests.

Models for data generation. Fractional Brownian mo-
tion and the Markov-switching multifractal model are em-
ployed to produce synthetic data. The fBm time series are
generated by the MATLAB function “wfbm”, correspond-
ing to the algorithm proposed in ref. [37]. We only briefly
introduce the MSM model here (refer to refs. [23,24] for
details). The MSM model is defined as

ri = σ2
k̄∏

k=1

Mk,iϵi, (1)

where ϵi are i.i.d. standard Gaussians and Mk,i is the el-
ement of the volatility components {−→

Mi}1×k̄ in period i.
By assuming {−→

Mi}1×k̄ following a first-order Markov pro-
cess, each element Mk,i renews with a probability of
γk = 1 − (1 − γk̄)bk −k̄

, otherwise it remains unchanged,
meaning Mk,i = Mk,i−1. The renewed value is drawn
from a binomial distribution [m0, 1−m0] with equal prob-
ability. In MSM, {σ2, b, γk̄, m0} are the parameters to be
estimated and can be estimated by maximum likelihood
estimation [24] and generalized method of moments [38]. k̄
corresponds to the volatility frequency and is given while
doing the estimation. For simplicity, we set the initial
value Mk,0 as m0.

Null models. We employ two null models to imple-
ment the statistical tests. One null model is obtained by
shuffling the original series, which keeps the distribution
unchanged. The other null model is produced by the iter-
ative amplitude adjusted Fourier transform (IAAFT) al-
gorithm [39], which preserves the same distribution and
linear long-memory behavior as the original data. For a
given series {x(t)}, the IAAFT algorithm is implemented
as follows:

Step 1 : We sort the series {x(t)} in ascending order and
denote it as {yN} and also perform the Fourier
transform on {x(t)} to give the squared ampli-
tudes {Y 2

k }.

Step 2 : We shuffle {x(t)} and obtain an initial sequence
{y(0)

N } for further iterations.

Step 3 : We take the Fourier transform on {y(0)
N } and ob-

tain the squared amplitudes {Y 2,(0)
k }. By re-

placing {Y 2,(0)
k } with {Y 2

k }, we transformed back

through the inverse Fourier transform. The re-
sulting series is replaced by {x(t)} with ranking
ordering, denoted as {y(1)

N }.

Step 4 : If
∑

(Y 2,(0)
k −Y 2

k )2∑
Y 2

k
< 10−6 , the iteration stops; oth-

erwise, let {y(0)
N } = {y(1)

N } and repeat Step 3.

Statistical tests. Following the studies on investigat-
ing the sources of multifractality [28,29], we define the
MF statistic as the singularity width ∆α of the multi-
fractal spectrum. For the synthetic data, we perform the
statistical tests as follows:

Step 1 : For a given model we generate a series of synthetic
data with a size of 216 .

Step 2 : The multifractal analysis is performed on the syn-
thetic data by means of MF-DFA. The MF statis-
tic ∆αORIG is estimated.

Step 3 : The synthetic series is shuffled to remove any po-
tential correlations. The same multifractal analy-
sis is conducted on the shuffled series and the MF
statistic ∆αSHUF is determined.

Step 4 : The surrogate series is obtained by inject-
ing the synthetic series into the IAAFT algo-
rithm. The same multifractal analysis is carried
out on the surrogate series and the MF statistic
∆αIAAFT is calculated.

These steps are repeated until we accumulate 10000 sets
of {∆αORIG, ∆αSHUF, and ∆αIAAFT}. We then use the
two-sample Kolmogorov-Smirnov (KS) test to check the
difference between ∆αORIG and ∆αSHUF (or ∆αIAAFT).
Note that the moment orders q vary from −4 to 4 with a
step of 0.1 and the linear fits are employed as the detrend-
ing filter in MF-DFA analysis. The scaling range is set as
[24 , 212] for fBM, [24 , 212] for MSM, and [24 , 29 ] for Dow
Jones Industrial Average (DJIA) returns when estimating
the generalized Hurst indexes.

The statistical tests on financial data are very similar to
the tests on the synthetic data, but differ in two aspects.
One is that the set {∆αORIG} contains 10000 points for
synthetic data, but only a value for financial data. The
other is that the algorithms of shuffling and IAAFT are
performed on each realization for synthetic data, but al-
ways on the same series for financial data.

Results. – Here, we present the results of statistical
tests on time series generated from mathematical models.

Monofractal models. We first perform our statistical
tests on the monofractal data to test the absence of multi-
fractality. The monofractal data are fBm series with Hurst
indexes H varying from 0.1 to 0.9 with a step of 0.1. The-
oretically, there should be no multifractality in fBms by
definition. However, in empirical analysis the multifrac-
tality of fBms usually approaches vanishing, but is never
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Fig. 1: Results of statistical tests on fBm for different Hurst indexes H . For each H we generate 10000 realizations and for
each realization we generate one shuffled series and one IAAFT series.We estimate the MF statistics for each realization and its
shuffled and IAAFT series and thus obtain 10000 values of ∆αORIG, ∆αSHUF, ∆αIAFFT. The frequency of ∆αORIG, ∆αSHUF,
and ∆αIAFFT are plotted in panels (a)–(i) for different H . (a) H = 0.1. (b) H = 0.2. (c) H = 0.3. (d) H = 0.4. (e) H = 0.5.
(f) H = 0.6. (g) H = 0.7. (h) H = 0.8. (i) H = 0.9.

vanishing. In other words, the MF statistic ∆α of fBms
should be a small number and close to zero.

As we know, the long-memory behaviors and fat-tailed
distributions are considered as sources of empirical mul-
tifractality. Thus, we can infer that: 1) for fBms the
empirical multfractality is purely determined by their
memory behaviors and the surrogate series generated by
the IAAFT algorithm should have the same multifractal-
ity as the original fBms; 2) the stronger memory behaviors
the fBms have, the greater the resulting empirical multi-
fractality is. Thus, fBms with Hurst index H = 0.5 have
the weakest empirical multifractality. As the shuffled se-
ries do not have any correlated behaviors, they coinciden-
tally correspond to the case of fBm with Hurst indexes
H = 0.5. This means that the shuffled fBm should also
have the weakest empirical multifractality.

To have an overview of the testing results on fBm, we
illustrate the frequency of the spectral widths ∆αORIG,
∆αSHUF, and ∆αIAFFT for different H in fig. 1. We can see
that the spectral width ∆αORIG, ∆αSHUF, and ∆αIAFFT
are not vanishing but close to zero, evidenced by the nar-
row span of ∆α in each panel. Such results do chime

with the monofractal nature of fBms. It is observed that
the frequency curves of F (∆αORIG) and F (∆αIAAFT) are
nearly overlapping together, indicating that the original
and IAAFT series exhibit the same characteristic of em-
pirical multifractality. Furthermore, one can see that in all
panels the F (∆αSHUF) curves share the same pattern and
have the same spans both on the X-axis and on the Y -axis,
because any correlated behaviors in shuffled series are re-
moved and all shuffled series correspond to the case of fBm
with H = 0.5. This can also explain the observation that
the three frequency plots F (∆αORIG), F (∆αSHUF), and
F (∆αIAAFT) are very close to each other in panel (e).

The frequency plots in fig. 1 only visually present an im-
pression that the testing results based on two null models
are roughly consistent with theoretical arguments. In the
following, we will quantitatively describe such consistence.
The mean and standard deviations of the MF statistics ∆α
are listed in panel A of table 1. As mentioned above, we
expect that 1) the MF statistic ∆α is close to zero, sup-
ported by the evidence that the average values of the three
MF statistics are very small numbers for different Hurst
indexes; 2) the fBm with H = 0.5 and the shuffled series
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Table 1: Comparison of the statistical tests on fBm based on two null models. Panel A lists the mean and standard deviation
of the MF statistics of the fMb series, the shuffled series, and the IAAFT series. The numbers in parentheses are the standard
deviations. Panel B (respectively, C) presents the results of the two-sample KS test between ∆αORIG and ∆αSHUF (respectively,
between ∆αORIG and ∆αIAAFT). The null hypothesis is H0 : C(∆αORIG) = C(∆αSHUF) (respectively, H0 : C(∆αORIG) =
C(∆αIAAFT)) and the alternative hypothesis is H1 : C(∆αORIG) < C(∆αSHUF) (respectively, H1 : C(∆αORIG) < C(∆αIAAFT)).
C(x) represents the cumulative distribution of x and C(x1 ) < C(x2 ) means that the data in x1 is larger than the data in x2 .
The values in square brackets correspond to the p-values of the KS test.

H = 0.1 H = 0.2 H = 0.3 H = 0.4 H = 0.5 H = 0.6 H = 0.7 H = 0.8 H = 0.9
Panel A: Mean and standard deviation of ∆α
∆αORIG 0.041 0.035 0.031 0.031 0.029 0.029 0.034 0.034 0.042

(0.005) (0.008) (0.011) (0.011) (0.015) (0.015) (0.018) (0.018) (0.022)
∆αSHUF 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
∆αIAAFT 0.040 0.035 0.031 0.029 0.029 0.025 0.034 0.038 0.042

(0.005) (0.008) (0.011) (0.013) (0.015) (0.014) (0.018) (0.019) (0.022)
Panel B: Two-sample KS test between ∆αORIG and ∆αSHUF
KS stats. 0.582 0.340 0.157 0.033 0.003 0.035 0.093 0.148 0.227

[0.000] [0.000] [0.000] [0.000] [0.890] [0.000] [0.000] [0.000] [0.000]
Panel C: Two-sample KS test between ∆αORIG and ∆αIAAFT
KS stats. 0.030 0.012 0.012 0.011 0.010 0.004 0.012 0.004 0.007

[0.000] [0.259] [0.253] [0.304] [0.367] [0.831] [0.225] [0.872] [0.629]

have the weakest empirical multifractality, evidenced by
the observations that ∆αORIG exhibit a U -shape pattern
with a valley at H = 0.5 and ∆αSHUF remains a con-
stant, equaling the valley of ∆αORIG; and 3) the fBm and
its IAAFT surrogates have the same characteristic of em-
pirical multifractality, confirmed by the result that the
mean of ∆αIAAFT equals the mean of ∆αORIG when H is
fixed.

By employing the two-sample KS test, we further check
whether the MF statistic pairs (∆αORIG and ∆αSHUF,
∆αORIG and ∆IAAFT) are from the same cumulative dis-
tribution. Panel B reports the results of KS tests be-
tween ∆αORIG and ∆αSHUF. The null hypothesis is that
∆αORIG and ∆αSHUF follow the same cumulative distribu-
tion and the alternative hypothesis is that the cumulative
distribution of ∆αORIG is smaller than that of ∆αSHUF,
meaning ∆αORIG > ∆αSHUF. At the significant level
of 1%, the null hypothesis cannot be rejected only for
H = 0.5 and for the remaining Hurst indexes, we reject the
null hypothesis and accept the alternative hypothesis, in-
dicating that the shuffling series is not a good null model
for testing the absence of multifractality in monofractal
model. Panel C presents the two-sample KS tests between
∆αORIG and ∆αIAAFT. One can see that only for H = 0.1,
the null hypothesis is rejected, implying that the IAAFT
surrogate is a good null model for statistically testing the
absence of multifractality in the monofractal process.

Statistical tests on multifractal models. We utilize the
MSM models to simulate multifractal series and the four
model parameters are fixed as m0 = 1.5, σ = 0.5, b = 3,
and γk̄ = 0.95, which are also used to generate multifractal
data in ref. [24]. The volatility frequency k̄ takes one of
the six values: k̄ ∈ {2, 5, 8, 10, 15, 20}.
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Fig. 2: Results of statistical tests on MSM for different volatil-
ity frequencies k̄. For each k̄ we generate 10000 realizations
and for each realization we generate one shuffled series and one
IAFFT series. We estimate the MF statistics for each realiza-
tion and its shuffled and IAAFT series and thus obtain 10000
values of ∆αORIG, ∆αSHUF, and ∆αIAFFT. The frequency of
∆αORIG, ∆αSHUF, and ∆αIAFFT are plotted in panels (a)–(i)
for different k̄. (a) k̄ = 2. (b) k̄ = 5. (c) k̄ = 8. (d) k̄ = 10.
(e) k̄ = 15. (f) k̄ = 20.

As the MSM model is proposed to model financial re-
turns, we can infer that the Hurst index of MSM should
be very close to 0.5. By estimating the mean and standard
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Table 2: Comparison of the statistical tests on MSM based on two null models. Panel A lists the mean and standard deviation
of the MF statistics of the MSM series, the shuffled series, and the IAAFT series. The numbers in parentheses are the standard
deviations. Panel B (respectively, C) presents the results of the two-sample KS test between ∆αORIG and ∆αSHUF (respectively,
between ∆αORIG and ∆αIAAFT). The null hypothesis is H0 : C(∆αORIG) = C(∆αSHUF) (respectively, H0 : C(∆αORIG) =
C(∆αIAAFT)) and the alternative hypothesis H1 : C(∆αORIG) < C(∆αSHUF) (respectively, H1 : C(∆αORIG) < C(∆αIAAFT)).
C(x) represents the cumulative distribution of x and C(x1 ) < C(x2 ) means that the data in x1 is larger than the data in x2 .
The values in square brackets correspond to the p-values of the KS test.

k̄ = 2 k̄ = 5 k̄ = 8 k̄ = 10 k̄ = 15 k̄ = 20
Panel A: Mean and standard deviation of ∆α
∆αORIG 0.046 0.152 0.281 0.313 0.324 0.324

(0.019) (0.023) (0.036) (0.050) (0.056) (0.057)
∆αIAAFT 0.042 0.069 0.104 0.128 0.143 0.143

(0.018) (0.021) (0.023) (0.026) (0.032) (0.032)
∆αSHUF 0.042 0.069 0.104 0.128 0.142 0.142

(0.018) (0.021) (0.022) (0.025) (0.031) (0.031)
Panel B: Two-sample KS test between ∆αORIG and ∆αSHUF
KS stat. 0.087 0.942 0.997 0.986 0.956 0.954

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Panel C: Two-sample KS test between ∆αORIG and ∆αIAAFT
KS stat. 0.086 0.940 0.997 0.985 0.953 0.950

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

deviations of the Hurst indexes of 10000 simulated MSM
series for different frequency k̄, we obtain that the mean
Hurst indexes of the six frequencies all equal to 0.50± 0.01,
confirming no linear correlated behaviors in MSM. Thus,
one can expect that the null models of shuffled series and
IAAFT series will have very similar results.

Figure 2 illustrates the frequency plots of MF statis-
tics for the MSM series and their shuffled and IAAFT
series. The behavior of no linear correlation in MSM is
further corroborated by the observation that the curves
of ∆αSHUF and ∆αIAAFT are all overlapping together in
panels (a)–(f).

As metioned above, the possible sources of the multi-
fractality in MSM are the fat-tailed distribution and the
nonlinear long memory. If the multifractality only origi-
nates from the fat-tailed distribution, one may expect that
the data generated by both null models should exhibit the
same multifractality as the original data. Figure 2 illus-
trates the frequency plots of MF statistics for different fre-
quency k̄. In panel (a), we find that the frequency plots of
∆αORIG, ∆αSHUF, and ∆αIAFFT almost overlap together,
consistently with the equivalence of the average values of
∆αORIG, ∆αSHUF, and ∆αIAFFT for k̄ = 2 in panel A of
table 2. The other panels present that there is a signif-
icant deviation between the curves of the original MSM
series and those of the null models, indicating that the
nonlinear long memory also plays an important role in the
multifractal nature of MSM. We also find that the volatil-
ity frequency k̄ has a strong influence on the multifrac-
tal strength of MSM, as it is observed that the frequency
plots of ∆αORIG depart from the curves of ∆αSHUF and
∆αIAAFT towards to positive infinity when the frequency
k̄ increases from 2 to 15 in panels (a)–(e) of fig. 2, and the

average value of ∆αORIG increases with the increment of
k̄ when k̄ ≤15 in panel A of table 2. One can also notice
that the values of ∆αSHUF and ∆αIAFFT are all signifi-
cantly greater than 0. The possible explanation is that
our simulated series length 216 is not long enough to reach
the convergence of ∆α for the shuffled fat-tailed MSM se-
ries [40]. However, increasing k̄ cannot infinitely increase
the strength of multifractality for MSM models, because
the distance between the curves of null models and orig-
inal MSM series almost saturates when the frequency k̄
approaches 15, evidenced by the plots in panels (e) and
(f) and the equation ∆αk̄=15

ORIG = ∆αk̄=20
ORIG in table 2.

Two-sample KS tests are also conducted between the
MF statistics of the original MSM series and the null mod-
els. The results are listed in panels B and C of table 2.
One can see that the null hypothesis can be rejected at
the significant level of 0.01 for all tests, indicating that
the alternative hypotheses C(∆αORIG) < C(∆αSHUF) and
C(∆αORIG) < C(∆αIAAFT) are favored. Thus, we have
∆αORIG > ∆αSHUF and ∆αORIG > ∆αIAAFT, suggest-
ing that the tests based on both null models support the
existence of multifractality in MSM. According to the re-
sults in tables 1 and 2, we can further infer that there
are three components in the multifractal width ∆αORIG
in the MSM for k̄ ≥15, such that 1) one systematic con-
stant component of 0.03 (∆αSHUF in table 1) probably
due to the finite-size effects, 2) one components of 0.18
(∆αORIG − ∆αSHUF in table 2) attributed to the non-
linear correlation, and 3) the rest of 0.11 may be due to
the fat-tailed distribution.

Application to financial series. – We further per-
form statistical tests to check the multifractality in finan-
cial returns based on the two null models. The daily Dow
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Fig. 3: Results of statistical tests on DJIA returns. We esti-
mate their MF statistic ∆αORIG, and generate 10000 shuffled
series and 10000 IAAFT series. The MF statistics ∆αSHUF,
and ∆αIAFFT for these shuffled and IAAFT series are esti-
mated. The frequency of ∆αSHUF and ∆αIAFFT are plotted in
panels (a), (b). The MF statistic ∆αORIG is illustrated as a
vertical dashed line.

Table 3: Comparison of statistical tests on the multifractality
in financial returns based on two null models. One is obtained
by shuffling the original series and the other is generated by
the IAAFT algorithm. The MF statistics of the original series,
shuffled series, and IAAFT series and the p-value of the two
null models are listed. The numbers in parentheses are the
standard deviations.

∆αORIG ∆αSHUF ∆αIAAFT pSHUF pIAAFT
return 0.200 0.078 0.060

(0.041) (0.041) [0.004] [0.001]

Jones Industrial Average (DJIA) index is used to calculate
the returns. The daily return is defined as the logarithmic
difference of the daily closing price:

r(t) = ln I(t) − ln I(t − 1), (2)

where I(t) is the closing price of the DJIA on day t. The
spanning period of DJIA indexes is from 16 February 1885
to 17 June 2016, containing 36048 data points in total.

We estimate the MF statistics of the original, shuf-
fled, and IAAFT returns and plot their frequencies in
fig. 3(a). The vertical dashed line is the MF statistic
of the original returns and the two frequency curves cor-
respond to the MF statistics (∆αSHUF and ∆αIAAFT)
of the shuffled and IAAFT returns. One can see that
F (∆αSHUF) is flat and wide and F (∆αIAAFT) is sharp
and narrow. We also list the MF statistic of the origi-
nal, shuffled, and IAAFT returns in table 3. Although
both curves differ greatly from each other, they all lo-
cate on the left side of the dashed line, consistently with
∆αORIG > ⟨∆αSHUF⟩ > ⟨∆αIAAFT⟩ in table 3. This pro-
vides direct evidence in favor of multifractality in DJIA
returns. We thus estimate the p-value, corresponding to
the null hypothesis H0: ∆αORIG ≤∆αNULL. Table 3 re-
ports the p-value of the returns for both null models and

we find that both p-values are less than 0.01, indicating
that the null hypotheses are significantly rejected at the
level of 0.01. Our results reveal that the statistical tests
based on both null models statistically support the exis-
tence of multifractality in DJIA returns, consistently with
the testing results of MSM.

Conclusions. – In summary, we have performed sta-
tistical tests on the empirical multifractality of the syn-
thetic data by means of two null models, generated by the
algorithm of shuffling and IAAFT. We use monofractal
(fBm) and multifractal (MSM) models to generate syn-
thetic data. For fBm with H varying from 0.1 to 0.9 with
a step of 0.1, the tests based on the shuffled data wrongly
support the existence of multifractality except for H = 0.5
and the tests based on the IAAFT data reject the exis-
tence of multifractality except for H = 0.1, indicating the
good performance of IAAFT while testing the spurious
multifractality in monofractal process. For MSMs with
k̄ ∈ {2, 5, 8, 10, 15, 20}, the tests based on both null mod-
els cannot reject the multifractal nature and the two null
models are equivalent due to the fact that there is no lin-
ear correlations in the MSM time series (that is, H = 0.5).
We also perform the same statistical tests on the DJIA re-
turns. For returns, we obtain the same results as the MSM
model, the statistical tests based on both null models favor
the existence of multifractality.
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