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We present a theory of excess stock market volatility, in which market
movements are due to trades by very large institutional investors in relatively
illiquid markets. Such trades generate significant spikes in returns and volume,
even in the absence of important news about fundamentals. We derive the optimal
trading behavior of these investors, which allows us to provide a unified explana-
tion for apparently disconnected empirical regularities in returns, trading volume
and investor size.

I. INTRODUCTION

Ever since Shiller [1981], economists have sought to under-
stand the origins of volatility in stock market prices, which ap-
pears to exceed the predictions of simple models with rational
expectations and constant discounting.1 Even after the fact, it is
hard to explain changes in the stock market using only observ-
able news [Cutler, Poterba, and Summers 1989; Fair 2002; Roll
1988].

We present a model in which volatility is caused by the
trades of large institutions. Institutional investors appear to be
important for the low-frequency movements of equity prices, as
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shown by Gompers and Metrick [2001]. Understanding better the
behavior of institutional investors also sheds light on many is-
sues, such as momentum and positive feedback trading [Chae and
Lewellen 2005; Cohen, Gompers, and Vuolteenaho 2002; Choe,
Kho, and Stulz 1999; Hvidkjaer 2005], bubbles [Brunnermeier
and Nagel 2004], liquidity provision [Campbell, Ramadorai, and
Vuolteenaho 2005], and the importance of indexing [Goetzman
and Massa 2003]. We further this research by analyzing how
trading by individual large investors may create price movements
that are hard to explain by fundamental news.

In our theory, spikes in trading volume and returns are
created by a combination of news and the trades by large inves-
tors. Suppose that news or proprietary analysis induces a large
investor to trade a particular stock. Since his desired trading
volume is then a significant proportion of daily turnover, he will
moderate his actual trading volume to avoid paying too much in
price impact.2 The optimal volume will nonetheless remain large
enough to induce a significant price change.

Traditional measures, such as variances and correlations,
are of limited use in analyzing spikes in market activity. Many
empirical moments are infinite; moreover, their theoretical analy-
sis is typically untractable.3 Instead, a natural object of analysis
turns out to be the tail exponent of the distribution, for which
some convenient analytical techniques apply. Furthermore, there
is much empirical evidence on the tails of the distributions, which
appear to be well approximated by power laws. For example, the
distribution of returns r over daily or weekly horizons decays
according to P(�r� � x) � x��r, where �r is the tail or Pareto
exponent.4 This accumulated evidence on tail behavior is useful
to guide and constrain any theory of the impact of large investors.
Specifically, our theory unifies the following stylized facts.

(i) the power law distribution of returns, with exponent
�r � 3;

(ii) the power law distribution of trading volume, with ex-
ponent �q � 1.5;

(iii) the power law of price impact;
(iv) the power law distribution of the size of large investors,

with exponent �S � 1.

2. See subsection II.C.
3. The variance of volume and the kurtosis of returns are infinite. Section II

provides more details.
4. Appendix 1 reviews the relevant techniques.
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Existing models have difficulty in explaining facts (i)–(iv)
together, not only the power law behavior in general, but also the
specific exponents. For example, efficient markets theories rely on
news to move stock prices and thus can explain the empirical
finding only if news is power law distributed with an exponent
�r � 3. However, there is nothing a priori in the efficient markets
hypothesis that justifies this assumption. Similarly, GARCH
models generate power laws, but need to be fine-tuned to repli-
cate the exponent of 3.5

We rely on previous research to explain (iv), and develop a
trading model to explain (iii). We use these facts together to
derive the optimal trading behavior of large institutions in rela-
tively illiquid markets. The fat-tailed distribution of investor
sizes generates a fat-tailed distribution of volumes and returns.
When we derive the optimal trading behavior of large institu-
tions, we are able to replicate the specific values for the power law
exponents found in stylized facts (i) and (ii).6

In addition to explaining the above facts, an analysis of tail
behavior may have a number of wider applications in option
pricing,7 risk management, and the debate on the importance of
large returns for the equity premium [Barro 2006; Rietz 1988;
Routledge and Zin 2004; Weitzman 2005].

Our paper draws on several literatures. The behavioral fi-
nance literature [Barberis and Thaler 2003; Hirshleifer 2001;
Shleifer 2000] describes mechanisms by which large returns ob-
tain without significant changes in fundamentals. We propose
that these extreme returns often result from large idiosyncratic
trades of institutions. The microstructure literature [Biais,
Glosten, and Spatt 2005; O’Hara 1995] shows that order flow can
explain a large fraction of exchange rate movements [Evans and
Lyons 2002] and stock price movements, including the covariance
between stocks [Hasbrouck and Seppi 2001]. Previous papers
combine these behavioral, microstructure and asset pricing ele-
ments to explain the impact of limited liquidity and demand

5. Also, GARCH models are silent about the economic origins of the tails, and
about trading volume.

6. This includes the relative fatness documented by facts (i), (ii), and (iv)
(note that a higher exponent means a thinner tail). Since large traders moderate
their trading volumes, the distribution of volumes is less fat-tailed than that of
investor sizes. In turn, a concave price impact function leads to return distribu-
tions being less fat-tailed than volume distributions.

7. Our theory indicates that trading volume should help forecast the proba-
bility of large returns. Marsh and Wagner [2004] provides evidence consistent
with that view.
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pressures on asset prices [Acharya and Pedersen 2005; Gompers
and Metrick 2001; Pritsker 2005; Shleifer 1986; Wurgler and
Zhuravskaya 2002]. We complement this research by focusing on
tail behavior, partially in the hope that understanding extreme
events allows us to understand standard market behavior better.

This article is also part of a broader movement utilizing
concepts and methods from physics to study economic issues, a
literature sometimes referred to as “econophysics.”8 Econophysics
is similar in spirit to behavioral economics in that it postulates
simple plausible rules of agent behavior, and explores their im-
plications. However, it differs by putting less emphasis on the
psychological microfoundations, and more on the results of the
interactions among agents.

Section II presents stylized facts on the tail behavior of
financial variables. Section III then contains our baseline model
that connects together power laws. Section IV discusses various
extensions. Section V concludes. Appendix 1 is a primer on power
law mathematics.

II. THE EMPIRICAL FINDINGS THAT MOTIVATE OUR THEORY

This section presents the empirical facts that motivate our
theory, and provides a self-contained tour of the empirical liter-
ature on power laws.

II.A. The Power Law Distribution of Price Fluctuations: �r � 3

The tail distribution of returns has been analyzed in a series
of studies that uses an ever increasing number of data points
[Jansen and de Vries 1991; Lux 1996; Gopikrishnan, Plerou,
Amaral, Meyer, and Stanley 1999; Plerou, Gopikrishnan, Amaral,
Meyer, and Stanley 1999]. Let rt denote the logarithmic return
over a time interval �t. The distribution function of returns for
the 1000 largest U. S. stocks and several major international
indices has been found to be9

8. Antecedents are Simon [1955] and Mandelbrot [1963]. More recent re-
search includes Bak, Chen, Scheinkman, and Woodford [1993], Bouchaud and
Potters [2003], Gabaix [1999, 2005], Plerou, Gopikrishnan, Amaral, Meyer, and
Stanley [1999], Levy, Levy, and Solomon [2000], Lux and Sornette [2002],
and Mantegna and Stanley [1995, 2000]. See also Arthur et al. [1997], Blume and
Durlauf [2005], Brock and Hommes [1998], Durlauf [1993], and Jackson and
Rogers [2005] for work in a related vein.

9. To compare quantities across different stocks, we normalize variables such
as r and q by the second moments if they exist, otherwise by the first moments.
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(1) P��r� � x� � 1/x�r with �r � 3.

Here, � denotes asymptotic equality up to numerical constants.10

This relationship holds for positive and negative returns sepa-
rately and is best illustrated in Figure I. It plots the cumulative
probability distribution of the population of normalized absolute
returns, with ln x on the horizontal axis and ln P(�r� � x) on the
vertical axis. It shows that

(2) ln P��r� � x� � ��r ln x � constant

For instance, for a stock i, we consider the returns r�it 	 (rit � ri)/
r,i, where ri
is the mean of the rit and 
r,i is their standard deviation. For volume, which has
an infinite standard deviation, we use the normalization q�it 	 qit/qi, where qit is
the raw volume, and qi is the absolute deviation: qi 	 �qit � qit�.

10. Formally, f( x) � g( x) means that f( x)/g( x) tends toward a positive
constant (not necessarily 1) as x 3 �.

FIGURE I
Empirical cumulative distribution of the absolute values of the normalized

fifteen-minute returns of the 1000 largest companies in the Trades And Quotes
database for the two-year period 1994–1995 (12 million observations). We nor-
malize the returns of each stock so that the normalized returns have a mean of 0
and a standard deviation of 1. For instance, for a stock i, we consider the returns
r�it 	 (rit � ri)/
r,i, where ri is the mean of the rit’s and 
r,i is their standard
deviation. In the region 2 � x � 80 we find an ordinary least squares fit
ln P(�r� � x) 	 ��r ln x � b, with �r 	 3.1  0.1. This means that returns are
distributed with a power law P(�r� � x) � x��r for x between 2 and 80 standard
deviations of returns. Source: Gabaix et al. [2003].
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yields a good fit for �r� between 2 and 80 standard deviations. OLS
estimation yields ��r 	 �3.1  0.1, i.e., (1). It is not automatic
that this graph should be a straight line, or that the slope should
be �3: in a Gaussian world it would be a concave parabola. In the
following, we shall refer to equation (1) as “the cubic law of
returns.”11

Furthermore, the 1929 and 1987 “crashes” do not appear to
be outliers to the power law distribution of daily returns [Gabaix,
Gopikrishnan, Plerou, and Stanley 2005]. Thus, there may not be
a need for a special theory of “crashes”: extreme realizations are
fully consistent with a fat-tailed distribution.12

Equation (1) appears to hold internationally [Gopikrishnan,
Plerou, Amaral, Meyer, and Stanley 1999]. For example, Figure

11. The particular value �r � 3 is consistent with a finite variance, but
moments higher than 3 are unbounded. �r � 3 contradicts the “stable Paretian
hypothesis” of Mandelbrot [1963], which proposes that financial returns follow a
Lévy stable distribution. A Lévy distribution has an exponent �r � 2, which is
consistent with the empirical evidence [Fama 1963; McCulloch 1996; Rachev and
Mittnick 2000].

12. Subsection IV.D reports quotes from the Brady report, which repeatedly
marvels at how concentrated trading was on Monday, October 19, 1987.

FIGURE II
Probability density function of the returns normalized five minute returns of the

1000 largest companies in the Trades And Quotes database for the two-year
period 1994–1995. The values in the center of the distribution arise from the
discreteness in stock prices, which are set in units of fractions of U. S. dollars,
usually 1⁄8 , 1⁄16 , or 1⁄32 . The solid curve is a power-law fit in the region 2 � x � 80.
We find that � 	 3.1  0.03 for the positive tail, and � 	 2.84  0.12 for the
negative tail. The dotted line represents a Gaussian density. Source: Plerou et al.
[1999].
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III shows that the distribution of returns for three different
country indices are very similar.13

Having checked the robustness of the �r � 3 finding across
different stock markets, Plerou, Gopikrishnan, Amaral, Meyer,
and Stanley [1999] examine firms of different sizes.14 Small firms
have higher volatility than large firms, as is verified in Figure
IVa. Moreover, the same diagram also shows similar slopes for
the graphs of all four distributions.15 Figure IVb normalizes the

13. The empirical literature has proposed other distributions. We are more
confident about our findings as they rely on a much larger number of data points,
and hence quantify the tails more reliably. We can also explain previous findings
in light of ours. Andersen, Bollerslev, Diebold, and Ebens [2001] show that the
bulk of the distribution of realized volatility is lognormal. In independent work,
Liu, Gopikrishnan, Cizeau, Meyer, Peng, and Stanley [1999] show that while this
is true, the tails seem to be power law.

14. Some studies quantify the power-law exponent of foreign exchange fluc-
tuations. The most comprehensive is probably Guillaume, Dacorogna, Davé, Mül-
ler, Olsen, and Pictet [1997], who calculate the exponent �r of the price movements
between the major currencies. At the shortest frequency �t 	 10 minutes, they
find exponents with average �r 	 3.44, and a standard deviation 0.30. This is
tantalizingly close to the stock market findings, though the standard error is too
high to draw sharp conclusions.

15. There is some dispersion in the measured exponent across individual
stocks [Plerou, Gopikrishnan, Amaral, Meyer, and Stanley 1999]. This is ex-
pected, as least because measured exponents are noisy. Proposition 5 makes
predictions about the determinants of a possible heterogeneity in the exponents.

FIGURE III
Empirical cumulative distribution function of the absolute value of the daily

return of the Nikkei (1984–1997), the Hang-Seng (1980–1997), and the S&P 500
(1962–1996). The apparent power-law behavior in the tails is characterized by the
exponents �r 	 3.05  0.16 (Nikkei), �r 	 3.03  0.16 (Hang-Seng), and �r 	
3.34  0.12 (S&P 500). The fits are performed in the region �r� between one and
ten standard deviations of returns. Source: Gopikrishnan et al. [1999].
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distribution of each size quantile by its standard deviation, so
that the normalized distributions all have a standard deviation of
1. The plots collapse on the same curve, and all have exponents
close to �r � 3.

The above results hold for relatively short time horizons—a
day or less.16 Longer-horizon return distributions are shaped by
two opposite forces. One force is that a finite sum of independent
power law distributed variables with exponent � is also power-law
distributed, with the same exponent �.17 Thus, one expects the
tails of monthly and even quarterly returns to remain power-law
distributed. The second force is the central limit theorem, which
says that if T returns are aggregated, the bulk of the distribution
converges to Gaussian. In sum, as we aggregate over T returns,
the central part becomes more Gaussian, while the tails remain a

16. Our analysis does not require exact power laws. It is enough that an
important part of the tail distribution is well approximated by a power law. For
instance, lognormal distributions with high variance are often well approximated
by Pareto distributions. The exponent is then interpreted as a local exponent, i.e.,
�( x) 	 �xp�( x)/p( x) � 1, rather than a global exponent.

17. This is one of the aggregation properties of power laws reviewed in
Appendix 1.

FIGURE IV
Cumulative distribution of the conditional probability P(�r� � x) of the daily

returns of companies in the CRSP database, 1962–1998. We consider the starting
values of market capitalization K, define uniformly spaced bins on a logarithmic
scale, and show the distribution of returns for each bin: K � [105,106] (E), K �
[106,107] (}), K � [107,108] (�), K � [108,109] (Œ). K is measured in 1962
constant dollars. (a) Unnormalized returns. Each cumulative distribution corre-
sponds to a bin of sizes. Small stocks are to the right, because they are more
volatile. (b) Returns normalized by the average volatility 
K of each bin. The plots
collapsed to an identical distribution, with �r 	 2.70  .10 for the negative tail,
and �r 	 2.96  .09 for the positive tail. The horizontal axis displays returns that
are as high as 100 standard deviations. Source: Plerou et al. [1999].
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power law with exponent �, but have an ever smaller probability,
so that they may not even be detectable in practice. See Bouchaud
and Potters [2003, pp. 33–35] for an example. In practice, the
convergence to the Gaussian is slower than if returns were inde-
pendently and identically distributed (i.i.d.), and one still sees fat
tails at yearly horizons [Plerou, Gopikrishnan, Amaral, Meyer,
and Stanley 1999, Figure 9]. A likely explanation is the autocor-
relation of volatility and trading activity [Plerou, Gopikrishnan,
Amaral, Gabaix, and Stanley 2000].18 A useful extension of the
present model would allow the desire to trade (or signal occur-
rences) to be autocorrelated, and might generate the right cali-
bration of autocorrelation of volatility and slow convergence to a
Gaussian.

In conclusion, the existing literature shows that while high
frequencies offer the best statistical resolution to investigate the
tails, power laws still appear relevant for the tails of returns at
longer horizons, such as a month or even a year.19

II.B. The Power Law Distribution of Trading Volume: �q � 3⁄2

To better constrain a theory of large returns, it is helpful to
understand the structure of large trading volumes. Gopikrish-
nan, Plerou, Gabaix, and Stanley [2000] find that the size of
individual trades for the 1000 largest U. S. stocks are also power-
law distributed:20

(3) P�q � x� � 1/x�q with �q � 3⁄2.

The precise value estimated is �q 	 1.53  .07. Figure V
illustrates: the density satisfies p(q) � q�2.5, i.e., (3). The expo-
nent of the distribution of individual trades is close to 1.5. Maslov
and Mills [2001] likewise find �q 	 1.4  0.1 for the volume of
individual market orders.

To test the robustness of this result, we examine 30 large
stocks of the Paris Bourse from 1995–1999, which contain ap-
proximately 35 million records, and 250 stocks of the London
Stock Exchange in 2001. As shown in Figure V, we find that �q 	

18. Aggregation issues may also be important to understand the dispersion of
exponents [Plerou, Gopikrishnan, Amaral, and Stanley 1999].

19. Dembo, Deuschel, and Duffie [2004], Ibragimov [2005], and Kou and Kou
[2004] develop further the importance of fat tails in finance.

20. We define volume as the number of shares traded. The dollar value traded
yields very similar results, since, for a given security, it is essentially proportional
to the number of shares traded.
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1.5  0.1 for each of the three stock markets. The exponent
appears essentially identical in the three stock markets, which is
suggestive of universality.

The low exponent �q � 3⁄2 indicates that the distribution of
volumes is very fat tailed, and trading is very concentrated.
Indeed, the 1 percent largest trades represent 28.5 percent (0.6
percent) of the total volume traded.21

The power law of individual trades continues to hold for
volumes that are aggregated (for a given stock) at the horizon
�t 	 15 minutes [Gopikrishnan, Plerou, Gabaix, and Stanley
2000]:

(4) P�Q � x� � 1/x�Q with �Q � 3⁄2.

We refer to equations (3)–(4) as the “half-cubic law of trading
volume.”

21. The 0.1 percent largest trades represent 9.6  0.3 percent of the total
volume traded. We computed the statistics on the 100 largest stocks of the Trades
And Quotes database in the period 1994–1995.

FIGURE V
Probability density of normalized individual transaction sizes q for three stock

markets: (i) NYSE for 1994–1995, (ii) the London Stock Exchange for 2001, and
(iii) the Paris Bourse for 1995–1999. OLS fit yields ln p( x) 	 �(1 � �q) ln x �
constant for �q 	 1.5  0.1. This means a probability density function p( x) �
x�(1��q), and a countercumulative distribution function P(q � x) � x��q. The
three stock markets appear to have a common distribution of volume, with a
power-law exponent of 1.5  0.1. The horizontal axis shows individual volumes
that are up to 104 times larger than the absolute deviation, �q � q� �.
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It is intriguing that the exponent of returns should be 3 and
the exponent of volumes should be 1.5. To see whether there is an
economic connection between those values, we turn to the rela-
tion between return and volume.

II.C. The Power Law of Price Impact: r � V�

The microstructure literature generally confirms that sub-
stantial trades can have a large impact. Chan and Lakonishok
[1993, 1995] estimate a range of 0.3 to 1 percent; Keim and
Madhavan [1996] find 4 percent for smaller stocks. There are also
many anecdotal examples of large investors affecting prices: see
Brady [1988], Corsetti, Pesenti, and Roubini [2002], and Coyne
and Witter [2002].22

A simple calculation illustrates why one can expect that a
large fund can move the market significantly. The typical yearly
turnover of a stock is 50 percent of the shares outstanding [Lo and
Wang 2001]: hence daily turnover is 0.5/250 	 0.2 percent based
on 250 trading days per year. Consider a moderately large fund,
e.g., the thirtieth largest fund. At the end of 2000, such a fund
held 0.1 percent of the market and hence, on average, 0.1 percent
of the capitalization of a given stock.23 To sell its entire holding,
the fund will have to absorb 0.1/0.2 or half of the daily turnover.
This supports the idea that large funds are indeed large com-
pared to the liquidity of the market, and that price impact will
therefore be an important consideration.

We next present evidence that the price impact r of a trade of
size V scales as

(5) r � kV�,

with k � 0, 0 � � � 1, which yields a concave price impact
function [Hasbrouck 1991; Hasbrouck and Seppi 2001; Plerou,
Gopikrishnan, Gabaix, and Stanley 2002]. The parameterization
� 	 1⁄2 is often used, e.g., by Barra [1997], Gabaix, Gopikrishnan,
Plerou, and Stanley [2003], Grinold and Kahn [1999], and Has-
brouck and Seppi [2001].

Equation (5) implies that �r 	 �V/� by rule (42) in Appendix

22. See also Chiyachantana, Jain, Jiang, and Wood [2004] for international
evidence, and Jones and Lipson [2001] and Werner [2003] for recent U. S.
evidence.

23. It had $19 billion in assets under management. The total market capi-
talization of the New York Stock Exchange, the Nasdaq, and the American Stock
Exchange was $18 trillion.
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1. Hence, given �r 	 3 and �V 	 3⁄2, the value � 	 1⁄2 is a
particularly plausible null hypothesis. From this relationship, we
see a natural connection between the power laws of returns and
volumes.

The exact value of � is a topic of active research. We report
here evidence on the null hypothesis � 	 1⁄2. We start from the
benchmark where, in a given time interval, n blocks are traded,
with volumes V1, . . . , Vn, of independent signs εi 	 1 with
equal probability. Aggregate volume is Q 	 ¥i	1

n Vi, and aggre-
gate return is

(6) r � u � k �
i	1

n

εiVi
1/ 2,

where u is some other orthogonal source of price movement.24

Then,

E�r2�Q� � 
u
2 � k2E� �

i

Vi � �
i�j

εiεiVi
1/ 2Vj

1/ 2�Q � �
i

Vi�
�7� � 
u

2 � k2Q � 0;

E�r2�Q� � 
u
2 � k2Q.

Our results of Figure VI reveals an affine relation predicted
by equation (7) for large volumes Q, rather than any clear sign of
concavity or convexity. A formal test that we detail in Appendix 3
confirms this relation.

Measuring price impact and its dependence on order size is a
complex problem due to the following reasons. First, order flow
and returns are jointly endogenous. To our knowledge, virtually
all empirical studies including ours, suffer from this lack of exo-
geneity in order flow.

25

Second, the unsplit size of orders is unobservable in most
liquid markets. One observes the size of individual trades q, not
the size of the desired block V. If one does not pay attention to
aggregation, different exponents of price impact are measured,

24. Via equation (6), a model such as ours provides a foundation for stochastic
clock representations of the type proposed by Clark [1973].

25. An exception is Loeb [1983], who collected bids on different size blocks of
stock. Barra [1997] and Grinold and Kahn [1999, p. 453] report that the best fit of
the Loeb data is a square root price impact.
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depending on the time horizon chosen [Plerou, Gopikrishnan,
Gabaix, and Stanley 2002, 2004; Farmer and Lillo 2004].26

Third, order flow is autocorrelated [Froot, O’Connell, and
Seasholes 2001; Bouchaud, Gefen, Potters, and Wyart 2004; Lillo
and Farmer 2004]. This autocorrelation could come from the
actions of different traders. It is also predicted by models of
optimal execution of trades [Almgren and Chriss 2000; Berstimas
and Lo 1998; Gabaix, Gopikrishnan, Plerou, and Stanley 2003],
as large transactions are split into smaller pieces.27

Although the empirical evidence we gathered is suggestive,
measuring the curvature � of price impact more accurately will
require better data and a technique to address the endogeneity of
order flow. In particular, it would require knowing desired trad-
ing volumes, magnitude of price impact, and split of trades for a

26. In a related way, part of the linearity of equation (7) can arise because in
some simple models total volume and squared returns depend linearly on the
number of trades [Plerou, Gopikrishnan, Amaral, Gabaix, and Stanley 2000].

27. If the trades are executed in the same time window, equation (7) still
holds. If they do not, the estimate of � is typically biased downward [Plerou,
Gopikrishnan, Gabaix, and Stanley 2004].

FIGURE VI
Conditional expectation E[r2�Q] of the squared return r2 in �t 	 15 minutes,

given the aggregate volume Q in �t. r is in units of standard deviation, and Q in
units of absolute deviation, �Q � Q� �. The results are averaged over the largest 100
stocks in the New York Stock Exchange market capitalization on January 1, 1994.
The data span the two-year period 1994–1995 and are obtained from the Trades
And Quotes database, which records all transactions for all listed securities in the
NYSE, AMEX, and NASDAQ. Formal tests reported in Appendix 3 show that one
cannot reject E[r2�Q] 	 � � �Q large enough (Q � 3). This is consistent with a
square root price impact of large trades. Appendix 3 reports the procedure used to
compute the 95 percent confidence intervals.
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set of large market participants. In the meantime, we consider
evidence such as Figure VI as supportive of a linear relationship
between volume and squared return. However, it is possible that
the true relationship is different, or may vary from market to
market. This is why we present a theory with a general curvature �.

II.D. The Power Law Distribution of the Size of Large Investors:
�S � 1

It is highly probable that substantial trades are generated by
very large investors. This motivates us to investigate the size
distribution of market participants. A power-law formulation,

(8) P�S � x� � 1/x�S,

often yields a good fit.
The exponent �S � 1, often called Zipf ’s law, is particularly

common. This relation is true for both cities [Zipf 1949; Gabaix
and Ioannides 2004] and firms [Axtell 2001; Okuyama, Takayasu,
and Takayasu 1999; Fujiwara, Di Guilmi, Aoyama, Gallegati, and
Souma 2004]. If the distribution of firms in general follows Zipf ’s
law, it is plausible to hypothesize that the distribution of money
management firms in particular follows Zipf ’s law. Indeed, Push-

FIGURE VII
Cumulative distribution of the size (assets under management) of the top

mutual funds in 1999. Source: Center for Research on Security Prices.
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kin and Aref [2004] find that this is the case for U. S. bank sizes,
measured by assets under management.

We investigate firms for which money management is the
core business: mutual funds.28 We use CRSP to obtain the size
(dollar value of assets under management) of all mutual funds29

from 1961–1999 (see Figure VII). For each year t, we estimate the
power-law exponent � of the tail distribution (20 percent cutoff)
via OLS. We find an average coefficient �t 	 1.10, with a stan-
dard deviation across years of 0.08.30 The Hill estimator tech-
nique gives a mean estimate �t 	 0.93 and a standard deviation
of 0.07. Hence we conclude that, to a good approximation, mutual
fund sizes follow a power-law distribution with exponent

(9) �S � 1.

For this paper we can take this distribution of the sizes of
mutual funds as a given. It is, in fact, not difficult to explain. One
can apply the explanations given for cities [Simon 1955; Gabaix
1999; Gabaix and Ioannides 2004] to mutual funds. Suppose that
the relative size Sit of a mutual fund i follows a random growth
process Sit 	 Si,t�1(1 � εit), with εit i.i.d. and mean 0. Add a
minor element of friction to small funds to ensure a steady state
distribution; for instance, very small funds are terminated and
are replaced by new funds. Then, this steady state distribution
follows Zipf ’s law with �S 	 1.31

Gabaix, Ramalho, and Reuter [2005] develop this idea and
show that these assumptions are verified empirically. This means
that the random growth of mutual funds generically leads their
size distribution to satisfy Zipf ’s law, �S 	 1.

It is only in the past 30 years that mutual funds have come to
represent a large part of the marketplace. It would be interesting
to have evidence on the size distribution of financial institutions
before mutual funds became important. For instance, pension

28. Here we sketch the main findings. Gabaix, Ramalho, and Reuter [2005]
present much more detail.

29. The x funds of Fidelity, for instance, count as x different funds, not as one
big “Fidelity” fund.

30. We cannot conclude that the standard deviation on our mean estimate is
0.08(1999 � 1961 � 1)�.5. The estimates are not independent across years,
because of the persistence in mutual fund sizes.

31. It may be useful to give a short proof. Suppose that the process is dSt 	
St
dBt. The steady state density p(S) satisfies the forward Kolmogorov equation
0 	 �t p 	 (1⁄2)(d2/dS2)(
2S2p(S)). This implies that p(S) 	 k/S2 for a constant
k, and a cumulative distribution P(S � x) 	 k/x, i.e., Zipf ’s law.
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funds of corporations are likely to follow Zipf ’s law, as the number
of employees in firms follow Zipf ’s law.

The evidence we present here is necessarily tentative. Esti-
mating a power law with a relatively small number of points is
very difficult, and all estimators require somewhat arbitrary pa-
rameters [Embrechts, Kluppelberg, and Mikosch 1997]. Further-
more, we had access to only a subset of the participants in the
U. S. market. Other important participants are hedge funds,
pension funds, and proprietary trading desks, and foreign insti-
tutions. It would be useful to weight the funds by their leverage
and their annual turnover. Nevertheless, given that Zipf ’s law
(equation (9)) has been found to describe the size of many other
entities, such as banks and firms in general, and appears to
describe well the upper tail of the empirical distribution of mu-
tual funds, we view equation (9) as a good benchmark.

II.E. Summary and Paradoxes

The facts summarized in this subsection present important
challenges. First, economic theories have difficulties in explain-
ing the power-law distribution of returns, as the efficient market
theory, and GARCH models, need to be fine-tuned to explain why
the distribution of returns would have an exponent of 3.

Second, it is surprising that the Pareto exponent of trading
volume is �q � 1.5, while that of institution size is �S � 1. In
models with frictionless trading, all agents have identical portfo-
lios and trading policies, except that they are scaled by the size S
of the agents (which corresponds to wealth). Hence frictionless
trading predicts that the distribution of trading volume of a given
stock should reflect the distribution of the size of its investors; i.e.,
�q 	 �S � 1.32 However, we find that �q � �S.33 A likely cause is
the cost of trading; large institutions trade more prudently than
small institutions, because price impact is monotonically increas-
ing in trade size.

Finally, the basic price impact model [Kyle 1985] predicts a

32. Solomon and Richmond [2001] have proposed a model that relies on a
scaling exponent of wealth �S 	 3⁄2. We are sympathetic to this approach that
links wealth to volumes. In the present study we use the size distribution of
institutions, rather than individual wealth, because most very large trades are
likely to be done by institutions rather than by private individuals. Also, the
Pareto exponent of wealth and income is quite variable (e.g., Davies and Shor-
rocks [2000] and Piketty and Saez [2003]).

33. The lower the power-law exponent, the fatter the tails of the variable. See
Appendix 1.
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linear relation between returns and volume, which would imply
�r 	 �q. To explain why �q/�r is close to 1⁄2 , we require a model
with curvature of price impact � 	 1⁄2 .

We now present a model that attempts to resolve the above
paradoxes.34

III. THE MODEL

We consider a large fund in a relatively illiquid market. We
first describe a rudimentary model for the price impact of its
trades. Next, we link the various power law exponents; this
represents the core contribution of this paper. One could employ
different microfoundations for price impact without changing our
conclusions.

III.A. A Simple Model to Generate a Power Law Price Impact

Before presenting, in subsection III.B, the core of the model,
we first present a simple microfoundation for the square root
price impact. The basic model of Kyle [1985] predicts a linear
price impact. Subsequent models, such as Seppi [1990], Barclay
and Warner [1993], and Keim and Madhavan [1996], generate a
concave impact in general. Zhang [1999] and Gabaix, Gopikrish-
nan, Plerou, and Stanley [2003] produce a square root function in
particular.35 The model used in this section is a formalized ver-
sion of a useful heuristic argument, sometimes called the “Barra
model” of Torre and Ferrari [Barra 1997].

We consider a single risky security in fixed supply, with a
price p(t) at time t. The large fund (“he”) buys or sells the security
from a liquidity supplier (“she”). The timing of the model is as
follows:

At time t 	 0, the fund receives a signal M about mispricing:
M � 0 is a sell signal; M � 0 is a buy signal. Without loss of
generality, we study a buy signal. The analysis is symmetric for
a sell signal.

At t 	 1 � 2ε (ε is a small positive number), the fund

34. Gabaix, Gopikrishnan, Plerou, and Stanley [2003] present a reduced form
of some elements of the present article.

35. Gabaix, Gopikrishnan, Plerou, and Stanley [2003] predicts that a trade of
size V will be traded into N 	 V1/ 2 smaller chunks. This has the advantage of
generating a power-law distribution of the number of trades with exponent �N 	
2�V 	 3, which is close to the empirical value [Plerou, Gopikrishnan, Amaral,
Gabaix, and Stanley 2000]. We did not keep it in the current model, because we
wanted to streamline the microfoundation of price impact.
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negotiates a price with the liquidity supplier. For simplicity, we
assume liquidity provision is competitive so that the fund has full
bargaining power. The liquidity supplier sells to the fund the
quantity V of shares, at a price p � R, where p 	 p(1 � 2ε) is the
price before impact and R is the price concession, or full price
impact.36

At t 	 1 � ε, the transaction is announced to the public.
At t 	 1, the price jumps to p(1) 	 p � �(V), where �(V) is

the permanent price impact. The difference between � and R is
the temporary price impact � 	 R � �. Equilibrium will deter-
mine the value of the permanent price impact �(V) and the price
concession R(V).

From t 	 1 onwards, the price follows a random walk with
volatility 
:

(10) p�t� � p � ��V� � 
B�t�,

where B is a standard Brownian motion with B(1) 	 0. Also, at
t 	 1, the liquidity supplier starts replenishing her inventory.
She continuously meets sellers who are willing to sell her a
quantity V� dt of the stock at price p(t): she is a price taker as she
can credibly assure that she is not informed. The liquidity sup-
plier continues to buy shares until her inventory is fully replen-
ished, which happens after a time T 	 V/V� . The price continues
to evolve according to (10).37

The liquidity provider benefits from the temporary price im-
pact �, but then faces price uncertainty as she replenishes her
inventory [Grossman and Miller 1988]. To evaluate these effects,
we assume that the liquidity provider has the following mean
variance utility function on the total amount W of money earned
during the trade:

(11) U � E�W� � ��var �W���/ 2,

36. To keep the mathematics simple, the impact is additive, and the price
otherwise follows a random walk. It is easy, though cumbersome, to make the
price impact proportional and the log price follow a random walk. Our conclusions
about the power-law exponents would not change.

37. We wish to add two comments about the timing of the model. In our
model, the large fund trades in one block (at time t 	 1), and the liquidity provider
trades in many smaller chunks (at time t � (1, 1 � T]). Many alternative timing
assumptions would leave the scaling relations unchanged (12), with the same �.
Also, the exchange between the large fund and the liquidity supplier is an
“upstairs” block trade. In an upstairs trade, the initiator typically commits not to
repeat the trade too soon in the future. This prevents many market manipulation
strategies that might otherwise be possible with a nonlinear price impact, such as
those analyzed by Huberman and Stanlz [2004].
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with � � 0 and � � 0. The liquidity supplier requires compensa-
tion equal to �
� to bear a risk of standard deviation 
, i.e., has
“�th order risk aversion.”38 With standard mean-variance prefer-
ences, � 	 2. In many cases, a better description of behavior is
first-order risk aversion, which corresponds to � 	 1.39

One justification for first-order risk aversion comes from
psychology. Prospect theory [Kahneman and Tversky 1979] pre-
sents psychological evidence for this behavior, which has also
been formalized in disappointment aversion [Gul 1991; Backus,
Routledge, and Zin 2005]. Second, first-order risk aversion is
frequently needed to calibrate quantitative models, such as Ep-
stein and Zin [1990] and Barberis, Huang, and Santos [2001]. A
third justification is institutional, as (11) can reflect a value at
risk penalty, where � is the size of the penalty, and var (W)1/ 2 is
proportional to the value at risk. Another institutional justifica-
tion is via the Sharpe ratio. If a trader uses a rule to accept trades
if and only if their Sharpe ratio is greater than �, then he will
behave as if he exhibits first-order risk aversion.

PROPOSITION 1. The setup of this section generates the temporary
price impact function:

(12) ��V� � HV�

with H 	 �
�/(3V� )�/2 and
� � 3�/ 2 � 1.

For future reference, it is useful to state separately our
central case.

PROPOSITION 2. If the liquidity provider is first-order risk averse,
then the price impact increases with the square root of traded
volume:

� � 1⁄2

and

(13) ��V� � �
� V
3V� �

1/ 2

38. Essentially all nonexpected utility theories need a postulate on how
different gambles are integrated. Here, we assume that the liquidity provider
evaluates individually the amount W earned in the trade.

39. The model also generates a square root price impact with a different
specification that generates first-order risk aversion, for instance the loss averse
utility function: U 	 E[max (W,0)] � �E[min (W,0)] with � � 1.
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 is the daily volatility of the stock, and � the risk aversion
of the liquidity provider.

In practice, V� is likely to be proportional to the daily trading
volume. Hence the scaling predictions of equation (13) can be
almost directly examined.

The proof is in Appendix 2. The intuition is that the liquid-
ity provider needs a time T 	 V/V� to buy back the V shares.
During that time, the price diffuses at a rate 
. Hence the
liquidity provider faces a price uncertainty with standard de-
viation 
�T � 
�V. If the liquidity provider is first-order risk
averse, the price concession � is proportional to the standard
deviation, hence � � 
�V, i.e., equation (13).

To close the model, we need to determine both the permanent
and the full price impact. The determination of these two vari-
ables typically depends on the fine details of the information
structure processed by the other market participants. We use a
somewhat indirect route, which drastically simplifies the
analysis.

ASSUMPTION 1. We assume that the market uses a linear rule to
determine the full price impact,

(14) R�V� � B��V�

for some B � 0. Subsection IV.A presents conditions under
which the linear rule (14) is actually optimal.

Assumption 1 closes the price impact part of the model.

PROPOSITION 3. The above setup generates the price concession
function

(15) R�V� � hV�,

where h 	 BH, and H and � are determined in Propositions
1 and 2.

III.B. The Core Model: Behavior of a Large Fund

We now lay out the core of our model. The fund periodically
receives signals about trading opportunities, which indicate that
the excess risk-adjusted return on the asset is stMtC̃. st, Mt and
C̃ are independent. st 	 1 is the sign of the mispricing. Mt is the
expected absolute value of the mispricing. Mt is drawn from a
distribution f(M), which we assume to be not too fat-tailed.
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ASSUMPTION 2. We assume that M is not too fat-tailed: E[M1�1/�]
� �.

The model misspecification risk C̃ captures uncertainty over
whether the perceived mispricing is in fact real. For example, the
fund’s predictive regressions may result from data mining, or the
mispricing may have since been arbitraged away. C̃ can take two
values, 0 and C*. If C̃ 	 0, the signals the fund perceives are pure
noise, and the true average return on the perceived mispricings is
0. If C̃ 	 C*, the mispricings are real. We specify E[C̃] 	 1, so
that M represents the expected value of the mispricing.

The fund has S dollars in assets. If it buys a volume Vt of the
asset, and pays a price concession R(Vt), the total return of its
portfolio is

(16) rt � Vt�C̃Mt � R�Vt� � ut�/S,

where ut is mean zero noise.
If the model is wrong, expected returns are

(17) E�rt�C̃ � 0� � �VtR�Vt�/S.

We assume that the manager has a concern for robustness. He
does not want his expected return to be below some value ��
percent if his trading model is wrong. Formally, this means that

(18) E�rt�C̃ � 0� � ��.

Equation (18) can be justified in several ways. One is a
psychological attitude toward model uncertainty, developed in
depth by Gilboa and Schmeidler [1989] and Hansen and Sargent
[2005]. Second, equation (18) is a useful rule of thumb, which can
be applied without requiring detailed information about the fine
details of model uncertainty. A third explanation is delegated
management [Shleifer and Vishny 1997]. If trader ability is un-
certain, investors may wish to impose a constraint such as equa-
tion (18) to prevent excessive trading.

To simplify the algebra, we assume that, subject to the ro-
bustness constraint, the manager wants to maximize the ex-
pected value of his excess returns E[r].40 We now summarize
this.

40. One might prefer the formulation maxV(M,S) E[u(r)] subject to
E[u(r)�C 	 0] � u(�R), with a concave utility u. Fortunately, this does not
change the conclusions in many instances, such as u(r) 	 �e��r, � � 0. On the
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DEFINITION 1. Suppose that the fund has S dollars under manage-
ment. The fund’s optimal policy is a function V(M,S) that
specifies the quantity of shares V traded when the fund
perceives a mispricing of size M. It maximizes the expected
returns E[rt] subject to the robustness constraint (18):

(19) max
V�M,S�

E�rt� subject to E�rt�C̃ � 0� � ��.

III.C. Optimal Strategy and Resulting Power Law Exponents

We can now derive the large fund’s strategy. Given equation
(16), Definition 1 is equivalent to

max
V�M,S�

1
S 	

0

�

V�M,S��M � R�V�M,S��� f�M�dM

subject to

�1
S 	

0

�

V�M,S�R�V�M,S�� f�M�dM � ��.

Appendix 2 establishes the following proposition.

PROPOSITION 4. If constraint (18) binds, the optimal policy for a
fund of size S perceiving a mispricing of size M is to trade a
volume
(20) V�M,S� � vM1/�S1/�1���.

The price change after the trade is
(21) R�M,S� � hv�MS�/�1���

for a positive constant v, defined in equation (48), which is
increasing in � and decreasing in h.

Equation (21) means that price movements reflect both the
intensity of the perceived mispricing M, and the size of the fund
S. Concretely, a large price movement can come from an extreme
signal or the trade of a large fund [Easley and O’Hara 1987].

In the remaining analysis, we assume that (18) holds over
the support of S.

other hand, with a nonlinear function u the derivations are more complex, as they
rely on asymptotic equalities, rather than exact equalities. To keep things simple,
we use the linear representation (19).
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ASSUMPTION 3. The robustness constraint (18) binds for all funds
in the market above a certain size.

A simple calibration presented in Appendix 2 shows that
Assumption 3 holds for funds that manage less than S* 	 $21
trillion dollars. Assumption 3 is not very stringent. Alternatively,
subsection IV.C shows a way to ensure Assumption 3 without any
finite size effects.41

We next derive the distribution of volume and price changes.

PROPOSITION 5. The traded volume and the price changes follow
power-law distributions with respective exponents:

(22) �V � min ��1 � ���S, ��M�

(23) �R � min ��1 �
1
���S, �M�.

Equation (22) implies that the distribution of price move-
ments reflects both the “news” (perhaps coming from proprietary
analysis), as reflected in M, as well as the size S of the agents that
act on the news. Equation (23) illustrates the resulting exponent.
In equilibrium, it is the fatter of the two tails of signals and sizes
that matters. Mathematically, this comes from the properties (38)
of power laws: the tail exponent of the product of two independent
random variables X1 and X2 is equal to the tail exponent of the
more fat-tailed variable, i.e., is the lower of the exponents of X1
and X2. Economically, this means that the polar case, where large
investors affect the tail of trading volume, is captured when �M �
(1 � 1/�)�S. Then, we get

(24) �V � �1 � ���S

(25) �R � �1 �
1
���S.

Equation (23) then means that, when there is a very large move-
ment, it is more likely to come from the actions of a very large
institution (the S term), rather than an objectively important
piece of news (the M term). This potential importance of a large

41. Such cutoffs are generally present when handling power laws, and are
sometimes called “border” or “finite size” effects. The cutoff affects only very little
predictions. For instance, it affects the power-law exponent of returns only by a
factor 10�3 if a large fund has a size S 	 10�3S*, which is a plausible empirical
order of magnitude.
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institution may explain why, during the Long Term Capital Man-
agement crisis, the October 1987 crash, and the events studied by
Cutler, Poterba, and Summers [1989], prices moved in the ab-
sence of significant news items. In the context of our theory, the
extreme returns occurred because some large institutions wished
to make substantial trades in a short time period.

Proposition 5 says that when the distribution of the size of
institutions is more fat-tailed, volume and returns are also more
fat-tailed. However, when the curvature � of price impact is
smaller, returns are less fat-tailed, but volumes are more fat-
tailed. The reason is that large institutions trade more moder-
ately when the price impact is steeper. We now apply Proposition
5 to our baseline values.

PROPOSITION 6. With a square root price impact (� 	 1⁄2) and Zipf ’s
law for financial institutions (�S 	 1), volumes and returns
follow power-law distributions, with respective exponents of
3⁄2 and 3:

(26) �V � 3⁄2

(27) �R � 3.

These exponents are the empirical values of the distribution
of volume and returns.

Proposition 6 captures our explanation of the origins of the
cubic law of returns, and the half-cubic law of volumes. Random
growth of mutual funds leads to Zipf ’s law of financial institu-
tions, �S 	 1. The model in subsection III.A leads to a power law
price impact with curvature � 	 1⁄2 . As large funds wish to lessen
their price impacts, their trading volumes are less than pro-
portional to their size. This generates a power-law distribution
of the size of trades that is less fat-tailed than the size distri-
bution of mutual funds. The resulting exponent is �V 	 3⁄2,
which is the empirical value. Trades of large funds create large
returns, and indeed the power law distribution of returns with
exponent �r 	 3.

IV. ROBUSTNESS AND EXTENSIONS

IV.A. Permanent versus Transitory Price Impact

So far we have analyzed the full price impact R, which is the
sum of a permanent component � and transitory component �:
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R 	 � � �. We provide a sufficient condition that will ensure that
the permanent and the full price impacts are proportional. In a
Bayesian framework, the price impact must come from an infer-
ence, which from Proposition 4 is

(28) ��V� � E�M�hV� � hv�M�S�/�1����.

The conditional expectation (28) is complicated and can be non-
linear. It is difficult to see how agents would apply Bayes’ rule to
compute (28), which requires knowing the distribution of M, and
M is not a directly observable quantity. However, these difficul-
ties vanish in a class of cases—when agents use (28) with the
belief that �M � �R. The case where they believe �M 	 �R is
particularly plausible. If one does not know the distribution of
mispricings perceived by other agents, one might hypothesize
that it is close to the distribution of returns. This motivates the
following proposition.

PROPOSITION 7. Suppose that updaters performing (28) believe
�M � �R. Then, the exponent �� of the permanent price
impact is equal to the exponent �R of the full price impact,
and is given by Proposition 5:

(29) �� � �R � min ��1 �
1
���S, �M�.

If the updaters believe �M � �R, there is a constant b � 0
such that, for large volumes V, the permanent price impact is

(30) ��V� � E�M�V� � bV�.

If updaters performing (28) believe �M 	 �R, then �(V) 	
V�L(V), where L is a “slowly varying” function that varies
more slowly than any polynomial (see Appendix 1).

Proposition 7 presents sufficient conditions for �(V) to pre-
serve the power-law price impact under Bayesian updating, and
thus to justify Assumption 1.

IV.B. Multiple Stocks

The model can easily be extended to multiple stocks. Suppose
that stock i has a power-law impact Ri(V) 	 hiV

�, that the signal
Ms are independent across stocks, and the model misspecification
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risk C̃ is common across stocks.42 The trader’s program is to
maximize the expected profit from trading over all stocks:

max
Vi�Mi,S�,i	1,...,n

1
S �

i
	

0

�

Vi�Mi,S��Mi � Ri�Vi�M,S��� fi�Mi�dMi,

subject to the robustness constraint that he does not lose more
than � percent in price impact costs:

1
S �

i
	

0

�

Vi�Mi�Ri�V�M�� fi�Mi�dMi � �.

Following the proof of the main proposition, one can show
that the solution is hiVi(Mi,S)� 	 KMiS

�/(1��), where K does not
depend on i and S. Hence, the power law exponents derived in
Propositions 5–6 follow.

IV.C. Different Quality of Signals across Firms

We now allow the quality of signal M to differ across funds,
and show that this does not affect our results. We assume that
fund f receives signals distributed according to M 	 �fm, where
�f is the quality of the fund’s signals, and the distribution of m is
the same across funds. Following the proof of Proposition 4, the
optimal trading quantity of a fund of size S is still, for a constant
K 	 (�/h)1/(1��):

V�m,S� � K
M1/�S1/�1���

E�M�1���/��1/�1��� � K
m1/�S1/�1���

E�m�1���/��1/�1��� ,

as M 	 �fm. The average quality �f of the signals disappears.
Hence, one still obtains �V 	 min [(1 � �)�S, ��m] and �R 	 �V/�.

In general, one expects larger firms to have a higher �. For
instance, if signals are generated according to a production func-
tion �(F) 	 F�, where F denotes investment in research, then the
optimal investment for a fund satisfies maxF CF�S�/(1��) � F, for
a constant C. Hence F � S�/[(1��)(1��)] and the quality of signals
is � � S� for � 	 ��/[(1 � �)(1 � �)].

This framework allows us to provide a microfoundation for
Assumption 3 without any upper cutoff. The proof of Proposition
4 shows that Assumption 3 holds if

42. It is easy to verify that C̃ could also be specific to each stock, or to each one
of different classes of stocks.
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S �
E�M1�1/����1 � �����1�1/��

h1/��

�
E�m1�1/����1 � �����1�1/��

h1/��
S���1���/�� � S�/�1���,

which holds if � � 1⁄2 and S is large enough. Thus, Assumption 3
is automatically verified if the production function of market
research rises faster than � 	 F1/ 2.

IV.D. Discussion and Questions for Future Research

Is it reasonable to believe that there are institutions large
enough to cause the power-law distribution of returns? In view of
the empirical facts, we believe so. The large volumes in Figure V,
which can be 1000 times bigger than the median trades, must
come from very large traders. They are also associated with
extreme price movements (Figure VI). However, a natural analy-
sis would be to investigate directly whether extreme movements
without news [Cutler, Poterba, and Summers 1989] are caused by
a small number of large institutional investors. The growing
availability of databases that track individual trades may allow
such a study to be conducted in the near future. Note that the
existence of prime movers does not preclude that, subsequently,
many traders will move in the same way. Quantifying the impor-
tance of idiosyncratic movements of large trades versus corre-
lated movements of beliefs of most traders would be interesting.43

One prominent example of a large fund disrupting the mar-
ket is Long Term Capital Management. Its collapse created a
volatility spike that did not subside for several months. Our
contribution is a model of the initial impulse—the form and the
power-law distribution of the initial disruption by a large trade.
We leave to future research the important task of modeling the
specifics of the cascade that followed the initial impulse.44 We
speculate that the empirical facts we present, and our baseline
model of initial impulses, will be useful for this future research.

A second example is the Brady [1988] report on the 1987

43. Gabaix [2005] finds that the idiosyncratic movements of large firms
explain a substantial fraction of macroeconomic activity, and Canals, Gabaix,
Vilarrubia, and Weinstein [2005] find that idiosyncratic shocks explain a large
fraction of international trade.

44. Abreu and Brunnermeier [2003], Bernardo and Welch [2004], Gennotte
and Leland [1900], Romer [1993], and Greenwald and Stein [1991] also present
elements for a theory of crashes.
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crash. On the crash day of Monday, October 19, 1987, “this
trading activity was concentrated in the hands of surprisingly few
institutions. . . . Sell programs by three portfolio insurers ac-
counted for just under $2 billion in the stock market. . . . Block
sales by a few mutual funds accounted for about $900 million of
stock sales,” on a total of $21 billion traded [p. v] and “One
portfolio insurer alone sold $1.3 billion” [p. III-22]. In the first half
hour of trading, “roughly 25 percent of the volume . . . came from
one mutual fund group” [p. 30]. The report concludes that “much
of the selling pressure was concentrated in the hands of surpris-
ingly few institutions. A handful of large investors provided the
impetus for the sharpness of the decline” [p. 41]. Of course, some
of the investors in the Brady report are program traders, which
amplify existing movements, rather than cause them. Also, our
model is still too limited to allow the rich dynamic analysis
suggested by the Brady report. Nonetheless, the evidence from
the report is strongly suggestive of the hypothesis that a few
traders move a relatively illiquid market.

Our theory suggests a number of research angles. First, it
would be desirable to study fully dynamic extensions of the
model. The analysis becomes much more difficult (see e.g., Vaya-
nos [2001] and Gabaix, Gopikrishnan, Plerou, and Stanley
[2003]), but the simplicity of the empirical distributions suggests
that a simple dynamic theory of large events may be within
reach.45

Second, it would be interesting to study the distribution of
fund “effective” size (assets multiplied by leverage) across classes
of stocks. Proposition 5 predicts that the more fat-tailed the size
distribution of traders, the more fat-tailed the distributions of
volume and returns. Investigating this prediction directly might
explain a cross-sectional dispersion of power-law exponents.

Third, our model predicts that the total price impact cost paid
by a fund of size S will be proportional to S, and that the total
volume traded with sizable price impact will be proportional to
S1/(1��). Testing this proposition directly would be useful.

Fourth, the model suggests a particularly useful functional

45. Engle and Russell [1998] and Liesenfeld [2001] present interesting em-
pirical investigations of the dynamic relations between trading and returns.
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form for “illiquidity,” which corresponds more closely to the pre-
factor of Proposition 346:

(31) Ĥ � E� �rt�
Vt

��
(32) Ĥ� �

cov ��rt�, Vt
��

var Vt
� .

Again, the evidence, and some models, suggests � 	 1⁄2 , but other
values may prove better suited. Expressions (31) and (32) are
likely to be more stable than other measures. Indeed, volume is a
fat-tailed variable (it has infinite variance), so using a square root
of volume is likely to yield a more stable measure than volume
itself. Furthermore, the model also suggests that Ĥ and Ĥ� will be
proportional to 
/M1/ 2, where 
 is the volatility of the stock and
M is its market capitalization.

Fifth, our approach suggests a way to estimate the power-law
exponent of price impact, �, and the power-law exponent of the
distribution of financial institutions, �S, for instance across mar-
kets. One first estimates separately the power-law exponents of
volumes and returns, �q and �r. Then one defines the estimators
�̂ and �̂S by

(33) �̂ �
�q

�r

(34)
1
�̂S

�
1
�r

�
1
�q

.

Proposition 5 indicates that these are consistent estimates of �
and �S in the polar case where �M � �S(1 � �)/�.47

Finally, the theory makes predictions about the comove-
ments in returns, volume, and signed volume (the sum of volumes
traded on a price increase minus volume traded on a price de-
crease). Its variant in Gabaix, Gopikrishnan, Plerou, and Stanley
[2003] adds predictions in the number of trades and signed num-
ber of trades. The results show nonlinear patterns, and the re-
sults, reported in Figure 3 of Gabaix, Gopikrishnan, Plerou, and

46. One could even calculate the two expressions only for volumes above a
certain threshold, e.g., the mean volume.

47. It is tempting to call equation (34) a “reciprocity law” that holds irrespec-
tive of �.
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Stanley [2003], show a quite encouraging fit between theory and
data.

V. CONCLUSION

This paper proposes a theory in which large investors gener-
ate significant spikes in returns and volume. We posit that the
specific structure of large movements is due to the desire to trade
of sizable institutional investors, stimulated by news. The distri-
bution of fund sizes, coupled with large traders’ moderation of
their trading volumes and a concave price impact function, gen-
erates the Pareto exponents 3 and 3⁄2 for the distribution of
returns and volumes.

We introduce some new questions that finance theories
should answer. Matching, as we do, the quantitative empirical
regularities outlined here (in particular explaining the exponents
of approximately 3 and 3⁄2 from first principles rather than by
assumption) should be a sine qua non criterion for the admissi-
bility of a model of volume and volatility. We hope that the
regularities we established will constrain and guide future theo-
ries. Given its simple structure, the present model might be a
useful point of departure for thinking about these issues.

APPENDIX 1: SOME POWER LAW MATHEMATICS

A. Definitions

We present here some basic facts about power-law mathe-
matics, and show how their aggregation properties make them
especially interesting for both theoretical and empirical work.
They also show how our predictions are robust to other sources of
noise.

A random variable X has power-law behavior if there is a
�X � 0 such that the probability density p( x) follows:

(35) p�x� � �XC/x�X�1

for x 3 �, and a constant C. This implies (e.g., Resnick [1987, p.
17]) that the “counter-cumulative” distribution function follows:

(36) P�X � x� � C/x�X.
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A more general definition is that there is a “slowly varying”48

function L( x) and a �X such that p( x) � L( x)/x�X�1, so that the
tail follows a power law up to slowly varying corrections.

�X is the (cumulative) power-law exponent of X. A lower
exponent means fatter tails: �X � �Y implies that X has fatter
tails than Y, hence the large X’s are (infinitely, at the limit) more
frequent than large Y’s.

If � is a constant, E[�X��] 	 � for � � �X, and E[�X��] � � for
0 � � � �X. For instance, if returns have power-law exponents
�r 	 3, their kurtosis is infinite, and their skewness borderline
infinite.49 If all moments are finite (e.g., for a Gaussian distribu-
tion), the formal power-law exponent is �X 	 �.

B. Transformation Rules

Power laws have excellent aggregation properties. The prop-
erty of being distributed according to a power law is conserved
under addition, multiplication, polynomial transformation, min,
and max. The general rule is that, when we combine two power-
law variables, “the fattest (i.e., the one with the smallest expo-
nent) power law dominates.” Indeed, for X1, . . . , Xn indepen-
dent random variables, and � a positive constant, we have the
following formulas:

(37) �X1�...�Xn � min ��X1, . . . , �Xn�

(38) �X1�...�Xn � min ��X1, . . . , �Xn�

(39) �max�X1,...,Xn� � min ��X1, . . . , �Xn�

(40) �min�X1,...,Xn� � �X1 � . . . � �Xn

(41) ��X � �X

(42) �X� � �X/�.

48. L( x) is said to be slowly varying (e.g., Embrechts, Kluppelberg, and
Mikosch [1997, p. 564]) if for all t � 0, limx3� L(tx)/L( x) 	 1. Prototypical
examples are L 	 a and L( x) 	 a ln x for a nonzero constant a.

49. This makes the use of the kurtosis invalid. As the theoretical kurtosis is
infinite, empirical measures of it are essentially meaningless. As a symptom,
according to Lévy’s theorem, the median sample kurtosis of T i.i.d. demeaned
variables r1, . . . , rT, with �T 	 (¥i	1

T ri
4/T)/(¥i	1

T ri
2/T)2, increases to �� like

T1/3 if �r 	 3. The use of kurtosis should be banished from use with fat-tailed
distributions. As a simple diagnostic for having “fatter tail than from normality,”
we would recommend, rather than the kurtosis, quantile measures such as
P(�(r � r� )/
r� � 1.96)/.05 � 1, which is positive if tails are fatter than predicted
by a Gaussian.
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For instance, if X is a power-law variable for �X � �, and Y
is power-law variable with an exponent �Y � �X, or even normal,
lognormal, or exponential variable (so that �Y 	 �), then X � Y,
X � Y, max (X,Y) are still power laws with the same exponent �X.
Hence multiplying by normal variables, adding thin-tailed
noise, or summing over i.i.d. variables preserves the exponent.
This makes theorizing with power law very streamlined. Also,
this gives the empiricist hope that those power laws can be
measured, even if the data are noisy: although noise will affect
statistics such as variances, it will not affect the power-law
exponent. Power-law exponents carry over the “essence” of the
phenomenon: smaller order effects do not affect the power-law
exponent.

For example, our theory gives a mechanism by which �r 	 3.
In reality, we observe r̃� 	 ãr̃ � b̃, where ã and b̃ are other
random factors not modeled in the theory. We will still have �r� 	
�r 	 3 if ã and b̃ have thinner tails than r̃ (�a,�b � 3). If the
theory of r̃ captures the first-order effects (those with dominating
power law), its predictions for the power-law exponents of the
noisy empirical counterpart r̃� will hold.

Proof. See Breiman [1965] and Gnedenko and Kolmogorov
[1968] for rigorous proofs, and Sornette [2000] for heuristic deri-
vations. Here we just indicate the proofs for the simplest cases.
By induction it is enough to prove the properties for n 	 2
variables:

P�max �X,Y� � x� � 1 � P�max �X,Y� � x� � 1 � P�X � x and

Y � x� � 1 � P�X � x�P�Y � x� � 1 � �1 �
C
x�X��1 �

C�

x�y� �
C�

xmin��X,�Y� ,

where C� 	 C if �X � �Y, C� 	 C� if �X � �Y, and C 	 C � C�
if �X 	 �Y.

P�min �X,Y� � x� � P�X � x and Y � x�

� P�X � x�P�Y � x� �
CC�

x�X��Y .

Finally, if P(X � x) � Cx��X, then

P�X� � x� � P�X � x1/�� � C�x1/����X � Cx��X/�.

■
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C. Estimating Power-Law Exponents

There are two basic methodologies for estimating power-
law exponents. We illustrate them with the example of abso-
lute returns. In both methods, one first selects a cutoff of
returns, and orders the observations above this cutoff as
r(1) � . . . � r(n). There is yet no consensus on how to pick the
optimal cutoff, as systematic procedures require the econome-
trician to estimate further parameters [Embrechts, Kluppel-
berg, and Mikosch 1997]. Often, the most reliable procedure is
to use a simple rule, such as choosing all the observations in
the top 5 percent.

The first method is a “log rank log size regression,” where � is
estimated as the OLS coefficient on r(i) in the regression of log of
the rank i on the log size:

(43) ln i � A � �̂OLS ln r�i� � noise

with asymptotic standard error �̂OLS � (n/ 2)�1/ 2 [Gabaix and
Ibragimov 2006]. This method is the simplest, and yields a visual
goodness of fit for the power law. This is the approach used, for
instance, in Figure I. The second method is Hill’s estimator

(44) �̂Hill � �n � 1�
 �
i	1

n�1

�ln r�i� � ln r�n��,

which has an asymptotic standard error �̂Hilln�1/ 2.
Both methods have pitfalls, discussed in Embrechts, Klup-

pelberg, and Mikosch [1997, pp. 330–345] and Gabaix and Ioan-
nides [2004]. One large pitfall is the assumption of independent
observations. In reality, trading activity is autocorrelated which
causes standard errors to be underestimated; however, point
estimates remain unbiased. In a future paper we plan to propose
a method of estimating the standard errors. In any case, the
stability of the estimates across different periods, countries, and
classes of assets gives us confidence that the empirical estimates
we report here are robust.

With the samples of millions of points available in finance,
standard errors are so small that one can reject essentially any
null hypothesis. Hence, researchers estimating power laws
typically do not use tests to see whether a distribution with
more parameters would offer a better fit. With so many data
points, statistical tests would always justify a higher-dimen-
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sional parameterization, even though economically, the im-
provement in fit would be minimal. Rather, �̂ is best inter-
preted as the optimal one-parameter approximation of the tail
by a Pareto family. Explaining the value of this one-parameter
approximation is already a difficult challenge. Explaining the
higher order terms may be best left for future decades of
research.

APPENDIX 2: PROOFS

Proof of Proposition 2. We use T 	 V/V� and B(1) 	 0 to
calculate

var �	
1

1�T

B(t) dt� � var �	
0

T �	
0

s

dB(1 � u)� ds�
� var �	

0

T �	
u

T

ds� dB(u � 1)� � var �	
0

T

(T � u) dB(u � 1)�
� 	

0

T

�T � u�2 du �
T3

3 �
V3

3V� 3 .

The liquidity provider sells V shares to the fund at a price
p � � � �, and replenishes her inventory during [1, 1 � T] at a
total cost K 	  1

1�T p(t)V� dt. Her net income from the transac-
tion is

W � �p � � � ��V � 	
1

1�T

p�t�V� dt � �p � � � ��V

� 	
1

1�T

�p � � � 
B�t��V� dt � �V � 
V� 	
1

1�T

B�t� dt.

Her utility is

U � E�W� � ��var W��/ 2 � �V � ��
2V� 2 var �	
1

1�T

B(t) dt���/ 2

� �V � ��
2V3

3V� ��/ 2

.
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The fund has full bargaining power, and so leaves the liquid-
ity supplier with a reservation utility U 	 0. This implies that

� � �� 
2

3V� �
�/ 2

V3�/ 2�1.

Economically, the liquidity provider purchases the stock back
at an average price p� 	 T�1  1

1�T p(t) dt, which has expected
value p � � and standard deviation 
(V/3V� )1/ 2. The temporary
impact � is the compensation for this price risk of 
(V/3V� )1/ 2.

Proof of Proposition 4. In this proof we use the notation V(M)
rather than V(M,S). The Lagrangian is

L � 	 V�M��M � R�V�M��� f�M�dM � ! 	 V�M�R�V�M��

� f�M�dM � 	 V�M��M � �1 � !�hV�M��� f�M�dM.

It is sufficient to optimize on V(M) separately for each M:

(45) 0 �
�L

�V�M�
�

�

�V�M�
�V�M�M � �1 � !�hV�M�1��� f�M� 3 0

� M � �1 � !��1 � ��hV�M�� 3 V�M� � ��1 � !��1 � ��h��1/�M1/�.

Thus, using equation (17),

�E�rt�C̃ � 0� � E�hV�M�1��/S�

� hE�M1�1/����1 � !��1 � ��h���1�1/��/S.

Constraint (18) binds if and only if ! � 0, i.e.,

(46) S � S*

with

(47) S* �
E�M1�1/����1 � �����1�1/��

h1/��
.

If the constraint binds, �E[rt�C̃ 	 0] 	 �. This implies that

��1 � !��1 � ��h���1�1/�� �
�S

hE�M1�1/��
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and going back to equation (45), we get V(M) 	 vM1/�S1/(1��)

with

(48) v � � �

hE[M1�1/�]�
1/�1���

.

The expression for R comes from R 	 hV�.
To calibrate S*, we use the following parameters, which we

view as simply indicative: � 	 1⁄2 , E[M3]1/3 	 10 percent (which
is less than the annual standard deviation of the market, hence
likely to be conservative), � 	 2 percent of price impact costs paid
annually.50 We take a price impact, motivated by subsections II.C
and III.A: R(V) 	 A
(V/D)1/ 2, where 
 	 daily market volatil-
ity 	 0.01, A 	 1⁄2 , which means that up to A2 	 25 percent of
the market fluctuations are due to our effects, D 	 daily market
turnover. Using the 1999 number of a total equity market capi-
talization of $18 trillion, and a 50 percent annual turnover, D 	
1⁄2 " $18 trillion/250 	 $36 billion. So

S* �
D

A2�3/ 2�3

E�M3�


2�
� $21 trillion.

Proof of Proposition 5. We start from equation (21). We apply
the rules in Appendix 1 to derive

�R � �hv�MS�/�1��� � �MS�/�1��� by applying �41�
� min ��M, �S�/�1���� by applying �38�

� min ��M,
1 � �

�
�S� by applying �42�,

which proves the proposition. One derives �V in the same way.

Proof of Proposition 6. Assumption 2 implies that �M � 1 �
1/� 	 3. Then, Proposition 5 gives �R 	 min (3, �M) 	 3 and �V 	
��R 	 3⁄2 .

Proof of Proposition 7. We will start with the following
lemma, which means that if X has fatter tails than Y, then
E[X�XY 	 z] is proportional to z for large z. The reason is that an
extreme value of XY probably comes from an extreme value of X.

50. If the fund gets F signals per year, S* is divided by F1/ 2, as M is divided
by F1/ 2 and � by F.
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LEMMA 8. Suppose that X and Y are independent random vari-
ables, with exact power distributions: P(X � x) 	 ( x/x*)��x,
P(Y � y) 	 ( y/y*)��Y for x � x* and y � y*. Define z* 	
x*y*. Assume that �X � �Y. Then,

(49) E�X�XY � z� � L� z� z

(50) L� z� �
E�Y�X�11Y�z/x*�

E�Y�X1Y�z/x*�
.

L( z) is a slowly varying function. If �X � �Y,

(51) lim
z3�

L�z� �
E�Y�X�1�

E�Y�X�
.

If �X 	 �Y,

(52) L� z� �
1
y*

1 � z*/z
ln �z/z*� �

1
y*

1
ln z for z 3 �.

Proof of Lemma 8. By normalization, it is enough to study
the case x* 	 y* 	 1, calling f and g the densities of X and Y. By
Bayes’ rule, p(X 	 x�XY 	 z) 	 kf( x) g( z/x)/x for a constant k.
So,

E�X�XY � z� �
 x f�x�g� z/x�/xdx
 f�x�g� z/x�/xdx � z

 f� z/y�g� y�/y2d y
 f� z/y�g� y�/y1d y

(by the change of variable x � z/y) � z
 1

z �z/y���X�1g�y�/y2dy
 1

z �z/y���X�1g�y�/ydy

� z
 1

z y�X�1g�y�dy
 1

z y�Xg�y�dy
� z

E�Y�X�11Y�z�

E�Y�X1Y�z�
� zL�z�.

When �X � �Y, E[Y�X1Y�z] 3 E[Y�X] � �.
When �X 	 �Y,

L� z� �
 1

z y�X�1g� y�d y
 1

z y�Xg� y�d y
�

 1
z y�X�1y��Y�1d y
 1

z y�Xy��Y�1d y
�

 1
z y�2d y

 1
z y�1d y

�
1 � z�1

ln z .

■
For the proof of Proposition 7, we use Lemma 8 with X 	 M

and Y 	 hv�S�/(1��). We call �M
subj the exponent of the distribu-

tion agents use when they calculate the conditional expectation
(28). Given the hypothesis �M

subj � �R, equation (23) gives �M
subj �

�R � (1 � 1/�)�S 	 �Y. So using Lemma 8,

497INSTITUTIONAL INVESTORS AND MARKET VOLATILITY



E�M�R � hv�MS�/�1��� � XY� � RL�R�

for a slowly varying function L(R) of R. In the case �M
subj � (1 �

1/�)�S, we get limR3� L(R) 	 b� 	 E�Y�M
subj�1�/E�Y�M

subj

�, a constant.
Finally, given � 	 RL(R), and L is slowly varying, �� 	 �R.

APPENDIX 3: CONFIDENCE INTERVALS AND TESTS WHEN A VARIABLE

HAS INFINITE VARIANCE

A. Construction of the Confidence Intervals for Figure VI

In a given bin conditioned by Q 	 Qi, with k elements
r1

2, . . . , rk
2, the point estimate of E[r2�Q 	 Qi] is the sample

mean of the rj
2, which we call m. Getting a confidence interval for

m is delicate, as r2 has infinite variance, so the standard ap-
proach relying on asymptotic normality is invalid. But the theory
of self-normalizing sums of Logan, Mallows, Rice, and Shepp
[1973] shows that if ! is the true mean and 
 is empirical
standard deviation of the rj

2 in the bin with k observations, then
the ratio t 	 k1/ 2(m � !)/
 follows a nondegenerate distribution
for large k. By Monte Carlo analysis we simulate draws following
a power law with exponent 1.5, which is the exponent of r2, and
we tabulate 2.5 percent and 97.5 percent quantiles of �t, which
we call ��� 	 �1.1 and �� 	 5.5. They differ from their finite
variance value, which would be �� 	 �� 	 1.95.51

To construct 95 percent confidence intervals, we can first
calculate the empirical standard error �ri

2 	 
ri, j
2 k�1/ 2, the sample

standard deviation of the observations divided by the square root
of the number of observations. A 95 percent confidence interval is
[mi � ���ri

2, mi � ���ri
2]. We should stress that we make the

simplifying assumption of independent and identically distrib-
uted draws. Given that the data are likely to be autocorrelated,
our confidence intervals are likely to be too narrow.

B. Test of Relation (7): E[r2�Q] 	 � � �Q

For each bin Qi of Q, we set ri
2 	 E[r2�Q 	 Qi], and �ri

2

sample standard error in interval i. By least squares we fit an
affine relationship E[r2�Q] 	 g(Q), with

51. When k is finite, there is some sensitivity of �� and �� to the underlying
distribution. We take a pure power law P(r2 � x) 	 x�3/ 2 for x � 1, and k 	 200,
to reflect our typical sample size in bins of extreme values.
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g�Q� � 0.07 � 0.60Q
�0.59� �0.013�.

The standard errors are in parentheses, and the R2 	 0.90. We
find that for all values Qi � 3, the predicted value g(Qi) belongs
to the 95 percent confidence interval: g(Qi) � [ri

2 � ���ri
2,ri

2 �
���ri

2]. We conclude that, at the 95 percent confidence level, we
cannot reject the linear form E[r2�Q] 	 g(Q) for Q � 3.
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