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Abstract

We propose a model elucidating the mechanisms at the origin of the density anomaly of water.
We start from a model of Sastry et al., with no correlation between the hydrogen bonds (HBs),
that rationalizes the experiments with an anomalous behavior of the line of temperatures of
maximum density (TMD), i.e., with a singularity-free scenario. We introduce the correlation of
HBs and solve the model within a mean-field approach. The resulting phase diagram shows the
same anomalous behavior of the TMD line but also the occurrence of a phase transition between
a high- and a low-density liquids ending in a critical point. Therefore, the introduction of the
HBs correlation is enough to pass from the singularity-free scenario to the second critical point
scenario. Since experiments on water show the presence of HBs correlation, this result suggests
that the relevant mechanism for the density anomaly is the liquid-liquid phase transition.
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1. Introduction

Liquid water expands under isobaric cooling, showing a line of temperatures of
maximum density (TMD line) [1]. This anomaly has been extensively investigated
with experiments, theories and numerical simulations [2]. However, the mechanism
responsible for the anomaly is not fully understood [2].
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Two interpretations, among the others, have been considered as alternatives theories.
One, the singularity-free scenario [3], rationalizes the anomalous behavior of water
with a TMD line that retraces in the pressure—temperature P—7 plane, i.e., that has
a negative derivative at high P (in the stable liquid phase) and positive derivative at
lower P (in the superheated liquid phase). A number of theoretical approaches [3—7]
have predicted this scenario in specific ranges of model parameters. In particular, in
the Sastry et al. model [5] the proposed mechanism is based on a local expansion of
the system as consequence of the formation of a hydrogen bond (HB).

Another interpretation, the two critical points hypothesis [8], relates the anomaly to
the presence of a first-order phase-transition line between a low-density liquid (LDL)
and a high-density liquid (HDL), with a possible critical point, in the supercooled
liquid region. This scenario has been inspired by numerical simulations for realistic
model of water [8] and has been rationalized by theoretical models [4,9,10] receiving
some partial experimental confirmations [11]. Recently, clear experimental evidences of
a liquid-liquid phase transition for phosphorus have been presented [12] and confirmed
by specific numerical simulations [13]. Other numerical results on carbon and silica
suggest a liquid—liquid critical point [14].

It has been shown that both scenarios can be derived within the same theoretical
framework [4,9,7] and that they arise from the same microscopic description [4,7].
However, it is still an open problem which of the two is the correct interpretation for
water. Our goal is to show that a way to discriminate between them is to consider
the effect of the HBs correlation. By introducing this effect, the second critical point
is recovered, supporting this interpretation as the one describing the water case.

2. The model

A network-forming liquid with correlated bonds depending on the orientation, such
as water, can be described by the Hamiltonian

H=—¢ Z nin; — pf Z ni—J Z nl'njéﬂi/ﬁﬁ —Jo Z n; Z 50ik,6f1 > (1)
(i) i (i.7)

i (k,1);

where the system is partitioned in N cells of equal size on a regular lattice, each with
a variable n;, i =1,...,N, with n; =1 if the cell is occupied by a molecule, n; =0
otherwise. The first term describes the van der Waals attractive interaction between the
molecules, with energy ¢ > 0, and the sum is extended to nearest-neighbors (nn) cells
(1,7). The second term determines the average density in the system via the chemical
potential u.

The third term, introduced by Sastry et al. [5], describes the HB formation, occurring
only if the molecules are correctly oriented [2]. We associate to each molecule four
arms, one per HB in the ground state, and consider a lattice with coordination number
4. The orientation of the arm of the molecule in the cell i and facing the molecule in
the cell j is represented by a Potts variable ¢;; = 1,...,q, with ¢ orientational states,
interacting only with the facing arm ¢;. A HB is formed, and the energy decreases
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(—J <0), when the facing arms have the appropriate orientation (i.€., 0,4, = 1, with
0a,p =1 1f a = b, otherwise 0,5 =0).

The fourth term, new with respect to the Sastry et al. [5] model, is introduced
because the experiments show a narrow distribution in the H-O-H angle at low T [2],
suggesting that the relative orientations of the HBs on the same molecules are strongly
correlated. We, therefore, propose this intra-molecular term that gives a negative con-
tribution (—J, < 0) to the energy when two arms on the same molecule are in the
appropriate orientational state (d,, ,, =1 assuming, for simplicity, that they have to be
in the same state). This term is summed over all the cells and over all the six different
pairs (k,1); of the four arms belonging to the same molecule i.

To take into account the experimentally motivated local increase of volume as-
sociated to the HB, following Sastry et al. [5], we express the (liquid) volume as
V=Vo+ovugy, /) n,'njéoi/.,oﬁ, where V) is the volume of the liquid with no HBs, vyp
is the specific volume per HB and the sum is the total number of HBs in the system.
Since the formation of HBs decreases the number of possible Potts configurations for
the system, the entropy S decreases for increasing V.

If J, =0, we recover the Sastry et al. model, where each HB, once formed, is
independent on the other HBs. Therefore, the model in this case takes into account the
inter-molecular orientational correlation, the expansion and the anticorrelation between
V' and S, upon HB formation, but the Potts variables have no long-range correlation
and the only relevant order parameter is the liquid molar density p = nN/V, where
n=7y,n/N is the number density. As a consequence, for J < e, at high 7, V is
almost constant, while n increases by decreasing 7. Hence, p increases and has a
discontinuity in correspondence of the gas—liquid first-order transition, if P is below
the critical pressure. At low T, also V' increases, as a consequence of the formation
of HBs, and p is no longer monotonic, showing a maximum at a 7 that depends on
P and retraces in the P-T phase diagram. Therefore, the Sastry et al. model predicts
the singularity-free scenario with retracing TMD line [5]. However, this prediction is
valid in the approximation of non-correlated HBs.

3. The mean-filed results with the intra-molecular term

For J, > 0, there are two relevant order parameters. One, m €[ — 1,1], describes
the ordering of the variables n; and is proportional to the number density n. The
other, m, € [0, 1], describes the orientational order of the variables g;; and is propor-
tional to the number density n, of Potts variables in the appropriate state for HB.
In mean field (MF) they can be expressed as n = (1 +m)/2 and n, =[1 + (¢ — 1)
mq]/q.

To calculate the phase diagram of the system we minimize, with respect to the order
parameters m and m,, the molar Gibbs free energy for the liquid g=u — Ts + Pv = p,
where —s/kg=Inn+[(1—n)/n]In(1 —n)+4{n;Inn,+(qg— 1)1 —n,)In[(1—ns)/(g—1)]}
is the molar entropy s = S/(nN) of N variables n; and 4nN variables o,;, u=—2[en +
(Jn + 3J,)ps] is the molar energy, v = 1/p = V/uN = (2Vy/N + dvgpn® p,)/(1 +
m), is the molar volume, n? is the probability of having two nn molecules and
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Fig. 1. The molar density p as function of the temperature 7 along isobars, calculated in the mean
field approximation at different orders. (a) The zeroth-order approximation for pressures (top to bottom)
Pvy/e = 0.36, 0.33, 0.30, 0.27, 0.24, 0.21, 0.18, 0.15, 0.12, 0.09, 0.06, 0.03, -0.007, for the model with
Jle = 0.5, Js/e = 0.01, vgp/vg = 0.25 and ¢ = 10. The low-T discontinuity in p marks the LDL-HDL
first-order phase transition, occurring at a 7 that decreases linearly for increasing P. (b) The first-order
approximation for pressures (top to bottom) Puvg/e = 1.6, 1.5, 1.4, 1.35, 1.3, 1.275, 1.25, 1.2, 1.1, 1.0, 0.95,
0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.1, 0, for the model with J/e=0.5, J;/¢=0.05, vyp/vg=0.5
and ¢ = 6. At low T and low P, there is a continuous decrease of p. Above a critical P, a discontinuity
appears as in panel (a).

Do =nm2+(q— 1)1 —n,)?/(q— 12 =[1+(q — 1)m2]/q is the probability of having
the facing arms of the two molecules in the same Potts state.

The minimization of g, as defined above and as a function of 7 and P, gives values of
m®(T, P) and mgo)(T,P) that allow us to calculate p(®)(T, P) (Fig. 1a) [15]. The result
is that a HDL-LDL phase transition appears in the liquid region below a maximum P.
However, this transition instead of ending in critical point, ends in a liquid-liquid-gas
triple point. This result, different from the Sastry et al. prediction, is a consequence of
our MF approximation, where p, has no explicit dependence on P.

To find an explicit dependence of p, on P and T, we note that p, increases for
decreasing 7, going from 1/q for T — oo to 1 for T — 0, as a consequence of the
interactions between Potts variables. To include the cooperativity effect, we consider
that each Potts variable interacts with a mean field 4 generated by all the surrounding
Potts variables. Since the system breaks the symmetry, ordering in the preferred state
for the HB, a choice is to consider / proportional to the density of particles in the
preferred state n,, with a proportionality factor given by the Potts interaction strength
and the number of nn variables. The solution in Fig. 1a, that is for #=0, therefore can
be considered as the zeroth-order approximation. We can consider explicitly the field
generated by the first shell of variables around a center one, and include the effect of
all the others in a field acting on the variables in the first shell in an approximation
a la BethePeierls. By iterating the process we can calculate higher orders of the
approximation.
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To the first order, the field generated by three of the Potts variables in a molecule
acting on the fourth Potts variable is 4 = 3J,n,. Writing the partition function for two
facing arms under the action of 4, we find [15]

2wr4+q—2 17"
wp[wi +q — 1]

with kgT Inwp = (J — Pogp) and gkgT Inwyp = 3J,[1 + ms(q — 1)], that, from the
general relation between p, and n,, allows us to find the first order solution for
m(T,P), m$(T,P) and p")(T,P) (Fig. 1b) [15].

In Fig. 1b the low-7 discontinuity in p, marking the HDL-LDL phase transition,
disappears at low P in a critical point, without changing the high-7" and high-P parts
of the phase diagram. Therefore, the model presented here shows the singularity-free
scenario if the intra-molecular interaction is J, = 0, while predicts the liquid—liquid
phase transition for J, > 0. Within the first-order approximation, we predict the second
critical point. This result shows that the two interpretations differ only in the assumption
about the importance of the intra-molecular interaction. Since the experiments on water
suggest a finite J,, this theory supports the liquid—liquid phase transition scenario.

Peo(T,P)= |14+ (q—1) (2)
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