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It is well-known that financial asset returns exhibit fat-tailed
distributions and long-term memory. These empirical features
are the main objectives of modeling efforts using (i) stochastic
processes to quantitatively reproduce these features and (ii)
agent-based simulations to understand the underlying microscopic
interactions. After reviewing selected empirical and theoretical
evidence documenting the behavior of traders, we construct an
agent-based model to quantitatively demonstrate that “fat” tails
in return distributions arise when traders share similar technical
trading strategies and decisions. Extending our behavioral model
to a stochastic model, we derive and explain a set of quantitative
scaling relations of long-term memory from the empirical behavior
of individual market participants. Our analysis provides a behavior-
al interpretation of the long-termmemory of absolute and squared
price returns: They are directly linked to theway investors evaluate
their investments by applying technical strategies at different
investment horizons, and this quantitative relationship is in agree-
ment with empirical findings. Our approach provides a possible
behavioral explanation for stochastic models for financial systems
in general and provides a method to parameterize such models
from market data rather than from statistical fitting.

complex systems ∣ power law ∣ scaling laws

Modeling price returns has become a central topic in the
study of financial markets due to its key role in financial

theory and its practical utility. Following models by Engle and
Bollerslev (1, 2), many stochastic models have been proposed
based on statistical studies of financial data to accurately repro-
duce price dynamics. In contrast to this stochastic approach,
economists and physicists using the tools of statistical mechanics
have adopted a bottom-up approach to simulate the same macro-
scopic regularity of price changes, with a focus on the behavior
of individual market participants (3–10). Although the second so-
called agent-based approach has provided a qualitative under-
standing of price mechanisms, it has not yet achieved sufficient
quantitative accuracy to be widely accepted by practitioners.

Here, we combine the agent-based approach with the stochas-
tic process approach and propose a model based on the empiri-
cally proven behavior of individual market participants that
quantitatively reproduces fat-tailed return distributions and
long-term memory properties (11–14).
Empirical and Theoretical Market Behaviors
We start by arguing that technical traders (usually agents seeking
arbitrage opportunities and make their trading decisions based on
price patterns) contribute much more to the dynamics of daily
stock prices St (or log price st ≡ lnðStÞ) than fundamentalists
(who attempt to determine the fundamental values of stocks).
Although fundamentalists hold a majority of the stocks, they
trade infrequently (see SI Appendix, Fig. S6). In contrast, techni-
cal traders contribute most of the trading activities (15) by trading
their minority holdings more frequently than fundamentalists.

Market surveys (16–18) also provide clear evidence of the preva-
lence of technical analysis. We consider here only technical tra-
ders, assuming that fundamentalists contribute only to market
noise. Our study is of the empirical data recorded prior to
2006 and ignores the effect of high frequency trading (HFT) that
has become significant only in the past 5 y. We propose a beha-
vioral agent-based model that is in agreement with the following
empirical evidence:

i. Random trading decisions made by agents on a daily basis. n0

technical traders use different trading strategies, hence their
decisions to buy, sell, or hold a position appear to be random.
A trading decision is made daily because empirical studies
report the lack of intraday trading persistence in empirical
trading data (19). Market survey (16) also shows that fund
managers put very little emphasis on intraday tradings. We es-
timate the probability p of having daily trade empirically from
trading volumes.

ii. Price returns. The price return rt ≡ st − st−1 is controlled by
the imbalance dt between the demand and the supply of
stocks—the difference in the number of buy and sell trades
each day. The excess in total demand or supply moves the
price up or down, where the largest rt occurs when all traders
act in unison, when they all either buy or sell their stocks. We
assume this relationship between price change rt and dt to be
linear each day, as supported by empirical findings (20, 21).

iii. Centralized interaction mechanism of returns on technical
strategies. For technical traders, an important input para-
meter in their strategies is past price movement (22, 23).
Consequently, prices and orders reflect a main interaction
mechanism between agents. In many agent-based models,
the interaction strength between agents need to be adjusted
with agent population size (5, 24, 25) or interaction structure
(26) to sustain “fat” tails in return distributions. Here we pro-
pose a centralized interaction mechanism (price change)
among agents so that the strength of interaction grows with
agent population and is unaffected by interaction structure.

iv. Opinion convergence due to price changes. This is the unique
mechanism that distinguishes our model from other models.
It specifies the collective behavior of technical traders. Duffy
et al. (27) found that agents learn from each other and tend to
adopt the strategy that gives the most payoff. Given the price
patterns at any point in time, a few most profitable technical
strategies dominate the market because every technical trader
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wants to maximize his/her profit by using the most profitable
strategy copied from each other (The most profitable strategy
would become less profitable when most agents adopt it, and a
new profitable strategy emerges from the new price trends;
soon agents will flock to the new profitable strategy until it
is no longer profitable. This is similar to the regime switching
phenomenon in various agent-based models.). On the other
hand, the individual strategies used by different technical tra-
ders differ in their parameterizations of the buy/sell time,
amount of risk tolerated, or portfolio composition (15). So
when the input signal—the previous price change rt−1—is
small, every agent acts independently. When the input signal
is large, the agents act more in concert, irrespective of their
differences in trading strategies. During the spreading panic
of market crashes, for example, most agents sell their stocks
(and market makers are likely to make losses in such circum-
stances). This supports the empirical finding that large price
swings occur when the preponderance of trades have the
same buy/sell decision indicated in the findings by Gabaix
X. et al. (28).

Behavioral Model and Results
Based on the items of evidence (i)–(iv) listed above we construct
a three-step behavioral model:

• Step 1. Based on evidence (i), we assume n0 agents, each of
equal size 1. Each day, a trading decision ψ iðtÞ is made by each
agent i,

ψ iðtÞ ≡

8
><

>:

1 with probability p ⇒ buy;

−1 with probability p ⇒ sell;

0 with probability 1 − 2p ⇒ hold:

• Step 2. Based on evidence (ii), we define price change rt to be
proportional to the aggregate demand dt, i.e., the difference in
the number of agents willing to buy and sell,

rt ≡ kdt ¼ k
∑

n0

i¼1

ψ iðtÞ: [1]

Trading volume is equal to the total number of trades in this
case because every agent has the same trading size of 1. Hence
daily trading volume Nt is defined as

Nt ≡
∑

n0

i¼1

jψ iðtÞj [2]

and k is the sensitivity of price change with respect to dt. We set
k to 1 because a choice for k does not affect the statistical prop-
erties. Note that, according to Step 1, maximum (minimum) dt
means that all agents are in collective mode when they behave
the same, all of them either buy or sell stocks.

• Step 3. Based on evidence (iii) and (iv), at day tþ 1 each
agent’s opinion is randomly distributed into each of the ctþ1

opinion groups where

ctþ1 ¼ ðn0∕jrtjÞω; [3]

in which all agents comprising the same opinion group execute
the same action (buy, sell, or hold) with the same probability p
as in Step 1. Because 1 ≤ ctþ1 ≤ n0, Eq. 3 implies (a) when the
previous return is maximum, jrtjmax ¼ n0 (everyone buys/sells),
there is only one trading opinion among the agents; (b) when
the previous return is minimum jrtjmin ¼ nðω−1Þ∕ω

0 (see SI
Appendix, Section 5), there are n0 opinions and every agent acts
independently of one another. We use ω ¼ 1 in most of our

simulations because it produces results that are numerically
close to empirical findings. The case of ω ¼ 1 corresponds
to jrtjmin ¼ 1, and there is only one more buy/sell order than
sell/buy order. The result with different ω is presented in
the end of this section. When market noise is considered,
ctþ1 ∼Nðn0∕jrtj; σ2

c Þ, whereN denotes the normal (Gaussian)
distribution and σ2

c ¼ b · n0∕jrtj quantifies market noise due to
external news events.

To obtain an empirical value for daily trading probability p,
we choose 309 companies from the Standard and Poor’s 500
index traded over the 10-y period 1997–2006. Only 309 of the
500 total stocks were consistently listed during the entire 10-y
period, and they are the ones we choose. We define the trading
velocity V of an agent as the total number of shares he/she trades
in a year, divided by the number of shares, he/she owns on aver-
age over a year

V ¼ Number of trades
Number of shares

: [4]

From the Compustat database, we divide the total number of
shares traded on the market by the number of outstanding shares
of each stock and obtain the average yearly trading velocity, V ,
for these stocks through the 10-y period. Thus we obtain,

V ¼ 1.64; [5]

where the value of V varies from 1.3 to 1.9 throughout the 10 y.
Note that V > 1 means that, on average, each stock changes its
owner more than once during a year. From the data documented
by Yahoo! Finance, we assume that institutional owners are fun-
damentalists and that the rest of the traders are predominantly
technical traders. The percentage of outstanding shares held by
institutional owners is usually higher than 60%, and the average
value is 83% (SI Appendix, Fig. S6A).

Assuming institutional owners are fundamentalists with invest-
ment (trading) horizons longer than 1 y (they trade less frequently
than once a year), we calculate the value of p as follows. We let
the average yearly trading velocity of fundamentalists be Vf , then
the average yearly trading velocity of technical traders Vc is

Vc ¼ ðV − 0.83Vf Þ∕ð1 − 0.83Þ: [6]

Because there are about 250 trading days in a year, we calculate
the daily trading probability p

p ¼ Vc∕ð250 · 2Þ: [7]

Because fundamentalists have an investment horizon longer
than 1 y, Vf < 1 (see Eq. 4). We arbitrarily set Vf to be 0.2,
0.4, 0.6, 0.8, and estimate the corresponding values of p as
0.0174, 0.0154, 0.0134, 0.0115, respectively. For ðVf ; pÞ ¼
ð0.4; 0.0154Þ, we find that approximately 80% of the trading
volume is contributed by technical traders.

We compare the simulation results from our behavioral model
(Steps 1, 2, and 3) with those obtained for the empirical set of
stocks comprising the S&P 500 index. For the cumulative distri-
bution (CDF) of both absolute returns and number of trades.
Fig. 1 shows that the model reproduces the empirical data in both
the central region and the tails. In particular, both model and
empirical distributions have power-law tails (Pðjrtj > xÞ∼
x−ξr ; Pðnt > xÞ ∼ x−ξn) (13, 29–31) where the power-law expo-
nents ξr and ξn that we obtain for the empirical data by applying
the Hill’s estimator are in agreement with the ones obtained for
empirical data (32).

It is worth noting that with different values of ω in Eq. 3, the
tail exponent ξr for the absolute return distribution varies as
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shown in Table 1. We find that ω ¼ 1 gives the tail exponent ξr
that is closest to empirical finding (see SI Appendix, Section 5 for
the implication of different values in ω).

Overall, we are able to generate power-law distributions in
both returns and number of trades in agreement with empirical
data. The fact that we are able to capture the trends in the two
highly correlated quantities (33) implies a very plausible mechan-
ism underlying our model. Furthermore, the tail exponent ξr is
invariant with respect to different values of agent population size
n0 and fundamentalists’ investment horizon Vf (Table 2 and SI
Appendix, Section 1). In particular, the insensitivity of the result
to the number of agents n0 distinguishes this model to most other
agent-based models (34, 35).

Extension to Stochastic Model
Next we study the underlying stochastic process of our behavioral
model (Step 1 to Step 3). The mechanism of opinion convergence
under price changes is incorporated into a mathematical form for
an analytical understanding. Step 3 in our behavioral model in-
dicates that the daily price change is not deterministic, where its
variance σ2

t ≡ Eðrt − EðrtÞÞ2 is related to total number of opinion
groups ct, which is determined directly by previous return rt−1. On
average, each opinion group has jrt−1j agents, and we have

σ2
t ≡ Eðr2t jrt−1Þ ¼ ct · ½p · r2t−1 þ p · ð−rt−1Þ2 þ ð1 − 2pÞ · 0&

σ2
t ¼ 2pn0jrt−1j:

[8]

Because σt presents the standard deviation of price change rt,
we can model price change as rt ¼ σtηt, where ηtþ1 is a random
variable with zero mean and unit variance, and its distribution is
determined by Step 3. For simplicity, we use a normal distribution
for ηt, although we find that other distributions, such as t-distri-
bution, give similar results in our analysis (SI Appendix,
Section 4).

Again we note that the variance σ2
t in Eq. 8 is not constant but

is time dependent, and time-dependent variances are commonly
found in a variety of empirical outputs where phenomena are ran-
ging from finance to physiology (2, 36). They are widely modeled
with the Autoregressive Conditional Heteroskedasticity (ARCH)
process (1). Here we provide a possible explanation for the
ARCH effect found in financial data in terms of the behavior
of technical traders—larger previous price change rt−1 brings tra-
ders’ opinions closer to each other, resulting in large subsequent
price fluctuations. Theoretical analysis on Eq. 8 leads to the fat-
tailed return distributions (SI Appendix, Section 2) ubiquitously
observed in real data, and in our case a power-law tail. Previous
works have generated ARCH effect from other mechanisms that
is different from our model (37).

The time-dependent variance of Eq. 8 defined by the most re-
cent price change rt−1 is therefore based on short memory in the
previous rt. To this end, we further extend our behavioral model
with two more items of empirical evidence:

v. Technical strategies are applied at different return intervals. In
contrast to the simplistic realization in our behavioral model
(Step 1 to Step 3) in which technical traders make their de-
cisions only upon the most recent daily returns (see Eq. 8
and Step 3), market survey (16) indicates that technical stra-
tegies in practice are applied at different investment horizons
ranging from 1 d to more than 1 y. This finding implies that
agents calibrate their technical strategies based on returns of
different time horizons, i.e., how stock preformed during the
last day, week, month, up to year, or even longer. Most tech-
nical strategies are focused on short-term returns of a few
days, and fewer are focused at yearly returns according to
the survey (16).

vi. Increasing trading activity in volatile market conditions.
Agents tend to trade more after large price movements. Dif-
ferent technical strategies set different thresholds on prices to
trigger trading decisions (38), so large price fluctuations are
likely to trigger more trades. Hence the probability of daily
trade p is directly related to past returns. Because a large pro-
portion of technical strategies is applied with short investment
horizons, price changes from previous days have larger impact
on p than price changes from past year.

Fig. 1. Comparison of the distributional properties of simulations with empirical results for the parameter set Vf ¼ 0.4, n0 ¼ 210, b ¼ 1.0. Vf characterizes
the how fast one agent’s shares is traded. Empirical data are from the 309 stocks out of S&P 500 index components that have been consistently listed during the
10-y period 1997–2006. There are ≈800;000 data points in empirical data, and 1,000,000 sample points from simulation. (A) Cumulative distributions of daily
returns, defined as rt ≡ log½xt;close& − log½xt;open&, the difference between the daily opening and closing price of a stock on day t. Thus we ignore overnight
returns arising, e.g., due to news events. The price for each stock is normalized to zero mean and unit variance before aggregation into a single distribution.
The simulation results agree with the shape of the empirical distribution. The Hill estimator on 1% of tail region gives ξr;S&P500 ¼ 3.69' 0.07,
ξr;simulation ¼ 4.08' 0.08. (B) The cumulative distribution of the same set of data but analyzed on the daily number of trades. Because the number of trades
increases each year, we normalize the data by each stock mean number of trades on a yearly basis before aggregating them into the distributions. The simula-
tion again reproduces the empirical results. The Hill estimator applied to 2.5% of the tail region gives ξn;S&P500 ¼ 4.02' 0.07, ξn;simulation ¼ 4.02' 0.08.

Table 1 Tail exponents of absolute return distribution with
different ω

ω 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.5 2.0
ξr 2.3 2.5 2.7 3.0 3.3 3.8 4.3 4.4 5.9 7.8 9.4
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The survey on USmarket (16) allows us to estimate the relative
proportion of technical analysis applied at different investment
horizons. Precisely, agents having investment horizon i days
are affected by price change in the past i days, and the relative
portion of such traders is characterized by αi. Fig. 2 illustrates this
plot, and we find that the curve follows a power-law decay with
exponent d ¼ 1.12, i.e., αi ∝ i−d. As different agents look at re-
turns over time scales of differing lengths, their trading opinions
are affected by the past returns of history longer than one day, so
is the convergence of their collective opinions. Agents having in-
vestment horizon i days are affected by price difference in the
past i days, and the relative portion of such traders are charac-
terized by αi. Hence the convergence of opinions is not only af-
fected by the previous day’s return but also the price difference of
longer durations. Therefore Eq. 3 is better written as

ctþ1 ¼
n0

∑

M
i¼1

αijst − st−ij
; [9]

where M is the maximum investment horizon for which technical
analysis is applied, and αi is the proportion of agents focusing on
investment horizon i and it decays with i as αi ∝ i−d as in Fig. 2.
WhenM ¼ 1, Eq. 9 is identical to Eq. 3, which is the scenario for
homogeneous investment horizon of 1 d. jst − st−ij is used as a
simplified information content for technical traders with invest-
ment horizon i. Because there can be at least one opinion group,
this boundary condition requires∑M

i¼1 αi ¼ 1. From Eq. 9, Eq. 8 is
transformed into

σ2
tþ1 ¼ 2pn0

∑

M

i¼1

αijst − st−ij ¼ 2pn0αΣt; [10]

where α ≡ ½∑M
i¼1 i

−d&−1 and Σt ≡ ∑M
i¼1 i

−djst − st−ij.
Note that Eq. 10 can be also intuitively derived. Because by αi

we denote the proportion of agents observing the price change in
the past i days, the price change jst − st−ij contributes to the over-

all opinion convergence with a weight αi. Even without knowing
the exact contribution of jst − st−ij in the overall opinion conver-
gence, by taking its first order effect with weight αi, we would
have the functional form of Eq. 10.

To take into account the effect of increasing trading activity
when market is more volatile, we assume that traders place tech-
nical thresholds based on returns of different horizons, and that
the proportion of traders with different horizons is determined by
the same survey results reported in ref. (16). Similar to the con-
struction of cluster formation in Eq. 9, we define the time-depen-
dent probability of trading as ptþ1 ≈ p0 þ α 0Σt. By p0 we denote
the base trading activity (largely due to fundamentalists) and α 0Σt
is the additional trade due to threshold crossing by technical tra-
ders. Therefore we transform Eq. 10 to

σ2
tþ1 ≈ 2ptþ1n0αΣt ¼ 2αn0ðp0 þ α 0ΣtÞΣt

¼ −αn0p2
0

2α 0 þ 2αα 0n0

!
Σt þ

p0
2α 0

"
2

:

The first term is very small compared to the second term because
technical traders dominate trading activities. Hence, we can
ignore the first constant term and focus on the second quadratic
term. Therefore, the previous equation transforms to

σtþ1 ≈
ffiffiffiffiffiffiffiffiffiffiffi
2αα 0

p !
Σt þ

p0
2α 0

"
¼ Aþ BΣt: [11]

Constant A is a scaling parameter defining the average size of
returns, and B characterizes the relative portion of trades accom-
plished by technical traders (due to crossing the thresholds) vs.
background trading activities (mostly by fundamentalists). Eq. 11
has similar functional form as σtþ1 in the fractional integrated

Table 2 Tail exponents of absolute return distribution with different values of Vf and n0

Parameter value

n0 ¼ 210, b ¼ 1.0 Vf ¼ 0.4, b ¼ 1.0

Vf ¼ 0.2 Vf ¼ 0.4 Vf ¼ 0.6 Vf ¼ 0.8 n0 ¼ 28 n0 ¼ 210 n0 ¼ 212 n0 ¼ 214

Tail exponents ξr 3.69 ± 0.07 3.69 ± 0.07 3.74 ± 0.07 3.89 ± 0.07 3.86 ± 0.07 3.70 ± 0.07 3.66 ± 0.07 3.69 ± 0.07

Fig. 2. Plot of survey result (16) on percent importance placed on technical
analysis at different time horizons by U.S. fund managers. The plot shows a
power-law function with exponent −1.12. We have combined the percent
values for both flow and technical analysis at each time horizon, as flow ana-
lysis in a broad sense is one type of technical analysis. Technical analysis is
heavily used at investment horizons of days to weeks and decays to close
to zero at 500 d.

Fig. 3. Confirmation of the scaling relations Eq. 12. Dependence of γ1
against γ2 for the 30 stocks in Dow Jones Indices components. Daily closing
prices from 1971–2010 are used for each stock. The two exponents fulfill
γ1 ≤ γ2 ≤ 2γ1, so the scaling relation predicted by our stochastic model is con-
sistent with these empirical data. The range of lag, 11 ≤ ℓ ≤ 250, is used be-
cause theoretical power-law decay of the ACF is valid for large ℓ, and for
ℓ > 250 the ACF values are close to the noise level.
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processes (39). However, there are some differences in a way how
past returns are used in σtþ1—whereas in fractional integrated
process σtþ1 depends on past daily returns, in Eq. 11 we use
absolute values of past aggregate returns. Precisely, the absolute
values of past daily, weekly, and monthly returns, to mention a
few. Parke (40) has demonstrated how heterogeneous error dura-
tions among traders could result in fractional integration, and
here we explicitly and quantitatively provide a behavioral inter-
pretation of the long memory in absolute returns. The decaying
dependence of standard deviation σtþ1 on past aggregate returns
of different durations in Eq. 11 is a direct outcome of agents
applying technical strategies at different investment horizons.
We find this dependence to decay as a power law, and the power-
law exponent d is calculated from empirical observations (16).

Analytical and Simulated Results
In general, the long memory in returns can be demonstrated
by analyzing auto-correlation functions (ACF). We find that
the ACFs of both absolute and squared returns (ρℓ and ρ 0

ℓ) decay
as power laws with ℓ, i.e., ρℓðjrtj; jrt−ℓ jÞ ∝ ℓ−γ1 and ρ 0

ℓðr2t ; r2t−ℓÞ ∝
ℓ−γ2 , where we obtain the scaling relations (SI Appendix,
Section 2) similar to phase transitions in statistical mechanics,

8
><

>:

γ1 ¼ 2d − 2;

2d − 2 ≤ γ2 ≤ 4d − 4;

γ1 ≤ γ2 ≤ 2γ1:

[12]

Whereas Ding et al. have shown that correlations in jrtj decay
more slowly than correlations in r2t (41), we, instead, show quan-
titative scaling relations that have been derived and explained by
the behavior of individual market participants (characterized by
d). Empirical verification with the stock components of Dow
Jones Indices in Fig. 3 confirms the validity of the scaling relation
of Eq. 12.

The behavioral understanding of our stochastic process Eq. 11
allows us to perform simulations in which every parameter is
based on empirical calibration rather than on conventional
statistical estimation. In Eq. 10 we replace the upper limit of
M in the summation by 500 trading days, which corresponds
to ≈2 years of investment horizon as implied by the survey

(16). We set d ¼ 1.2, in agreement with empirical finding (16).
From the empirical trading volume fluctuations and uncondi-
tional variance of price changes, we estimate A ¼ 0.002 and B ¼
0.05 (SI Appendix, Section 3). Therefore we obtain σtþ1 ≈ 0.002þ
0.05∑500

i¼1 i
−1.2jst − st−ij. In Fig. 4 we compare the simulation re-

sults with the results for S&P 500 index. We demonstrate that
the ACF of absolute and squared returns—for both simulations
and the S&P 500 index—fulfill our scaling relations of Eq. 12
with γ1;simulation ¼ 0.40, γ2;simulation ¼ 0.53; γ1;S&P500 ¼ 0.44, and
γ2;S&P500 ¼ 0.7.

Eq. 11 reflects the long-term memory of empirical data accu-
rately while still being a stationary process (SI Appendix,
Section 3) in contrast to many other power-law decaying pro-
cesses (2, 39). In addition, the behavioral picture of Eq. 11 ex-
plains the origin of long-term memory through heterogeneous
investment horizons of different technical traders based on em-
pirical evidence.

Summary
Starting from the empirical behavior of agents, we construct an
agent-based model that quantitatively explains the fat tails and
long-term memory phenomena of financial time series without
suffering from finite-size effects (35). The agent-based model
and the derived stochastic model differ in construction but share
the same mechanism of opinion convergence among technical
traders. Whereas the agent-based model singles out the dominant
market mechanism, the stochastic model allows a detailed ana-
lytical study. Both approaches allow their parameter values to
be retrieved from market data with clear behavioral interpreta-
tions, thus allowing an in-depth study of this highly complex sys-
tem of financial market.

The universality of various empirical features implies a domi-
nant mechanism underlying market dynamics. Here we propose
that this mechanism is driven by the use of technical analysis
by market participants. In particular, past price fluctuations
can directly induce convergence or divergence of agents’ trading
decisions, which in turn give rise to the “ARCH effect” in empiri-
cal findings. Additionally, the heterogeneity in agents’ investment
horizons gives rise to long-term memory in volatility.

Fig. 4. Comparison between empirical data and simulation. The empirical data (about 10,000 data points) are from the S&P 500 index daily closing prices in
the 40-y period 1971–2010. The simulation are carried out for 50,000 data points to obtain good convergence. Black Monday, October 19, 1989, is removed
from the analysis of the ACF. (A) Autocorrelation of simulation vs. S&P 500 index. The simulation results show behavior similar to the S&P 500 for both absolute
returns and squared returns. The rate of decay is also similar numerically. (B) The CDF of absolute returns for simulations and the S&P 500. The simulation
reproduces the return distribution well.
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