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Abstract 

Within the generalized thermostatistics of Tsallis, we propose for the spin-½ Ising ferromagnet 
a transmissivity variable which extends that defined by Tsallis and Levy for thermal magnetic 
systems. By using this generalized transmissivity as well as duality arguments, we calculate the 
q-dependence of the critical temperature corresponding to the square lattice, where q is the 
entropic index (q = 1 reproduces standard thermostatistics). Our approximate results are 
compared with those previously obtained using renormalization group and mean-field 
approximation. 

PACS: 02.50.K; 05.70; 65.50; 75.10 

1. Introduction 

The thermal transmissivity [1] (see also [2] and references therein) is a convenient 
variable introduced to treat classical discrete spin magnetic systems. One of the 
advantages of this variable arises from the fact that, in various standard situations, it 
maps the [0, ~ ]  temperature interval into the [0, 1] interval. Its key strength is that it 
provides a geometrical interpretation [-3] for the flow of thermal information (we shall 
illustrate this below for the spin-½ Ising ferromagnet). Finally, it enables a simple 
approach for arbitrary finite clusters, the bonds of which are associated with arbitrary 
coupling constants (this is particularly convenient within real-space renormalization 
group). 

For the 2-state Potts Hamiltonian defined by 

= - ) ' J  2 • . . . .  J (a /=  1,2 . . . .  ,),) (1) 
<i,j> 
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( ( i , j )  denotes the first neighbors; 6,,, ,j  refers to Kroenecker delta function) the 
transmissivity is defined by (see [1, 2] and references therein) 

1 - -  e -2J/k~T 

t =-- 1 + (,~ - 1)e -aJ/kST' (2) 

where ks  is the Boltzmann constant and T is the temperature. 
In the case we shall focus on here (Ising model), 2 = 2. Hence 

1 - -  e -  2J/ksT ( ~ - ~ )  
t = 1 + e - 2 J / k B T  ~ tanh . (3) 

Recently, Tsallis [4] proposed a generalized entropy which leads to nonextensive 
statistical mechanics and thermodynamics. This generalized entropy is defined as 
follows: 

W q 
Sq =- kn 1 - ~ i  = 1 Pl (q ~ ~t) ,  (4) 

q - 1  

where {p~} are the occurrence probabilities of the W microstates of the system. The 
q --* 1 limit recovers the usual Shannon expression, i.e., 

W 

$I  = - kn ~ p i l n p i .  (5) 
i = i  

Several results of the literature have been extended using the Tsallis generalized 
statistics. Among them, we have L6vy-like [5] and correlated [6] anomalous 
diffusion, self-gravitating systems [7, 8], d = 2 turbulence [8], ferrofluid-like systems 
[9], hydrogen atom [10] and background cosmic radiation [11]. Also, it has been 
successfully used in the context of simulated-annealing optimization techniques [12], 
and a number of related aspects have been studied [13-26]. 

The influence of the nonextensitivity on phase transitions is certainly a field which 
should be explored. In particular, questions like the q dependence of critical points 
and critical exponents are wide open. The present work provides some clues along this 
line. 

In the present work we focus on a simple magnetic system. Following the previous 
works [1, 2], we extend the transmissivity (denoted t(q)), from q = 1 to all q, within the 
framework of Tsallis statistics, thus generalizing the concept originally introduced 
within Boltzmann-Gibbs statistics. 

In Section 2 we recall the relevant transmissivity concepts within the Boltzmann- 
Gibbs statistics (q = 1); in Section 3 we present the Tsallis statistics (for all q). Finally, 
we conclude in Section 4. 

2. Boitzmann-Gibbs statistics (q -- 1) 

Let us briefly review the known transmissivity procedure for calculating the critical 
temperature within Boltzmann-Gibbs statistics (see Ref. [4]). 
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Fig. 1. Ising clusters for the (a) single bond, (b) two-series array, and (c) two-parallel array. 

Consider the graphs in Fig. 1. The Boltzmann factor associated with Fig. l(a) is 
given by 

e-a~'2 = ePJS'S2 = cosh([3J)[1 + tanh(f lJ)S~ S2] ~- A ( 1  Jf- B s1s2) , (6) 

and the transmissivity is 

B 
t = tanh(]~J) = A" (7) 

For Fig. l(b) (series array) we have 

e -pJril = 2 e  -pie's' = ~ e  -pts's's~+J~s's~l (8) 
S3 $3 

= c o s h ( f l J 1 ) c o s h ( f l J 2 ) [ 1  + S 1 $2 tanh( /3J1)  t anh ( /3 J2 ) ] ,  (9) 

which exemplifies the series composition algorithm 

ts = tl t2. (10) 

Consider now the parallel array (Fig. l(c)). The Boltzmann factor is given by 

e-Pye~ = el3[JiStS2+J2StS2] = efJpSiS2 

where Jv = J~ + J2. The associated transmissivity t v is given by 

t v = tanh(/~Jp) = tanh [//Jx +/~J2] = 

hence 

tl + t2 
tv - -  1 + t I t 2 ' 

tanh(/3J0 + tanh(/3J2) 

1 + tanh(flJx)tanh(flJ2);  

(11) 

which is the parallel composition algorithm. Eq. (11) can be rewritten as follows: 

1 - t p  _ 1 - t l  1 - t 2 

1 -F tp 1 + tl 1 + t 2" (12) 
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The dual transmissivity t ° [1, 27] is 

1 - - t  
t n - = l + t '  (13) 

SO 

t ° o o (14) ~-- t 1 t 2 ,  

which presents the parallel composition algorithm in the form of the series one. 
The square lattice is self-dual. Using this fact, Kramers and Wannier [28] showed 

that the exact critical temperature for the Ising ferromagnet is given by tc = x/~ - 1 
(so, kB Tc/J = 2.269... ). The graph dual of that of Fig. la is indicated in Fig. 2(a). 
Consequently, the critical point satisfies 

= to, (15) 

which implies 

1 - t~ 
- to; ( 1 6 )  

1 + t ~  

hence t~ = x//2 - 1. 

We repeat the procedure for the series array (see Fig. 2(b)). We obtain 

= 1 + [ ? ] 2 ,  (17) 

which, once again, recovers the exact result t~ = x/~ - 1. If we used here the same 
procedure for increasingly larger clusters, we would always recover the exact answer 
t~ = x//-2 - 1. We then see that the duality is a fundamental property, and that the 
transmissivity variable simplifies the calculation. 

In the next section, we shall follow these two different paths (single bond and series 
array of bonds) just illustrated to extend this simple duality argument to arbitrary 
values of q; by simple we mean that it has not been necessary to consider the entire 
square lattice as in the original paper by Kramers and Wannier [28], who used duality 

arguments to derive t~ = x/~ - 1. 

, ,  . . . . . .  < .  ) 
(a) ~ (b) 

Fig. 2. Single (a) and two-series (b) bond arrays (solid lines), and their respective dual clusters (dashed lines). 
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3. General-q Tsallis statistics 

We follow here the above procedure,  replacing in the proper  place the Bo l t zmann-  
Gibbs statistics (q = 1) by the general q result. For  the Hamil tonian  associated with 

Fig. l(a) 

- ~ = Ko + K S I S 2 ,  (18) 

where K --- BJ  and Ko is an additive constant.  Eq. (6) yields 

[1 + ( 1 - q ) ( K o + K S 1 S 2 ) ]  l m - q ) =  A + BS1S2 = A 1 + ~  1S2 (19) 

which yields the general transmissivity given by Eq. (7), t =- B/A,  as before, where 

A ~ ½ { a  + + a - } ,  (20) 

B -~ ½{a + - a - } ,  (21) 

with 

a + =- [1 + (1 - q)(Ko + K)] 1/~1-q), (22) 

a -  = [1 + (1 - q)(Ko - K)] 1/~1-q). (23) 

We recover the transmissivity t = tanh K when q ~ 1. When the argument  is negative 
the probabil i ty is to be taken zero [4]. 

We assume that  Eq. (12) continues to be valid (at least as an approximat ion)  for the 
generalized transmissivity t(q). The self-duality of the square lattice implies t°~(q) = 

to(q) for the critical point,  or  

1 - t o ( q )  
- t c ( q ) .  (24) 

1 + to(q) 

Consequently,  the critical point  is tc(q) = x/~  - 1, which implies 

a + - a -  = ~ - 1 .  (25) a + + a  - 

We present now the critical point  for three cases, namely, Ko = O, Ko = K and 
Ko = - K. For  Ko = 0 the critical point  is given by 

K~ -1 = (1 - q) 1 + (x//-} - 1) 1 -q (26) 
1 - - 1 )  l - q  

In Fig. 3 we represent K~- a as a function of q. 
Fo r  Ko = K we obtain,  for the critical point, 

K c  i _ 2(1 - q) (27) 
(.,/2 + 1) 1 -q - 1" 
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Fig. 3. Dimensionless critical temperature kTJJ versus q for six different cases/approximations (we 
indicate the corresponding q ~ ~ asymptotic behavior): present single bond for Ko = 0 (kTc/J ~ q); 
present single bond for Ko = K (kT,/J ~ 2q); present single bond for Ko = - K. 

In  Fig. 3 we p lo t  the co r r e spond ing  funct ion K [  ~ versus q. The  th i rd  case, 

K0 = - K,  yields, for the  cri t ical  point ,  

K ?  ~ = 2(1 - q) (28) 
1 - ( x / ~  - 1) 1 - q '  

which is also shown in Fig. 3. 

W e  see tha t  all these cases reduce to the exact  resul t  for q = 1. F o r  q ¢ 1 they differ 

a m o n g  them. F o r  the Ko = 0 case, we can  c o m p a r e  the presen t  results  with o the r  

k inds  of  so lu t ion  such as mean  field a p p r o x i m a t i o n s  ( M F A )  [20] and  r enorma l i za t ion  

g roup  (RG) [29]. 

Let  us now cons ider  the Ko = 0 case assoc ia ted  with the series a r r a y  given by 

Fig. l(b). The  equiva lent  single bond  g raph  is ob ta ined  as follows: 

[1 + (1 --  q)(K~o + g s ) s 1 s 2 ]  l/(1-q) 

= ~ [1 + (1 - q)K(S1S3 + $3S2)] 1/~1-q) 
$3 

= [1 + (1 - q)K(S1 + $2)] 1/tl-q) + [1 - (1 --  q)K(S1 + $2)] 1/(1 -q) 

E ° I  = C  + DS1S2 = C  1 A I - - ~ S 1 S 2  . (29) 

F o r  $1 = $2 = 1 we ob ta in  

[1 + 2(1 -- q)K] 1/0 -q) + [1 - 2(1 - q)K] 1/(1 -o) = C + D. (30) 
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F o r  $1 = - $2 = 1 we obta in  

2 = C - D.  (31) 

F r o m  (30) and  (31) we determine C and D, and find 

D [1 + 2(1 - q)K]  1/~1 -q~ + [1 - 2(1 - q)K]  1/~l-qJ - 2 
ts(q) -= ~ = [1 + 2(1 - q)K]  1/~1 -q) + [1 - 2(1 - q)K]  1/~1 -q) + 2" (32) 

F o r  the parallel  a r ray  given in Fig. l(c) we have, for the equivalent  single bond  cluster 

(by using Eq. (19) for Ko = 0), 

1 + (1 - q)KpS1S2] 1/(~ -q) = [1 + 2(1 - q)KSIS2]  1/(1-q~ 

= A(2K)[1 + tp(q)SiS2],  

with 

[1 + 2(1 - q)K]  t /°  -q) - [1 - 2(1 - q)K]  ~/"-q) 
t,(q) = [1 + 2(1 q)K- l l / " -q) -+ [1 2(1 - q)K]  1/(l-q)" (33) 

The  duali ty relat ion we are now considering is given by 

t~(q) = 1 - tp(q) (34) 
1 + tp(q)' 

which yields, for the critical point ,  

[1 + 2(1 - q)Kc] 1/~1-°) - [1 - 2(1 - q)Kc] 1/~1 -q) = 2. (35) 

In  Fig. 3 we present  K [  ~ versus q. 

We verify in the Ko = 0 case tha t  while the q = 1 discussion provides  the exact 

answer  independently o f  the size o f  the clusters, this is not  for q ¢ 1. Consequent ly ,  

larger clusters should be invest igated in order  to improve  the present  approximat ions .  

4. D i s c u s s i o n  

Fol lowing  the previous  lines [1, 2] we generalize, within the Tsallis statistics, the 

t ransmissivi ty var iable  associated with the spin ½ Ising ferromagnet .  Then  we use 
duali ty a rguments  in order  to app roach  the critical t empera tu re  of this model  for 

a rb i t ra ry  q. O u r  main  conclusions are: 

(i) The  critical t empera tu re  generically depends,  as expected, on the value of the 
addit ive cons tan t  in t roduced  in the Hami l t on i an  (this effect is suppressed only for 
q = 1). This result reinforces the same conclusion obta ined  within renormal iza t ion  
g roup  techniques [29]. 

(ii) The  discussion of the Ko = 0 case illustrates the care tha t  must  be taken when 
doing app rox ima t ions  for q ¢ 1, F o r  example,  all the approx ima t ions  presently 
available yield, in the q --, oo limit, k s T c / J  ~ bq, but  great  uncer ta inty  is observed 
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concerning the prefactor b; b = 1 within the present single bond approximation and 
b = ½ within the series array approximation, to be compared with b = 4 for the mean 
field approximation [20] and b = 5.5 for a renormalization group approximation 
1-29]. The sensitivity of the results on the size of the clusters involved in the 
approximation is reminiscent of the situation observed in quantum systems [30]. 

The present results could be useful in the discussion of magnetism in fractal 
structures where standard (extensive) thermodynamics are expected to fail. Further 
studies (like the present approach but using larger clusters, Monte Carlo techniques, 
and others) are welcome in order to better understand the influence of q on critical 
points. 
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