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We study the scaling properties of noise reduced Eden clusters in three and four dimensions 
for variant B in the strip geometry. We find that the width W for large times behaves as 
a(s)g(L/sd-l), where L is the width of the strip, s the noise reduction parameter, d the 
dimension of space, and a(s) a decreasing function of s. g is a scaling function with the 
property g(u)---, 1/2 as u--~0 and g(u) -.- u ~ as u---, 0% where X is the roughness exponent. This 
scaling result leads to a new way of determiaing X. In 3 dimensions, our numerical values for 
X support a recent conjecture by Kim and Kosterlitz: X = 21(d + 2), and contradict all the 
former analytical conjectures. In 4 dimensions, we cannot distinguish between the conjectures 
of Kim and Kosterlitz and the conjecture of Wolf and Kert6sz, because large crossovers and 
finite size effects make the measurement of the exponents difficult. 

1. Introduction and motivation 

The  surface of the E d e n  model  [1-11] in dimensions g rea te r  than 2 has been  

widely studied and is still a controversial  topic. To be specific, consider the  

strip geometry  and s tar t  f rom a hyperp lane  of  width L of  seed  particles on a 

hypercubic  lattice, with periodic bounda ry  condit ions on the  sides of the strip. 

Define the width 

w(t ,L)~-~~ .__  ( h i - / ~ 2 ) ,  (1) 

where  N is the number  of  per imeter  sites, h i the height of the ith per imeter  site 

and h the mean height ,  

1 s 
/~= ~ ~ h i . (2) 

i = !  

Time t is chosen to be the mass of the cluster.  Since/~ = t /L ,  w will be regarded  

as a function of k7 and L henceforth.  The  scaling re la t ionship 
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(3) 

has been proposed [3], where X and z are exponents. 
From eq. (3), it follows that there is a scaling region, L .~h ,~ L ~, where 

w---/~t3, (4a) 

with 

13 = X_. (4b) 
z 

For/~ >> L~, w(/~, L) saturates to a value proportional to L x. The exponents X 
and z are known exactly in two dimensions [6], 

X =  ½ (5a) 

and 

z = ( S b )  

s o / 3 = 1 / 3 .  
In higher dimensions, the situation is unclear. Although a scaling relate, on, 

z = 2 - X ,  (6) 

has been derived in approximate ways [12-14] and is compatible with previous 
numerical simulations, there is controversy about the actual value of the 
exponents X and z. It has been argued [6, 15, 16] that, for sufficiently large 
disorder, eq. (5) holds for all d. However it has been recently conjectured [17], 
on the basis of numerical results, that X and z take the values 

1 
( 7 )  x -  ,_a, d 

so from (6) 

2 d -  1 
z =  2 -  X = d " (7b) 

The analytical solution by Derrida and Spohn [18] of the directed polymer on a 
Cayley tree indicates that/3 has to go to zero as d tends to oo. On the basis of a 
functional space renormalization [19], it has been claimed that in 3 dimensions 
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X takes the value 11/30. Simulations of a restricted solid as a solid growth 
model have led Kim and Kosterlitz [20] to propose another conjecture, 

2 
a' = d + 2 ' ( 8 )  

the scaling relation (6) being satisfied. Clearly there is a need to determine X 
accurately. 

In the Eden model on a lattice, there are two contributions to the width of 
the interface. The first comes from inclusions and overhangs and is thought to 
be independent of L [21]; this contribution is called the intrinsic width w i. The 
second contribution comes from the long wavelength fluctuations of the 
interface and is the subject of our present interest. As noted in ref. [21], the 
use of a trick called noise reduction [17,21-23] diminishes w i and greatly 
reduces corrections to scaling, making the numerical computation of exponents 
X and/3 apparently easier. 

In this paper we propose a new way of determining X- To this end, we apply 
noise reduction to variant B of the Eden model [4, 24]. Open bonds are defined 
as bonds that join a cluster site to a perimeter site; in variant B, an open bond 
is chosen at random and the corresponding perimeter site is occupied. In our 
version of noise reduced variant B, we place counters on the perimeter sites 
(not on the open bonds). We denote by s the noise reduction parameter, the 
nu~nber of times a given perimeter site must be chosen before it is actually 
a'~owed to become occdpied. The width w now becomes a function of h, L 
and s. 

Only the active zone of the cluster is stored, and bit coding is used to save 
memory soace. All simulations were carried on an iBM 3090 on d-dimensional 
hypercubic lattices with a ( d -  1)-dimensional substrate. (L x L substrates for 
d = 3 and L x L x L substrates for d = 4.) 

2. Resu l t s  

A. L dependence 

We find three regimes: 
w 

(i) First, when h is less than a few times L, we do not get scaling; in this 
region, when the noise reduction parameter is more than 2, we found 
oscillations corresponding to the filling of layers. 

(ii) For larger h there is a scaling region, L ~/~ ~ L ~, where w -~/~ [see 
eqs. (4a) and (4b)]. 
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Fig. 1. (a) l o g - l o g  plot  of W as a func t ion  of  L for mode l  B and d = 3 for various values of the 
noise reduct ion  parameters :  s = 1 ( O ) ,  s = 2 (A) ,  s = 6 ( ~ ) .  The  straight line is a least  square fit 
for s = 2 and  L >~ 30. (b) l og - log  plot  o f  W as a funct ion of  L for model B and d = 4 for various 
values of  s: s = 1 (O) ,  s = 2 (A) ,  s = 4 (F-l). The straight  l ine is a least square  fit for  s = 2 and 
L ~> 10. 

(iii) F o r / ~  >> L z, w saturates and we denote by W the limit ef  the width a s  

t----> ~ :  

W(L, s) - lim w(/~, L,  s ) .  (9a) 

Figs. la  and b show W as a function of L for different values of s for d = 3 and 
d = 4, respectively. For  s = 2, if one tries to fit the data to a form 

W(L, s = 2)--- L ~ , (9b) 

one finds X = 0.39 +--0.03 for d = 3 and X = 0.22 __-0.03 for d = 4. However ,  we 
shall show that these results are probably not the actual values of the exponent 

X, because of crossover effects. In 3 dimensions, the results were averaged over 

4 to 100 samples and in 4 dimensions from 4 to 10 samples. 

B. Scaling 

To proceed further, we have to measure the intrinsic width. Following 

Kert6sz and Wolf [21] we make  the Ansatz 

W 2= A(s )L  2x + w~ + "'" (lOa) 

For s = 1, we have now three parameters w i, A(s = 1) and X. We determine 
these three parameters by minimizing [log(W 2) - l o g ( A ( s  = 1)L 2~ + wi )1-- We 

obtained in 3 dimensions X = 0 . 4 ,  A(s = 1 ) = 0 . 2 6  and w, =0 .76 ,  and in 4 
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dimensions, X = 0.33, A(s = 1) = 0.26 and w i = 0.92. We note that the values of 
X obtained here are significantly higher than the values suggested by the raw 
data. In order to obtain an estimate of the error in A', we also adopted the 
following procedure. We fix a value of a' between 0.1 and 0.6. For each value 
of X, we determine A(s  = 1) and w2(s = 1) by minimizing the quantity 

C =  ~ [log W Z - l o g ( A ( s  = 1)L 2x + W2)] 2 . 
all points (L,W) 

2 obtained, we calculate C, which is a With the parameters A(s  = 1) and w i 
measure  of how well the points (L,  W) are approximated by eq. (10a). 

We first take all the experimental points (L, W) at the center of our error  
bars. C becomes a function of X, called C(X). Then we vary g and plot C(X) 
versus X- We would like to evaluate the influence of the uncertainty in our  
experimental  points on the function C(X). We do this by repeating the same 
procedure as above but,  instead of using the center of our error  bars, we use 
the lower bounds of our  values of W. We obtain a function C~ow(X). A function 
Cup(X ) can be defined in an analogous way, using our upper  bounds on our  
data points. 

Fig. 2a shows C(X), C~ow(X) and Cup(X ) for 3 dimensions. We see that the 
curves have a minimum in the interval [0.35, 0.46]. It is tempting to conclude 
that this leads to a value of X in 3 dimensions: )t' = 0.4 -+ 0.06. The uncertainty, 

2 using the above procedure,  is large because there is some uncertainty on w i . 
In 4 dimensions, our  error  bars are much larger than in 3 dimensions. Fig. 2b 

shows C(X), Ciow(X) and Cup(X ) for d = 4. The only thing that can be said, 
using this procedure, is 0 . 1 9 <  X < 0.5. 

Fig. 2c shows W2L -2x as a function of L -2X in 3 dimensions with the value of 
X obtained previously by the nonlinear least square fit. Fig. 2d shows an 
analogous plot for d = 4. Within the error  bars, the point fall approximately on 
a straight line whose slope is w~ and whose ordinate at the origin is A(s = 1). 

We define the corrected width as 

W(L, s) = [WZ(L, s) - w~(s)] 1/2 . (10b) 

We propose the scaling assumption 

i f (L ,  s) = a(s)g ~ , (11) 

where_ a(s) is a function of s and g is a scaling function. In order  to test (11), we 
plot W as a function of the scaled variable L/s d- ~ for values of L up to L = 200 
for d = 3 (fig. 3a) and L = 80 for d = 4 (fig. 3b). We find that within the error  
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Fig. 2. Plot o f  C (solid line), C,o w ( - - - - - )  and C,p ( - - - - )  as a function of  g (a) for d = 3 and (t,,  
for d = 4. (c) l o g - l o g  plot of  W2/L °'8 as a function of  1 / L  °8 for model  B and d = 3 for s = 1. The 
straight line is a fit to the data. It gives w~ = 0.8. (d) l o g - l o g  plot of  W2/L ~';3 as a function of 1 /L  2 
for model  B and d = 4 for s = 1. The  straight line is a least square fit to the data which gives 

w i = 0.9. 

bars, the data fall on the same curve except maybe the data for s = 1. This 
means that a(s) is approximately constant for s ~ 1. For small values of the 
argument u, our results indicate that the scaling function tends to 1/2 as g(u) 
tends to zero. This is because for small value s the growth proceeds layer by 
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s #  1, (a) for  L/s2<8 ( d = 3 )  and  (b) for L/s3<7 ( d = 4 ) .  

layer. In the extreme case s--~oo, w(/~, L,  s) oscillates between 0 (when /~ is 
[n] x L d-l)  and 1/2 (when h is [n + 1/2] x Ld- l ) .  By convention, for s large 
we take 

ff'(L, s) = lim S, , ,  (12a) 

where S, is the maximum value of w(/~, L, s) for n <~/~ < n + 1. We found that 
for fixed L 

!im I~'(L, s) = ½. (12b) 

The scaling assumption (11) has to break down for very small values of L since 
¢-: is zero for L = 1. For  large values of the argument u, we must have 

g(u) --. u ~ , (13) 

because of eqs. (3) and (9). We see that the curves log if' v e r s u s  L / s  2 for d - 3 
have a clear upward curvature (see fig. 3a) for L/s  2 < 10. For L/ s2>  I0, the 
curve seems to be straight. A least square fit in the region s = 1, 10<~ L/s  ~ 100 
gives g = 0.4 _+ 0.02. The actual error bars are in fact much larger, because of 
the uncertainty of the intrinsic width which has been withdrawn. Analogous 
considerations hold in 4 dimensions. A least square fit to g(u) in the region 
L / s 3 >  10 gives X =0 .33  +-0.03. Again, the uncertainty about the intrinsic 
width at s = 1 makes the actual uncertainty on X much higher than 0.03. 
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Let us suppose that (11) is true and a(s )  is approximately constant. If L is 
fixed and L / S d - I ~  I ,  then g ( L / s d - ~ ) . - - ( L / s d - ~ ) ~ .  Hence 

with 

I4r( L , s ) - -  s - y , 

y = (d -- 1 ) x .  

(14a) 

(14b) 

Figs. 4a and b show ~ '  as a function of s for different values of L for d = 3 and 
d = 4, respectively. As expected I~' decreases with s. We seem to have a region 
where (14a) is satisfied but in fact our value of the exponent y would give 
y = 0.65 4-0.1 in 3 dimensions and y = 0.8 +_ 0.1 in 4 dimensions. 

These values do not match (14b) h~cause the largest values of L l s  a-z  we can 
achieve with s # 1 are not large enough for (14a) to hold. 

How do these results compare  with the scaling form proposed in ref. [22] for 
variants A and C of thi~ Eden  model, 

L,  s) = + w (s) , (15a) 

where F is a scaling function, B an s-dependent  amplitude and w i an intrinsic 
width, s ~ is an exponent which was found to be approximately 1 for variants A 
and C. Taking the limit/~----> oo in (15a) gives 

W2 
L 2X = B2(s )  F2  , (15b) 
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Fig. 4. (a) l og - log  plot of  if '  as a funct ion of s for mode l  B and d - 3 for var ious  values of  the 
width of  the  strip L,  L = 20 (El),  L = 40 (A) ,  L = 100 ( © ) .  Straight lines are fits to the data  for  
L - 100, L - 40 and L - 20, in the  interval  I ~< s ~< 4. (b)  l og - log  plot of  W as a funct ion of s for  
model  B and  d = 4 for various values  of  L:  L = 20 (<>), L = 30 ( A ) ,  L = 60 (rq).  The  straight line 
is a fit to the  da ta  for L = 60. 
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with F® = limx_.~F(x ). In two dimensions, for models A and C, B 2 w a s  found 

to be of  the form C, + C2/s. Thus, if (15b) is true, 

~2-~ = C t +  s F ~ .  (15c) 

We plotted in fig. 5 I~/L 2x as a function of 1 / s for L = 40 for 3 dimensions with 
the value X =0 .4  previously obtained. The curve shows a clear trpward 
curvature. 

We would like now to see if these data can be better approximated by a form 
like (11). From (11), we have, for L >> s d- 1, 

L ''~x "" s 

1)X 

and, for L ,~ s d- 1, 

li~/'2 0 . 2 5  
~ - -  

L2X L2X • 

If (11) is true, l~2/L 2x a s  a function o f  (1/$)  2td-l)x should be a straight line for 
s >> s* = L l~d-~ and go toward a plateau of height 0.25/L 2x for s ~ S*, Fig. 6 
shows lYC2/L 2X as a function of ( l / s )  2td-l)x for d - 3 and L - 4 0 .  Although we 

did not get to large enough s to see the plateau, the portion for s ~< 8 can 
reasonably be fitted to a straight line. For d = 4, our data were not conclusive 
epough to make the distinction between (15b) and (11). We conclude that, at 
least in 3 dimensions, for model B with the counters on the perimeter sites, the 
scaling form (11) seems to be verified rather than eq. (15b). 
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C. Dynamical properties 

(i) d = 3  
We now turn to the evlauation of the dynamical properties. The average 

height/~ for which the scaling regime begins increases with s. This to because 
noise reduction introduces time rescaling, as found in ref. [22]. Thus, in order 
to observe the scaling regime we choose s relatively small. Fig. 7a shows w as a 
function of h for L = 400, s = 2 after averaging over 10 samples in 3 dimen- 
sions. Since the region where the dynamical scaling relation (4a) is expected is 
small, we tried to plot the local slope ~eff--19 log~oW/O loglo/~ as a function of 
logl0/~ [17,22]. However, this quantity fluctuates a great deal. The interval 
-1 .5<1Oglo/~<2.65  is then split into boxes [loglo/~n,log,o/~,,÷l] such that 
/~n+l = 4/~,. For the points (log~o/~, loglo w) such that /~,, ~< l~ </~,,÷~, a least 
square fit to the curve log~oW as a function of log~o/~ gives an average value/3av 
for the interval [lOgl0/~ . ,  log~0/~,+~]. We define H~ as logloH, = (log~o/~,, + 
log~0/~,+~)/2. A plot of/3a: as a function of log~oH~ is shown in fig. 7b. For 
H n < 0.1, [~av is roughly 1/2. It decreases, reaches a minimum and then slowly 
increases. There is a maximum at H n > 30 and then it decreases again as 
saturation is approached. The belief that the region 3 <~ H n ~< 20 is the scaling 
region is in our opinion erroneous. The value of/3 should be estimated in the 
region where / - / ,  is larger than 30, but before it goes down due to saturation 
effects. For the largest width we could do, we got/3 = 0.22-+ 0.03. 

(ii) d = 4 
For d = 4, we averaged over 8 samples with L = 70 and s = 2 (see fig. 7c). 

We obtained/3 = 0.116 +--0.01. We also measured/3 for smaller values of L in 
order to do finite size scaling. A plot of/3 as a function of 1/L is shown in fig. 
7d. Finite size effects seem to be particularly important. The L dependence of 
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Fig. 7. (a) log- log plot of  w as a function of mean height/z for model B, s = 2, L = 400 and d = 3, 
after averaging over 10 samples. (b) Plot of  flay as a function of log~o H for the same set of  samples. 
(c) l og - log  plot of w as a function of/~ for model B_, s = 2, L = 70 and d = 4 after averaging over 8 
samples. The straight line is a fit in the region 3 ~ h ~ 50 limited by the two heavy bars. This gives 
fl = 0.116 -+ 0.01. (d) Plot o f  fl as a function of  L - '  for s = 2 and d - 4. Extrapolation to infinite L 
gives /3  > 0.13. 

the effective exponent fl for finite L is not known. This, together with error 
bars, renders an extrapolation to L - +  oo not very reliable. 

3. Discussion and conclusion 

We have studied variant B of the Eden model in three, and fnnr dimensions. 

It responds to noise reduction in a fashion which is different fi-om variants A 
and C studied in ref. [21]. For variant B, with the counters on the perimeter 
sites, the width for large times obeys the scaling law (10) with 

g(u) - - ,  m x 

for large u. In 3 dimensions, our numerical results for X using our values for 
s = 2 gives X = 0.39 +- 0.03. Our values using s - 1 and subtracting the intrinsic 
width give X = 0.4-+ 0.06. These values support a very recent conjecture by 
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Kim and Kosterlitz, X = 2/(d + 2). They seem to contradicl the conjectures of 
refs. [6, 16, 17]. The conjecture of ref. [19] (X = 11/30) is actually near the 
border  of our error bars. In 4 dimensions, finite size effects prevent  us from 
obtaining precise estimates of /3  and X. 
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