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LETTER TO THE EDITOR 

Scaling properties of the perimeter distribution for lattice 
animals, percolation and compact clusters 
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f Institute of Physics, PO Box 57,11001 Beograd, Zemun, Maksima Gorkog 118, Yugoslavia 
f Center for Polymer Studies and Department of Physics, Boston University, Boston, 
MA 02215, USA 

Received 22 January 1987 

Abstract. Scaling properties of the cluster distribution function and mean cluster size in 
the ensemble of clusters with fixed perimeter are analysed. The relevant scaling exponents 
are determined in all three regions of interest: lattice animals ( p  < p c ) ,  percolation ( p  = p , )  
and compact clusters ( p  > p c ) .  Also, a form of the lattice animal distribution function in 
the statistical ensemble of clusters with fixed perimeter is presented. In particular, we 
compare the exponents a and D, defined through (I) ,  - so and (s), - r p ,  where ( I ) ,  is the 
mean perimeter I of s-site clusters (the s-ensemble) and (s), is the corresponding quantity 
in the 1-ensemble. 

The percolation model has been extensively analysed during the last decade (Stauffer 
1979, 1985, Essam 1980 and references therein), both because of its formal appeal and 
its practical importance. This model and its variants form a basis for the description 
of geometric aspects in a number of phenomena such as polymerisation and gelation, 
catalysis, hydrodynamics and cloud processes. One is typically interested in statistics 
of clusters formed by the process of random occupation of elements (sites or bonds) 
on a lattice. A cluster is a group of connected occupied elements, characterised by 
the number s of elements it contains (cluster elements) and the number t of its 
unoccupied nearest neighbours (perimeter elements). Each element is occupied with 
probability p and the two parameters s and t determine the statistical probability 
p’(1 - p ) ‘  for the occurrence of the cluster. 

For most of the work done on percolation theory and related topics one focuses 
on a single parameter function n,( p ) ,  the distribution of clusters of mass s, which sums 
over all the information about the perimeter t of the clusters. On the other hand, there 
are some applications (e.g. colloidal catalysis) where the cluster mass is irrelevant. 
Catalytic activity is proportional to the number of empty sites neighbouring the cluster 
(‘catalytic surface’ of the cluster), which is identical to the cluster perimeter. In this 
case the appropriate statistical distribution should be the one which specifies the 
fraction of clusters having a given perimeter t ,  regardless of their mass s. Starting with 
this ‘perimeter distribution’ function one can calculate various statistical averages, 
which we will refer to as the r-ensemble averages, in contrast to the s-ensemble averages 
commonly studied. In what follows, we will show that the cluster perimeter distribution 
and the related averages have some interesting scaling features which have not been 
apparent from the analysis based on the usual s-ensemble approach. The scaling 
behaviour of these quantities will be analysed in all three regions of interest: ( i )  
percolation ( p  = p c ) ,  (ii) lattice animals ( p  < p , )  and (iii) compact clusters ( p  > p J .  
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( a )  The s-ensemble. The average number of s-element clusters per lattice site 
n , ( p )  is defined as 

4 ( p ) = C P ' ( l - P ) ' g , r  ( 1 )  
f 

where g , ,  represents the number of geometrically distinct clusters with s occupied 
elements and  t perimeter elements. In the case of the s-ensemble averages, the mean 
cluster perimeter as a function of q = 1 - p  is defined as 

Here 

I 

plays the role of the partition function for an  ensemble of clusters of fixed size s. The 
asymptotic behaviour of ( t ) ,  is known: 

( t ) ,  = { A ( p ) s  P < P c  
[ ( l  - p ) / p ] S + B s ' d - " ' d  P > - P c .  

(3) 

Here A ( p )  and B are scaling amplitudes, d is the lattice dimension and p c  is the 
critical probability. If we write ( t ) ,  - se, the above expressions tell us that in the limit 
s +CO and at  any p # 1, ( t ) ,  - s, and therefore a = 1 .  Note that in the limit p + 1 the 
correction to scaling term s ( ~ - ' ) ' ~  becomes dominant and  replaces the [ ( 1  - p ) / p ] s  term. 

( b )  The t-ensemble. Definition ( 1 )  focuses interest on the s-dependent properties. 
However, on the level of the g,,  function, the variable s has little precedence over the 
variable t and one can define two types of averages. In the r-ensemble, one defines 
basic averages through the summation over index s. For example, the mean cluster 
size (s), at a fixed perimeter t is defined as 

Here K is a generalised statistical weight, analogous to q = 1 - p  of ( 2 )  and 

z, = c gs& = 

is the t-ensemble partition function. When we speak about the probabilistic properties, 
we usually use probability p for the statistical weight K .  The above weight K is meant 
to apply to more general behaviour (Family and  Coniglio 1980, Harris and Lubensky 
1981) .  

The t-ensemble average, (s), of (4a),  was analysed by Duarte ( 1 9 7 8 ) ,  who considered 
(s), defined only with the statistical weight K = 1 .  However, he associated the observed 
scaling behaviour with the lattice animal ( L A )  problem. If we write (s), - t o ,  his work 
suggests the value = 1.5. This is somewhat surprising, since from experience with 
thermodynamic variables, one expects the exponents a and p to be related as p = 1/a 
and therefore the last value does not agree with a = 1 obtained from (3 ) .  

Our aim here is to examine in more detail the t-ensemble averages through the 
analysis of the partition function Z, and the mean cluster size (s), - t P  in all three 
asymptotic regions of interest: percolation, lattice animals and  compact clusters, and  
to connect the value of p with the value of the s-ensemble exponent a. We also give 
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arguments showing that definition (4) of (s), for LA problems should be defined with 
the value of K equal to the LA fixed point value K = K A  (Family and Coniglio 1980, 
Harris and Lubensky 1981). 

( i )  Percolation region. We start from the percolation free energy G (Kasteleyn 
and Fortuin 1969, Essam and Gwylim 1971). In the s-ensemble 

Equivalently 

where K = p  e-" and h is the ghost field. In the t-ensemble notation, the free energy 
of ( 5 0 )  can be expressed as 

with Z , ( K )  defined through (4b). From the s-ensemble analysis we know (Nakanishi 
and Stanley 1980) that, in the vicinity of the percolation critical point, n , ( p )  scales as 

n , ( p )  - s - I f ( s " (P  -PJ) (6b) 

(Stauffer 1979, Essam 1980), where (T and T are the two independent percolation 
exponents. Combining ( 5 )  and (6b), we see that in the vicinity of pc  the free energy 
scales as 

[ h  =0,  K = O ]  ( r - l l / u  

(7) 

The same results should be valid if G is represented by the t-ensemble expression 

= r p  ( K  - p c )  / K ,  - 1)'-' = hT- '  [ p = ~ ~ , K = p , e - ~ I .  

(6a)  and we can therefore rewrite (7) as 

Equation (8) implies that Z, scales as 

Z, = t - T A  'f( tu (  - qc))  (9) 
with A = l /q .  Cne can prove (9) by the substitution of (9) in (8) and subsequent 
integration over the variable t .  The scaling form (9) implies that at the percolation 
fixed point [ p  = p c ,  h = 01, Z, scales as 

z, = f-(1/qc)' (10) 
which is quite analogous to the behaviour of the s-ensemble partition function Z, at 
p = p c :  

zs = p , " n , ( p c )  = s - ' ( l / p J *  (11) 
The result (10) can also be derived from the definition of Z, by approximating the 

sum over s by an integral which is then calculated by the saddle point method. Thus, 
in the vicinity of p c  (Stauffer 1985) we can write g,, = [ A ( ~ ) ] ~ n , ( p ) s - ~ / ~ ,  with A ( x )  = 
(1 + x) '+' /xx and x = s/ t. Then 

dx ts -r- ' '2  exp[t(x In p + (1 + x )  In( 1 + x )  - x In x)].  (12) 
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Maximising the exponent with respect to x, one obtains the most dominant value of 
x, x = p / q ,  and, after calculating the integral, recovers expression (10). 

The scaling form (10) agrees rather well with the exact numerical values for 2, ( p c ) .  
In figure l (a )  we present for the triangular site (TS) and square site ( s s )  problems the 
exact values of the ratio Z,+,/2,, which should, according to ( lo) ,  scale as A (  1 - r /  I). 
The extrapolation to t + gives the estimates A = l /qc = 1.9 * 0.1 for the TS problem 
(which should correspond to the percolation threshold p c  = 0.474* 0.05) and the value 
A = 2 . 4 1  0.1 for the ss problem (corresponding to p c  = 0.585 i 0.05). The p c  values 
obtained in this fashion are somewhat lower than the true values p c = 0 . 5  (TS) and 
p c  = 0.593 ( s s ) .  Apparently, the scaling region of the data in the t-ensemble is smaller 
than in the s-ensemble that results in the above errors in the estimates of A and p c .  

(ii) LA region. In order to find the t-ensemble function 2, which describes the 
properties of lattice animals, we must choose the proper value of the generalised 
statistical weight K appearing in 2,. This issue has not been treated correctly in the past. 

- 

- 

I 

-L 
0.01 0.05 0.1 

1 I t  

2; 3.0- 
ru' 

2.0 - 

I 0 I 
1.01 0 0  O 10.2 

O O  0 

0 0  
0 

0 0.05 0.1 
l i t  

Figure 1. ( a )  Ratio of the subsequent values of the !-ensemble partition function Z , + , / Z ,  
at the percolation threshold as a function of 1 / r  for the TS (0) and ss ( x  j problems. Values 
of the ratio extrapolated to l / t + O  give the value of parameter A = I / q , =  1/(1 -pcj. ( b j  
Ratio of the subsequent values of the t-ensemble partition functions Z,+,/Z, at the value 
K equal to the lattice animal fixed point value K, for the TS (C) and ss ( x )  problems. 
The left-hand scale is for the TS and the right-hand scale for the ss problems. 
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We start from the result of the s-ensemble analysis which gives the following scaling 
behaviour for the free energy in the lattice animal region (Sykes and  Glen 1976): 

G = C  K'nt=(K-KA)"- ' .  (13a) 
T 

In  this equation, nf = s-'AL is the number of lattice animals of size s, A A  is the lattice 
animal growth parameter and KA = l/AA is the LA critical value of the field K. The 
scaling fields ( K  - KA) and ( q -  1 )  are equivalent in the LA region (Family 1982, 
Djordjevic 1985). Therefore the free energy must also scale as 

G - ( q  - l)'--'.  (136) 

If the function G of (6)  must obey (136),  then the t-ensemble partition function 
Z, defined in (46)  must, in the LA region, scale as 

Z, -Af t - '  (14) 

with the t-ensemble LA growth parameter A equal to 1 and the normal LA value of the 
exponent e( f3 = 1 if d = 2 ) .  We can use the fact that A = 1 to determine the value of 
the field K which, in the LA region, gives Z, of the form (14). With this in mind we 
present in figure l ( b )  the ratio Z,+,/Z, as a function of l / t  for the TS and ss problems. 
The intercepts of these functions with the 1 / t  = O  axis, must be equal to A =  1. This 
is indeed the case if the K used in the calculations of Z, takes the LA fixed point value 
KA = 0.192 for the TS and KA = 0.246 for the ss problems. 

Since the t-ensemble growth parameter A is equal to 1, InZ ,  should behave as 
In Z, - t In A S  f3 In t = f3 In t. This can be used as another test for the value of the field 
K corresponding to the LA partition function Z,. In figure 2 we present function In 2, 
plotted against t for K = 0.2, 0.246, 0.3 for the ss problem. It is obvious that the curve 
for K = KA = 0.246 is closest to the expected logarithmic behaviour. Thus, the above 
analysis indicates that the t-ensemble partition function for the LA problem should be 
defined as Z, = Xs Kag,, .  

I I '  " I  

1 
16 14 12 10 

t 

Figure 2. Dependence of - In(Z,)  on the value of perimeter I for K = 0.2 (01, K = K ,  = 
0.246 ( x )  and K = 0.3 (A) for the ss problem. 
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Consistency of this conclusion is also demonstrated in figure 3 ( a )  where we show 
the effective exponent e( r )  as a function of I /  t which , after the extrapolation to t + CO, 

gives 6 = 1 for both lattices. The effective exponent 6 ( t )  is defined as (Riedel and 
Wegner 1974) 

( i i i )  Compact cluster region. Finally, let us derive the relation between Z, and t 
for compact clusters. For numbers g,, we use the expression (Essam 1980) 

g,, = [ ~ ( x ) ] ~  exp[-as'd-l)'d 1 x = s/ t ,  a = constant. (16) 
The RG analysis of the generalised percolation problem shows that the parameter 

K takes the value one for the compact clusters fixed point and Z,  must be equal to 

z, = ( ,I , K ' g , ,  ),=, = 1 d s  '1' exp(-as'd-' ' 'd IK'IK-I 

= d s  K '  exp[(t +s) l n ( t + s ) - s  In s- t In  US"-"'^)]. (17 )  

I I 

0 0.05 0.1 
l i t  

I 

"I 1 .a 

1.6 c 
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o o o o  0 0 

b 

1 . 4 1  

t 

1 . 0  ' -2 \  0 0.2 0.4 0.6 

l l t  

Figure 3. ( a )  Effective exponent O(/) as a function of l / r  for the TS (0) and S S  ( X )  

problems. Extrapolation to I -P cc is consistent with the expected value 0 = 1 for lattice 
animals. ( 6 )  Effective exponent Be"(') as a function of 1 / 1  for the TS problem at three 
values of the weight K :  K = 1 (O), K =0.5 ( x )  and K =0.192 (A). 
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By equating to zero the derivative with respect to s of the function in the exponent 
we obtain s,, the most dominant value of s. Thus s, - td"d-" and the saddle point 
approximation of the above integral is then 

Z, = eXp[td/'d-') In K -tA(K)]K,, .  (18)  

Hence InZ,  scales as t d"d-"  In K - rA(K) .  This result is expected physically, since 
compact clusters behave as homogeneous clusters and their mass s scales as the 
geometric volume R d  (R-cluster radius) while perimeter r scales as the cluster surface 

Let us now concentrate on the numerical data for the mean size (s), at a fixed 
cluster perimeter t (4). We determine numerically the effective exponent p as a function 
of field K.  As we vary K between 0 and  1 we obtain the result that the exponent /3 
changes between values 1 and 2. The results for the TS problem are presented in figure 
3 ( b )  for three values of the parameter K :  K = 1, K = p c  and K = K,. We performed 
the same analysis for the ss and honeycomb lattices and obtained similar results. In 
the lattice animal region ( K  = KA) we obtain p = 1 . 1  * 0.1, which includes the expected 
value p = 1. In the percolation region ( K  = p , )  we obtain p = 1.2*0.2 and in the 
compact clusters region ( K  = l ) ,  we get p = 1.8 * 0.2, which includes the expected value 
2. In this letter we rely on the extended data for (s), from Sykes et a1 (1976) and 
Duarte (1981). It should be emphasised that, although for compact clusters In Z, - 
t d " d - "  In K + tA( K )  and the amplitude of the t d " d - l )  factor tends to zero when K -?. 1, 
the mean cluster size (s), defined in (4 )  scales as td"d-" + t. The compact cluster and 
lattice animal influences, t d " d - "  and t respectively, are clearly present at all values 
of K. This basically explains the deviations of the effective exponent from both the 
asymptotic values p = 1 ( L A )  and p = 2 (cc)  which we observe even at the K values 
below the percolation threshold as well as close to K = 1. We have also repeated the 
Duarte (1978) analysis of (s),. After extrapolating the effective exponent p (  1) to t -+ a, 
we obtained the value p = 1.75, significantly higher than the Duarte value of 1 . 5 .  

In conclusion, our results for the t-ensemble exponent agree with the relation 
between s and f in the s-ensemble; i.e. for percolation and lattice animals we obtain 
a linear dependence and  for the compact cluster a volume to surface dependence of 
the homogeneous clusters. The reason that the observed (effective) t-ensemble 
exponent p is changing continuously from the value 1 to 2 is the influence of compact 
clusters for which (s), - t d " d - "  + t. This quadratic dependence on t in d = 2 is more 
important than linear dependence so, although the amplitude of the quadratic term is 
decreasing with decreasing parameter K ,  its influence remains important. This is in 
contrast to the s-ensemble average ( I ) ,  where the influence of the compact clusters 
appears as a correction to the leading linear dependence on s, i.e. as a correction term 

. I t  should also be stressed that the limit K + 0 in the t-ensemble averages d o  s ( d - l l  d 

not correspond to the LA problem but rather extract only the terms with s = s,,, which, 
for given t ,  are proportional to 2 4  i.e. it corresponds to the linear clusters. The LA 

properties are obtained in the limit K = KA. The conclusion that the LA problem 
corresponds to the p + 0 limit of the percolation problem is correct (Stauffer 1985) 
when we consider the averages in the s-ensemble because in the definitions like (2)  
the powers of p '  or K '  cancel out and their presence is irrelevant. 

which results in the relation s - t d / i d - " .  ~ d - l  
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