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Diffusion-limited-aggregation (DLA) deposits with no branching (“zeroth-order branching
DLA”) resemble a “forest of whiskers;” the fractal dimension d, of this forest is significantly less
than that of normal DLA deposits. We study a generalization of this whisker model in which only
first-order branching is allowed: attachment to the sides as well as the tips of the whiskers is per-
mitted. Using various analysis methods, we find that d, may be only very slightly smaller than d,
for conventional DLA (the full infinite-order branching case).

I. INTRODUCTION

Considerable interest has recently developed in the
study of diffusion-limited aggregation (DLA).! One
starts with a seed particle and releases random walkers
in a d-dimensional space from a large hypersphere cen-
tered on the seed. Among the variants of pure DLA is
the surface-deposition model. Here one begins with not
a ‘“‘zero-dimensional” seed particle, but with a one-
dimensional line of seed particles. (In general, one can
study hypersurfaces of seed particles provided the hyper-
surface has a dimension smaller than d.) Although sur-
face deposition models are relevant to many physical
systems, they have not been fully explored nor fully un-
derstood to date.?3 For this reason much recent interest
has focused on a simpler variation of the surface-
deposition model, a model in which growth is only al-
lowed to occur on the main trunk of a cluster. This
model, called DLA without branching, or zeroth-order
branching, produces deposits that resemble a forest of
whiskers.* For this model, Rossi’ was able to derive a
systematic renormalization-group treatment while Cates®
solved the mean-field equations exactly. The fractal di-
mension of DLA without branching is significantly
smaller than that of the random regular DLA deposi-
tion. In this paper, we study numerically a model inter-
mediate between DLA without branching and regular
DLA deposition.

II. FIRST-ORDER BRANCHING MODEL

We define the zeroth-order skeleton of the cluster as
the set of sites which can be connected to the original
base line by a straight line (i.e., the “trunks” of the
trees). We define zeroth-order branching as the arrival
of a random walker on the top of a tree, the random
walker coming from above (see Fig. 1). The first-order
branches are the set of points which do not belong to the
zeroth-order skeleton, and can be connected to the origi-
nal base line by a path on the cluster consisting of two
straight lines.

We say that we have first-order branching when a ran-
dom walker touches the trunk of a tree by the sides or
when it hits a first-order branch by the end (see Fig. 1).
Second- and higher-order branching is defined in a simi-
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FIG. 1. (a) Definition of zeroth-order skeleton (in black).
Also shown are the additional sites needed for first-order
skeleton. The arrows indicate how different orders of branch-
ing are defined. (b) Typical simulation of the first-order
branching case, with L=1001 and N =40000, compared with
(c) the infinite-order branching case (DLA) with the same
values of L and N.
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lar way. Infinite-order branching is a conventional DLA
deposit. We use the DBM boundary condition.® If the
movement of the random walker corresponds to zeroth-
or first-order branching, then when a random walker
first touches a cluster site, the previously visited perime-
ter site becomes part of the cluster. However, if the
movement of the random walker corresponds to higher-
order branching, the random walker is reflected back to
its original position and another step is taken.

III. NUMERICAL SIMULATIONS AND RESULTS

Periodic boundary conditions are assumed on the sides
of the box. Walkers are launched from a point located
just one lattice site above the height of the cluster but of
random abscissa. Walks are performed in the continu-
um until the walker comes to a distance R smaller than
some number R, from the cluster; a walk is then per-
formed on a lattice (square lattice).”® If the random
walker goes beyond a certain distance R, from the
cluster, then the walker is reset on the continuum. If
the random walker goes beyond some very large distance
from the base line, it is killed (typically we chose this
distance to be 1000 times the height of the tallest tree).
A typical width is L=1001 lattice units, and typically
we deposit N =10%-10° particles.

We are interested in the density profile p(y), the num-
ber of cluster sites between height y and y +1. For one
sample, the density profile looks very ‘“noisy,” so we
average on many samples. After an anomalous region
very close to the surface, we find a power-law decay of
the density

py)I~y~%, (D

followed by a plateau corresponding to the density of
one finger, and in the end a falloff. When N, the number
of particles deposited, is not at least two orders of mag-
nitude larger than the width L, the average density
profile has the shape shown in Fig. 2(a) (N =56000,
L=1001, 87 samples). As N increases, eventually, one
finger outgrows the others so that the density profile will
have a plateau as shown in Fig. 2(b) (N =13250,
L =121 100 samples).

The exponent a is simply related to the fractal dimen-
sion d; of the forest by

a=d —d, . 2)

We have determined the exponent a in a situation where
L=1001, N =56000; the average has been taken over
120 samples. We got the result a=0.341+0.04. This
gives d,=1.6610.04, very close to the value for infinite
ordinary branching DLA deposit.

However, we know that the lattice has a dramatic
effect on regular DLA. The very small difference in our
numerical simulations between first-order and infinite-
order DLA deposition could be due to the fact that the
fractal dimension of first-order DLA converges quicker
to its lattice value than the one of ordinary DLA does.*
Simulations done at widths L of 121 and 301 give ap-
proximately the same values of d,. For L=301 and for
L=121, we got =0.3410.04 (see Fig. 3).
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To see if d, for first-order branching is significantly
less than d for infinite-order branching (ordinary DLA),
we calculated p(y) for ordinary DLA. From Fig. 4, we
see that d}“’)=1.72i0.015, 3-4% larger than d, for
first-order branching but only just barely outside the er-
ror bars d "' =1.66+0.05.

e}
10" 10°
[ NI
&/+
J
J
/
/

R skt il

10°

Ll

(a)

1

10

T T TTTTI7 T T TTTTI T T 171717

10" 10° 10
y

0

10

10°

[Nl

!

10°

-1 0
0 10
S N A N T N R A S N ST S |

1

o
10

(b)

+
s
Py
i
f
.
.
R R e S FHE HE R

1

T T T T : T \llurr]zl TTTTTT
10 10 10

0

10

FIG. 2. (a) Log-log plot of the density p vs y, the height
from the base line, after averaging over 187 samples of mass
N =56000, for a strip of width L=1001 lattice units. The
solid line is the linear fit in the scaling region, yielding
d;=1.66+0.04. (b) Log-log plot of the density p vs y, after
averaging over 100 samples of mass N =13250 for a strip of
width L=121. A plateau corresponding to one single finger
outgrowing the others can clearly be seen.



We also studied other quantities such as the rms
thickness defined as

Lgye 3)
N‘ yl b

i=1

T=

where the sum extends over all the cluster sites i and y;
denotes the height of site / from the base line. It has
been shown?® that the scaling of T can be related to the
fractal dimension,
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FIG. 3. Log-log plot of the density p vs y after averaging
over 120 samples of mass N =17801 for a strip of width
L=301. The linear fit to experimental points in the scaling re-
gion gives d,=1.66+0.04. (b) Log-log plot of p vs y after
averaging over 300 samples of mass N =10000 for a strip of
width L=121. The linear fit gives d,=1.66+0.03.
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T~N¢, 4)

with
1
—=d,—(d—1).
. d,—(d ) (5)

We measured the rms thickness for a width of L=1001
as a function of N up to N =56000, and the results were
averaged on 20 samples [see Fig. 5(a)]. We tried to fit
our data with the form

(T)~ANS(1+BN %) (6)

to include corrections to scaling, where ( T') denotes the
average of T over 20 realizations. A plot of
dlog,o{T)/d log,oN versus N2, with A=0.6 was
found to be approximately a straight line. From the or-
dinate at the origin we obtained €=1.59+0.04 [see Fig.
5(b)]. This in turn gives d,=1.63%0.02 by relation (5).

We have also looked at the distribution of cluster
sizes. Let us denote by n (N) the number of clusters of
size s; the scaling form

n(N)=s""f(s°/N) @)

has been proposed in Ref. 3. Here o and 7 both depend
only on the fractal dimension, since

o=2—71 (8)
and

r=1+(d —1)/d, . ©

To determine o and 7, we looked at the moments of
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FIG. 4. Log-log plot of density p vs height y for ordinary
DLA deposition on a strip of width L=1001, after averaging
over 200 samples. We find d*'=1.720+0.015.
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FIG. 5. (a) Plot of log,o{T) vs log;(N for N =56000 and
L=1001, averaging on 20 samples. For N <L, (T) is in-
dependent of N, while for N>>L, (T )~N¢. For fixed L, as
N — «, since one tree outgrows the others, we study how the
rms thickness of this tree scales with its mass. Thus, for
N — «, we measure the fractal dimension of a single tree. Be-
fore one single tree emerges from the forest, the power-law de-
cay of the density p gives the fractal dimension d of the forest.
For example, the fractal dimension d} of a single tree in
“DLA without branching” is unity, while the fractal dimension
d, of the forest is greater than 1 (see Refs. 4 and 5). (b) Plot of
d log,o{T) /d log,,N vs N ~® with A=0.6, for a strip of width
L=1001, where (T) is the thickness averaged on 20 samples.
The solid line is a fit to experimental points in the range
9900 < N <56000. The extrapolation to the limit of infinite
mass gives €= 1.59+0.04, corresponding to d,=1.63+0.02.
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the cluster size distribution

M,= 3 sPn,(N) . (10)

s>1

Equation (8) arises from the normalization condition,
3 ,sn,=N. In principle, the study of the behavior of
one moment M, with p=£1 should be sufficient to deter-
mine 7, since

Mp~N(p+l—‘r)/0~N(p+l—7)/(2~7’) . (11)

Thus we get independent estimates of 7 by looking at
different moments M,,.

Figure 6(a) shows a log-log plot of (M,) versus N,
where (M, ) is the value of M, averaged on 180 sam-
ples. We also plotted dlog,o{M,)/dN versus 1/N,
since an extrapolation of d log,o{M,) /dN to the limit
N— « should give the exponent of (M,), (3—7)/
(2—7) [see Fig. 6(b)]. There are, however, three re-
gimes.

Regime I: N <12000. In this regime, the mean
thickness is still not appreciably greater than 1. We do
not expect to attain the scaling law (11).

Regime II: 12000 <N <30000. Here, in addition to
small trees, there are also many large trees competing.
The scaling law (11) is expected to hold.

Regime III: N >30000. There begins to be one large
tree whose size is no longer negligible with respect to the
total width L. This tree will eventually capture almost
all the random walkers. In the extreme regime N >>L,
which is not attained in our simulations, the sum
3, s?n,(N) will be dominated by the largest cluster
whose size is approximately equal to N. Thus
(M,)~N?2. We find that for N > 30000, approximately,
(9) ceases to be valid in our system, owing to the fact
that L=1001 only. We fit the data of Fig. 6(b) in the
range 12000 <N <29 800 to a straight line. Though the
range is quite small, the ordinate at the origin gives
(3—7)/(2—7)=3.56+0.1. From this follows r=1.61+%
0.02 and d;=1.64+£0.04.

We can do the same analysis for (M) (see Fig. 7).
We fit the data to a straight line in the range
12100<N <30600 and obtained for the exponent of
(M3), (4—7)/(2—7)=6.1+0.2. This gives 7=1.61
+0.02 and d,=1.65+0.05.

IV. CONCLUSION

We have shown that a modification of DLA without
branching by allowing only first-order branching gives
an apparent fractal dimension very close to that of a
conventional ‘““infinite-order” DLA deposit. The reason
might be that in two dimensions, trees with only first-
order branches screen each other very much like DLA
trees with infinite-order branching. The situation should
be quite different in three dimensions where a random
walker can more easily find his way around the first-
order branches.
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FIG. 6. (a) Log-log plot of the second moment of the distri-
bution of cluster sizes {M,) vs mass N, after averaging on 180
samples of width L=1001. (b) Plot of d log,,{M,) /d log,,N
vs 1/N® in the range 4887 <N <56000, with A=1. Three
different regions are observed: Region I, N <12000; Region
IT, 12000 < N < 30000; Region III, N >30000. We considered
the points in the range 12000 <N <29 800 and made a fit to a
straight line. The ordinate at the origin can be estimated to be
3.56%+0.1. This in turn yields 7=1.61%0.02, corresponding to
d;=1.641+0.04.
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FIG. 7. (a) Log-log plot of the third moment of the distribu-
tion of cluster sizes {(M;) vs mass N after averaging on 180
samples of width L=1001. (b) Plot of d log,o{ M) /d log,,N
vs 1/N® in the range 4887 <N < 56000, with A=1. For the
points in the range 12100<N <30600 we made a fit to a
straight line. The ordinate at the origin can be estimated to be
6.1+0.2 giving 7=1.61+0.02, corresponding to d,=1.65+0.05.
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