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The temperature and length scale dependence of solvation properties of spherical hard solvophobic
solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a
spherically symmetric potential combining a hard core repulsion and a longer ranged soft core inter-
action, yet exhibits water-like anomalies. The results are compared with equivalent calculations for a
model of a typical atomic liquid, the Lennard-Jones potential, and with predictions for hydrophobic
solvation in water using the cavity equation of state and the extended simple point charge model.
We find that the Jagla liquid captures the qualitative thermodynamic behavior of hydrophobic hy-
dration as a function of temperature for both small and large length scale solutes. In particular, for
both the Jagla liquid and water, we observe temperature-dependent enthalpy and entropy of solva-
tion for all solute sizes as well as a negative solvation entropy for sufficiently small solutes at low
temperature. This feature of water-like solvation is distinct from the strictly positive and tempera-
ture independent enthalpy and entropy of cavity solvation observed in the Lennard-Jones fluid. The
results suggest that, compared to a simple liquid, it is the presence of a second thermally accessible
repulsive energy scale, acting to increasingly favor larger separations for decreasing temperature,
that is the essential characteristic of a liquid that favors low-density, open structures, and models
hydrophobic hydration, and that it is the presence of this second energy scale that leads to the sim-
ilarity in the behavior of water and the Jagla liquid. In addition, the Jagla liquid dewets surfaces of
large radii of curvature less readily than the Lennard-Jones liquid, reflecting a greater flexibility or
elasticity in the Jagla liquid structure than that of a typical liquid, a behavior also similar to that of
water’s hydrogen bonding network. The implications of the temperature and length scale dependence
of solvation free energies in water-like liquids are explored with a simple model for the aggregation
of solvophobic solutes. We show how aggregate stability depends upon the size of the aggregate
and the size of its constituent solutes, and we relate this dependence to cold-induced destabilization
phenomena such as the cold-induced denaturation of proteins. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4789981]

I. INTRODUCTION

Among the many anomalous properties of liquid water is
the solvation behavior of small apolar solutes, which is char-
acterized at ambient conditions by an unfavorable entropy of
transfer from vapor phase to water and an atypical decrease
in solubility with increasing temperature. This behavior con-
trasts with typical solvents, which more readily accommodate
apolar compounds as thermal fluctuations increase. The en-
thalpy of transfer for non-polar solutes to low-temperature
water is actually negative and favorable, but the solubility
is dominated by the entropic penalty. These characteristics
change as a function of temperature and solute size. At suf-
ficiently high temperatures the enthalpy is large and unfavor-
able and is only partially compensated for by favorable trans-
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fer entropies. Similarly, for sufficiently large solutes, the poor
solubility is dominated by the unfavorable enthalpy associ-
ated with the formation of an interface, which overcomes the
favorable entropy gain.1

Recent theoretical work in the field of hydrophobic
solvation2–7 has refocused attention on the size-dependence
of solvation free energy for small and large solutes, which
is generally accepted to play a potentially important role in
the formation and stabilization of many biological structures
including proteins and cell membranes. Specifically, it was
demonstrated that the solvation free energies of simple hard
sphere solutes in water at ambient conditions undergo a
crossover in size dependence at about 1 nm.1 For solutes of
size smaller than 1 nm, the solvation free energy scales with
the volume of the solute, while for larger solutes it scales
with the surface area. This crossover behavior is general to all
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liquids far from the critical point and near liquid-vapor coexis-
tence, but the length scale of the crossover in water is greater
than that of simple liquids, such as a simple Lennard-Jones
(LJ) liquid.3 This longer crossover distance is attributed to
water’s propensity to create available space throughout its hy-
drogen bonding network.

Traditional explanations of hydrophobic behavior, and
water-like anomalies in general, place emphasis on the ori-
entational interactions of water molecules (hydrogen bond-
ing) and the accompanying tendency for tetrahedral structure.
However, it has been demonstrated8–10 that water-like ther-
modynamic and structural anomalies can also be manifested
by a recently introduced family of spherically symmetric po-
tentials which possess two characteristic length scales (the
Jagla model11, 12), a hard core and a longer ranged soft core
repulsion. Further, the Jagla model has also been shown to ex-
hibit water-like solvation thermodynamics.13, 14 In particular,
the solubility of simple hard sphere solutes in the Jagla liq-
uid is a non-monotonic function of the temperature, and fur-
thermore, a polymer composed of such hard spheres exhibits
a solvent-induced collapsed state with a stability diagram in
the pressure-temperature plane reminiscent of that of a typi-
cal globular protein in water.13, 15, 16 These results confirm that
orientational interactions are not necessary to produce these
features of water-like solvation behavior17–19 and suggest that
the presence of two competing length scales is a fundamental
physical feature of hydrophobic hydration.

Questions still remain, however, about the similarities be-
tween solvation in the Jagla liquid and water. In particular,
what are the energetic and entropic contributions to the sol-
vation free energy in the Jagla liquid and are they similar
to those of water? Over what length scales do the analogies
in solvation behavior between the two liquids extend? Is the
length scale crossover behavior in the Jagla liquid similar to
that of other simple liquids, or does it also mimic that of wa-
ter? In the present study, we address all of these questions
using extensive Monte Carlo (MC) simulations of the Jagla
liquid. In addition, we compare results for water and the Jagla
liquid to results for the LJ liquid wherever possible. In doing
so we clarify what is indeed unique to water-like solvation
and what is common in typical liquids.

This paper is organized as follows. In Sec. II, we describe
the theoretical and computational methods used to calculate
the thermodynamic quantities of interest. In Sec. III, we de-
scribe the interparticle potentials used and the details of the
simulation protocols. The results of the calculations are pre-
sented and discussed in Sec. IV, and conclusions and future
directions are given in Sec. V.

II. THEORETICAL AND COMPUTATIONAL METHODS

All solvation properties of a solute may be obtained once
the excess chemical potential is known. Thus, our calculations
focus on the evaluation of the excess chemical potential of a
cavity solute, µx

c , which is formally given by

µx
c (R) = −kBT ln p0(R), (1)

where T is the temperature, kB is Boltzmann’s constant, and
p0(R) is the probability of finding a cavity of size R or larger

around a randomly located point in solution. For sufficiently
small cavities, p0(R) may be evaluated directly via the test
particle insertion method.20, 21 In dense liquids, however, the
probability of observing density fluctuations extreme enough
to accommodate cavities much larger than the solvent parti-
cles is exceedingly small, and test particle insertion is known
to fail in this case.22

There are several methods available for the evaluation of
chemical potentials for large cavities (see, e.g., Ref. 23), but
for the Jagla and LJ fluids in this study we choose to use
the revised scaled particle theory (RSPT) of Ashbaugh and
Pratt.24, 25 Here we give only a brief overview of RSPT which
closely follows that given in Ref. 26. For more detailed de-
scriptions the reader is referred to Refs. 24 and 25.

RSPT improves upon classical scaled particle theory
(SPT)27, 28 by including multi-body correlations. The essen-
tial idea behind both RSPT and SPT is that the excess chem-
ical potential must be equal to the work required to inflate a
cavity against the solvent from size zero to R. This work must
oppose the pressure due to the solvent molecules at the cavity
boundary, and thus scaled particle theories require knowledge
of the contact correlation function, G(R), defined to be the av-
erage density of solvent molecules, relative to the bulk, at the
cavity-solvent interface. With G(R) known, the excess chem-
ical potential is calculated as

µx
c (R) =

∫ R

0
kBTρG(r)4πr2dr, (2)

where ρ is the bulk solvent number density. For R much
greater than the solvent size, the contact correlation function
may be expanded in curvature, R−1, with phenomenological
coefficients

G(R) = βP

ρ
+ 2βγ∞

ρR
− 4βγ∞δ

ρR2
+ . . . . (3)

Here, P is the bulk pressure, γ ∞ is the surface tension
of a flat solvent-cavity interface, and δ is the first-order cur-
vature correction to the surface tension.26 An expression for
the excess chemical potential of large cavity solutes is then be
obtained by expanding Eq. (3) to fourth order and integrating
to get

µx
c (R)|large =4πR3P

3
+ 4πR2γ∞ − 16πγ∞δR

+ 4πkBTρκ − 4πkBTρλ

R
, (4)

where λ is the fourth-order curvature correction coefficient
and κ is an integration constant. Third order coefficients are
typically set to zero so as to avoid logarithmic contributions
to µx

c ,29, 30 a convention we follow in this work. The results
for the test particle insertion calculations for small cavities,
µx

c (R)|sim, are interpolated with the large cavity solute expres-
sion in Eq. (4) by

µx
c (R) = µx

c (R)|simf (R) + µx
c (R)|large(1 − f (R)). (5)

The function f(R) used here is a cubic function designed
to smoothly switch between small (Rsim) and large (Rlarge)
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FIG. 1. Demonstration of a fit of Eq. (7) for the cavity contact correlation
function to calculated contact values for several cavity sizes in the Jagla liquid
at T = 0.6 [ε2/kB]. The contact correlation function, G(R) (dashed line), is fit
to the maxima (open circles) in the cavity-solvent pair correlation functions,
gHS − JG(r) (solid lines). The cavity radii are, in units of σ JG, 0.32, 0.71, 1.09,
1.47, 1.86, 2.24, and 2.63.

cavity sizes,

f (R)=






1, R < Rsim,

1−3 (R−Rsim)2

(Rlarge−Rsim)2 +2 (R−Rsim)3

(Rlarge−Rsim)3 , Rsim ≤ R ≤ Rlarge,

0, R > Rlarge.

(6)
In order to obtain parameters appearing in the expansion

for the contact correlation function, we use Eq. (5) and differ-
entiate Eq. (2) with respect to R to obtain the contact correla-
tion function as

G(R) = f (R)
4πρR2

∂βµx
c (R)|sim

∂R
+ βµx

c (R)|sim

4πρR2

∂f (R)
∂R

+
(

βP

ρ
+ 2βγ∞

ρR
− 4βγ∞δ

ρR2
+ λ

R4

) [
1 − f (R)

]

−
(

βPR

3ρ
+ βγ∞

ρ
− 4βγ∞δ

ρR
+ κ

R2
− λ

R3

)
∂f (R)
∂R

(7)

and fit this function to the contact values calculated from the
MC simulations, as demonstrated in Fig. 1. The pressure is
set equal to the simulation pressure, and the parameters γ ∞,
δ, κ , and λ are fit to the simulation results.

The contact density calculations for the Jagla and LJ liq-
uids demand significant amounts of computer time to obtain
good statistics, and performing similar calculations for typical
multi-site water models that have electrostatic interactions is
not desirable. For our purposes of comparison here, we may,
however, estimate the excess chemical potential of large cav-
ities in water over a broad range of thermodynamic states
by using the recently developed cavity equation of state (C-
EoS).31 The C-EoS is an analytical equation of state param-
eterized to fit experimental and simulation results for water,
and it has been shown to accurately reproduce hydrophobic
solvation thermodynamics of simple hydrophobes when com-
bined with a first-order perturbation theory. The functional
form of the C-EoS is given by

βµx
c = a + bβ + c ln β, (8)

where µx
c is the cavity chemical potential and the coefficients,

a, b, and c are assumed to be temperature independent. Thus,
the C-EoS assumes that the enthalpy of cavity formation de-
pends linearly upon temperature and that the associated heat
capacity is temperature independent. The dependence of µx

c

on the cavity size, R, is obtained by expanding in powers of
1/R and requiring that βµx

c approach γlva0 in the large cav-
ity limit, where γlv is the experimental liquid-vapor surface
tension and a0 = 4πR2 is the cavity surface area,

βµx
c/a0 =

3∑

i=0

Ai(1/R)i +
[

3∑

i=0

Bi(1/R)i
]

β

+
[

3∑

i=0

Ci(1/R)i
]

ln β. (9)

The remaining coefficients Ai, Bi, and Ci are obtained from
fits to simulation data.

III. SIMULATION DETAILS

MC simulations of cavity solvation in the Jagla and LJ
fluids were performed along the liquid vapor coexistence
curves of each liquid for states ranging from the triple point to
slightly below the critical point. The Jagla potential is given
by

uJG(r) =






∞, r < r0,

m1r + b1, r0 < r ≤ r1,

m2r + b2, r1 < r ≤ r2,

0, r > r2,

(10)

where

m1 = −(ε2 + ε1)
r1 − r0

, (11)

b1 = −ε2 − m1r1, (12)

m2 = ε2

r2 − r1
, (13)

b2 = −ε2 − m2r1. (14)

This potential, shown in Fig. 2, demonstrates a wide
range of behavior for varying parameters, including limiting
cases of hard sphere, triangle well, and ramp potentials. Here
we choose r1 = 1.72r0, r2 = 3.0r0, and ε1 = 3.5ε2, as this
particular parameterization manifests a cascade of water-like
anomalies.9, 13, 32, 33

For the LJ fluid we use the cut-shifted LJ interaction
given by

ucut
LJ (r) =

{
uLJ (r) − uLJ (rc), r < rc,

0, r ≥ rc,
(15)

where uLJ (r) = 4εLJ

(
σ 12

LJ /r12 − σ 6
LJ /r6

)
is the full LJ in-

teraction, εLJ and σ LJ are the well depth and solvent diame-
ter, respectively, and the cutoff distance, rc, used is chosen as
2.5σ LJ.
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FIG. 2. The Jagla two-ramp potential. The parameters used in the present
studies are the same as in Ref. 13, viz.: r1 = 1.72r0, r2 = 3.0r0, and ε1
= 3.5ε2. The relative values of the hard core (r0) and the soft core (r1) posi-
tions roughly correspond to the same ratio between the positions of the first
and second solvation shells of liquid water. The effective size of the Jagla par-
ticle, σ JG, is estimated from plots of the radial distribution to be the minimum
separation at which uJG(r) = 0 (see Fig. 3).

Several different sets of Monte Carlo simulations were
performed on the Jagla liquid. In the first, saturation prop-
erties of the Jagla fluid were estimated from canonical en-
semble MC simulations of a liquid slab in equilibrium with
its vapor for selected temperatures ranging from near the
triple point to just below the critical point. From these slab
simulations we estimate saturated liquid and vapor densities,
the saturation pressure, and the liquid-vapor surface tension
along the binodal line. The surface tension, γlv , is calculated
from the profiles of the pressure tensor using the mechani-
cal definition.34, 35 The results for the saturation properties are
shown in Table I.

In the second set of simulations, isothermal-isobaric MC
simulations of the Jagla fluid were performed for both the liq-
uid and vapor phases at each of the saturation states listed
in Table S1 in the supplementary material.36 Test particle in-
sertion calculations were performed on the resulting liquid
phase trajectories for cavities up to 2σ JG in diameter to obtain
µx

c (R)|sim. Similarly, insertion probabilities and excess chem-
ical potentials for cavities up to 6σ JG in diameter were ob-
tained from test particle insertion analysis of the vapor phase

TABLE I. Canonical ensemble MC simulations of a liquid slab in equilib-
rium with its vapor were performed to obtain estimates of saturation prop-
erties. N Jagla particles were simulated at five different temperatures for 1.6
× 106 MC cycles, where one cycle corresponds to N MC moves. The liquid
and vapor densities were estimated from ensemble averages of the densities
in the centers of the liquid and vapor regions, respectively. Similarly, the sat-
uration pressure was obtained by evaluating the pressure tensor in the center
of the vapor region. The liquid-vapor surface tension is calculated using the
virial relation.34, 35 Numbers in parentheses are estimates of the statistical
error in the last digit of the reported value.

N T [ε2/kB] ρl [r−3
0 ] ρv [r−3

0 ] Psat [ε2/r3
0 ] γlv [ε2/r2

0 ]

1374 0.4 0.256(2) 5(3) × 10−5 3(2) × 10−5 0.491(8)
1374 0.6 0.255(2) 2.3(7) × 10−4 1.4(4) × 10−4 0.407(7)
1386 0.8 0.244(2) 0.0018(2) 0.0014(2) 0.314(8)
1444 1.0 0.226(3) 0.0067(6) 0.0056(6) 0.213(5)
1600 1.2 0.203(2) 0.0174(9) 0.015(1) 0.115(7)

trajectories. Knowledge of the vapor phase chemical poten-
tials allows evaluation of the surface tension at the vapor wall
interface.26

Finally, isothermal-isobaric MC simulations of a single
cavity in the Jagla liquid were performed for various cavity
sizes at each of the saturation states listed in Table S1 in the
supplementary material.36 Cavity diameters up to 6σ JG were
considered, and the contact correlation function was evalu-
ated for each cavity at each state point. The contact correla-
tion function is determined by extrapolating the cavity-solvent
pair correlation function to contact.

The parameters in Eq. (7) may be fit to the MC results
for G(R), and the cavity excess chemical potential may then
be computed from Eq. (5). The details of the MC simula-
tions used to calculate the insertion probabilities and con-
tact correlation functions in the Jagla fluid are provided
in Tables S1 and S2 in the supplementary material.36 All data
for the LJ liquid are those obtained in the studies reported in
Ref. 26. The saturation states for the LJ liquid are also listed in
Table S4 in the supplementary material36 for the present
study.

Molecular dynamics simulations of the extended simple
point charge (SPC/E) water model37 were performed along
the liquid vapor coexistence curve for each of the states listed
in Table S5 in the supplementary material.36 A system con-
sisting of 512 SPC/E water molecules was simulated in a cu-
bic box with periodic boundary conditions in the canonical
ensemble for 20 ns using the GROMACS molecular dynam-
ics engine.38, 39 The time step was chosen as 2 fs, and bonds
were constrained with the SETTLE algorithm.40 The veloc-
ity rescaling thermostat was used to control temperature with
a time constant of 0.1 ps.41 Particle mesh Ewald summation
was used to treat long range electrostatic interactions42 with
a real space cutoff of 1.2 nm and a mesh spacing of 0.18 nm.
The Ewald tolerance was set to 10−5, and fourth order inter-
polation was used.

IV. RESULTS AND DISCUSSION

A. The definition of solvent size from pair distribution
functions

A comparison of the solvent-solvent pair correlation
function, g(r), for the three liquids is shown in Fig. 3. The
maximum in g(r) for the LJ liquid occurs at a pair separation
slightly larger than σ LJ, and at a separation of σ LJ the pair
distribution function assumes a value of very nearly one for
all states on the saturation curve. The nearest separation at
which g(r) is unity is a commonly used estimate for the size
of a particle since the surrounding fluid is depleted from all
shorter distances. We adopt this estimate here and use σ LJ as
the size of the LJ particle.

In the case of SPC/E water, the pair distribution function
peaks at about 0.28 nm at ambient temperature and slightly
larger distances at higher temperatures. These distances are
smaller than the LJ diameter for oxygen due to H-bonding.
The nearest separation at which g(r) is unity is nearly constant
at about 0.26 nm, which, to be consistent, is our choice for the
size of the SPC/E molecule, σWat .
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FIG. 3. Solvent-solvent pair distribution functions for states along the satu-
ration curves of (a) the LJ liquid, (b) SPC/E water, and (c) the Jagla liquid.
It is evident from the figure that the minimum separation at which g(r) has
the value unity can be used as an estimate for the solvent size. For the SPC/E
model this corresponds to σWat = 0.26 nm, for the LJ liquid it is σ LJ, and for
the Jagla liquid it is σ JG = 1.56r0 (the minimum separation at which uJG(r)
= 0). These sizes are taken to be independent of temperature for the states
considered here, as justified by the data shown.

The maximum peak in the Jagla liquid g(r) occurs at a
distance significantly larger than the hard core diameter, r0.
This reflects the preference of Jagla particles to maintain sep-
aration at the minimum in uJG(r), r1, unless stressed by tem-
perature or pressure. This preference is diminished as temper-
ature increases. However, the minimum separation at which
the Jagla g(r) is unity is found to be insensitive to tempera-
ture [see Fig. 3(c)] and closely corresponds to the minimum
separation at which the pair potential is zero. This distance,
σ JG, is a consistent estimate for the size of the Jagla particle;
σ JG = 1.56r0 for the potential parameterization considered
here.

B. Surface tension and vapor-liquid equilibria in the
Jagla fluid

In the first set of MC simulations, saturation properties
of the Jagla fluid were estimated from canonical ensemble
MC simulations of a liquid slab in equilibrium with its vapor
for selected temperatures ranging from near the triple point
to below the critical point. From these simulations we esti-
mate liquid and vapor densities, the saturation pressure, and
the liquid-vapor surface tension along the binodal line.

The results for the liquid-vapor slab simulations of the
Jagla fluid are summarized in Table I. The saturated liquid
densities and the equilibrium vapor densities are in close
agreement with those reported by Lomba et al.43 We expect
that our estimates of the coexistence properties of the Jagla
fluid may be improved upon by taking finite size effects into
account, as it is known, e.g., that large wavelength fluctuations
may be suppressed by the system size.44 Nevertheless, the sol-
vation behavior we seek to characterize occurs for states at or
near coexistence,3 and we therefore expect the present esti-
mates from the slab simulations to suffice for this study.

C. Cavity solvation thermodynamics

The parameters in Eq. (7) were fit to the MC results for
G(R) in the Jagla liquid using a least-squares regression. The
choice of Rsim and Rlarge used in the fit varied with the ther-
modynamic state. Values of Rsim ranged from 0.5 to 0.6σ JG

and values of Rlarge ranged from 0.75 to 0.95σ JG. In all cases,
G(R) was well represented between Rsim and Rlarge by dif-
ferentiation of µx

c (R)|sim. The results of the fit are presented
in Table II. The surface tension of the flat interface, γ ∞, is
higher than the liquid-vapor surface tension measured in the
slab simulations at all temperatures, as seen in Fig. 4(a). It
should be emphasized that γ ∞ does not strictly correspond to
the liquid-vapor surface tension, but rather to the total inter-
facial free energy between the solvent and the cavity which
consists of contributions from two interfaces—a liquid va-
por interface between the solvent and vapor film surrounding
the cavity and the vapor-wall interface between the vapor film
and the cavity surface. If the two interfaces are well separated
and not interacting with one another, then γ ∞ is equal to the
sum of the liquid-vapor and vapor-wall surface tensions. Our

TABLE II. Parameters from the least-squares fit of Eq. (7) to the contact
densities obtained from the simulations in Table S2 in the supplementary
material.36 The simulation data were split into several blocks, and the num-
bers in parentheses represent an error in the last digit in the fitted parameter
corresponding to one standard deviation of the block averages.

T [ε2/kB] γ ∞ [ε2/r2
0 ] δ [r0] κ [r3

0 ] λ [r4
0 ]

0.4 0.55(1) −0.01(2) −13.2(5) −8.1(9)
0.5 0.51(1) −0.09(3) −11.4(5) −6.6(7)
0.6 0.47(1) −0.18(3) −10.2(3) −5.5(4)
0.7 0.43(1) −0.27(4) −9.3(2) −4.8(4)
0.8 0.38(1) −0.35(5) −8.1(4) −4.0(4)
0.9 0.33(2) −0.45(5) −7.2(2) −3.4(5)
1.0 0.28(1) −0.59(6) −6.5(1) −2.9(6)
1.1 0.22(2) −0.77(5) −5.8(1) −2.5(4)
1.2 0.17(2) −0.93(5) −4.8(1) −1.9(2)
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FIG. 4. Simulation results for the (a) interfacial free energy and (b) first order
curvature correction as a function of temperature along the saturation curve of
the Jagla fluid. The filled circles in (a) are the results for γlv , the liquid-vapor
surface tension, while the open circles are the results for γ ∞, the interfacial
free energy between the fluid and a hard wall (see text). Both γ ∞ and δ are
obtained through fits of Eq. (7) to MC simulation data. Statistical errors are
smaller than symbol size. The lines in (a) are fits of the γ ∞ and γlv data to
Eq. (18), while the line in (b) is obtained from a fit of the product γ ∞δ to
Eq. (18). The parameters for the fits are given in Table S8 in the supplemen-
tary material.36

simulations are sufficiently far from the critical point that the
vapor-wall surface tensions are negligible for all states consid-
ered. Furthermore, the fitted values of γ ∞ were insensitive to
varying the maximum cavity diameter used in the fits between
4σ JG and 6σ JG, suggesting the finite cavity sizes considered
here are not to blame. Therefore, the difference between γ ∞
and γlv is likely due to other factors such as the finite-size
limitations of our estimates of γlv or the physical impact of
quenched fluctuations at the solvent-wall interface.26

The first order curvature correction to the surface tension,
δ, has a long history in the discussion of length scale effects
on solvation dating back to Tolman’s original article.45 It was
pointed out by Huang and Chandler46 and demonstrated by
Graziano47 that when δ is treated as temperature-independent,
the cavity hydration entropy does not change sign with in-
creasing solute size. More recently, using a temperature-
dependent δ Ashbaugh48 derived an expression for the cavity
size at which the solvation entropy changes sign from nega-
tive to positive and demonstrated the fidelity of its predictions
along the saturation curves of water and n-hexane. We choose
here to treat δ as a temperature-dependent fitting parameter.
The results of our fit [Table II and Fig. 4(b)] show that δ is
negative for all states considered and decreases with increas-
ing temperature, consistent with results for the LJ liquid26 and
recent results for the SPC/E water model.49 The parameters κ

and λ are negative for all states and diminish in magnitude as
the critical point is approached.

FIG. 5. Cavity contact correlation functions as a function of cavity size (mea-
sured in units of solvent diameters) for states along the saturation curves of
the (a) LJ and (b) Jagla liquids ranging from near the triple point (blue) to
just below the critical point (red). The temperatures for the LJ liquid range
from kBT/εLJ = 0.65 (blue) to 1.00 (red) in increments of 0.05, while those
for the Jagla liquid range from kBT/ε2 = 0.4 (blue) to 1.2 (red) in increments
of 0.1. Points are obtained from MC simulation data and lines are fits of
Eq. (7) to the simulation data. Statistical errors are smaller than symbol size.
All LJ data are obtained from Ref. 26.

The results of the MC calculations for the cavity contact
correlation functions are shown in Fig. 5 along with the fits
to G(R). In both fluids, as the solute size grows from zero,
the solvent packs increasingly tightly until the contact den-
sity peaks at a value of R on the order of the solvent size.
At this point, the solvent begins to pull away from the so-
lute, and for sufficiently large solutes, G(R) will be less than
one. The contact correlation function is a decreasing function
of temperature for all solute sizes studied here, but for suffi-
ciently large solute sizes G(R) will increase with temperature
since limR → ∞G(R) = βP/ρ, which increases with tempera-
ture along the saturation curve.

The cavity sizes where G(R) decreases below one, i.e.,
where the cavity is “dewet,” are larger relative to the solvent
size in the Jagla liquid, meaning that the Jagla liquid resists
dewetting of hard surfaces more than the LJ liquid. Finally, for
a fixed cavity size in the LJ liquid the spacing in G(R) values
between temperatures appears roughly constant, suggesting
a linear dependence upon temperature. This is not the case
in the Jagla liquid, however, as the temperature dependence
clearly decreases with increasing temperature.

With the fitted parameters for G(R), the excess chemical
potentials for the Jagla and LJ liquids may be obtained from
Eq. (5). In the case of water we use Eq. (9). The results of
the chemical potential calculations are shown in Fig. 6. The
excess chemical potential is a positive, monotonically
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FIG. 6. Excess chemical potential per surface area versus cavity size (mea-
sured in units of solvent diameters) for states along the saturation curves of
(a) the LJ liquid, (b) water, and (c) the Jagla liquid. The thermodynamic states
for the LJ and Jagla liquids are the same as those presented in Fig. 5. Points
in the Jagla and LJ plots are obtained from simulation data and scaled par-
ticle theory. Lines in the LJ plot are fits using Eq. (16), while lines in the
Jagla plot are fits of the simulation data to the C-EoS [Eq. (9)]. Lines in (b)
are predictions from the water C-EoS.31 The temperatures used for the water
C-EoS plot are T [K] = 273, 304, 335, 366, 398, 429, 460, 491, and 522.

increasing function of cavity size at all temperatures in all
three liquids.

In the LJ liquid, the chemical potential is a decreasing
function of temperature for all cavity sizes greater than σ LJ/2.
Furthermore, the spacing between temperatures for any fixed
cavity size appears roughly constant in the LJ liquid, which, as
pointed out by Ashbaugh,26 suggests that along the saturation
curve the excess chemical potential may be modeled as

µx
c (R) = hx

c (R)|σ − T sx
c (R)|σ , (16)

where hx
c (R)|σ and sx

c (R)|σ are the temperature independent
enthalpy and entropy of solvation. The enthalpy is positive
and increases with cavity size, indicating the loss of favor-
able solvent-solvent interactions near the cavity solute. Ex-
cept for cavities smaller than σ LJ/2, the entropy is also a posi-
tive, increasing function of cavity size, indicating that solvent
molecules near the cavity experience a net gain in configu-

rational space. The excellent fit of Eq. (16) to the simulation
data [Fig. 6(a)], indicates that the enthalpy of solvation is ap-
proximately temperature-independent, and therefore the heat
capacity of cavity solvation in the LJ liquid is approximately
zero. In the Jagla liquid, in contrast, the chemical potential is
an increasing function of temperature for small, solvent-sized
cavities and a decreasing function of temperature for large
cavities. The temperature derivative of the excess chemical
potential for a fixed cavity size is not constant [Fig. 6(b)], but
is evidently nonlinear. The qualitative behavior of the chemi-
cal potential of cavity solvation in the Jagla liquid is remark-
ably similar to that predicted for liquid water by the C-EoS.
This suggests that the Jagla liquid data may be fit to the C-
EoS as well. Using the surface tension data (Table I) and a
least-squares fit of the excess chemical potentials calculated
from the G(R) data, we obtained a set of C-EoS parameters
for the Jagla liquid (see Table S5). The fit is, in fact, excellent
for all cavity sizes and temperatures considered, with slight
deviations occurring only for the largest cavities at the high-
est temperature. The C-EoS fit to the simulation data permits
exploration of the thermodynamic contributions to µx

c in the
Jagla liquid using analytical derivatives of Eq. (9).

The enthalpic and entropic contributions to the ex-
cess chemical potential for the Jagla liquid and water may
be obtained from analytical temperature derivatives of the
C-EoS.54, 55 The enthalpy and entropy of cavity solvation are
compared in Fig. 7. The most obvious distinction between the
three liquids is that the LJ liquid has temperature indepen-
dent enthalpic and entropic contributions to the solvation free
energy, while the contributions for the Jagla liquid and wa-
ter both show a strong temperature dependence. For all three
fluids, the enthalpy is a positive, monotonically increasing
function of the cavity radius. The unfavorable enthalpy results
from the disruption of the liquid structure in the vicinity of the
solute and the concomitant formation of an interface which on
average has fewer favorable solvent-solvent interactions than
an equivalent volume in the bulk.

For any fixed cavity size in the size ranges considered in
this study, the enthalpy is an increasing function of tempera-
ture in the Jagla liquid and in water which results in a positive
heat capacity increment for cavity formation, a well-known
signature of hydrophobic hydration. The calculated values for
both liquids are provided graphically in the supplementary
material.36 A possible interpretation for this result in water is
given by the Muller model,50, 51 which uses a simple two-state
hydrogen bond (H-bond) model parameterized by empirical
solvation data to argue that the fraction of broken H-bonds in
the solvation shell of apolar solutes is always at least some-
what greater than that in the bulk, and furthermore, that this
disparity increases with temperature. Thus, for a fixed cavity
size an increase in temperature decreases the number of H-
bonds in the solvation shell relative to the bulk, which leads
to a greater enthalpy.

The entropy of cavity formation in both the Jagla liq-
uid and water increases with increasing temperature for any
fixed cavity size. It is possible that this behavior in water may
also be connected to the breaking of solvation shell H-bonds.
If an increase in temperature causes a decrease in the num-
ber of solvation shell H-bonded pairs relative to bulk, then
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FIG. 7. (s1)–(s3) Entropy and (h1)–(h3) enthalpy of cavity solvation for the LJ liquid, water, and the Jagla liquid as a function of cavity size (measured in
units of solvent diameters). The temperatures for the Jagla liquid are the same as those listed in Fig. 5, while the temperatures for the water C-EoS are the
same as those listed in Fig. 6. For water and the Jagla liquid, entropies are calculated from temperature derivatives of the cavity equation of state (lines),
sx
c |σ = −(∂µx

c /∂T )σ , while for the LJ liquid, the entropy is given by the assumed temperature-independent form of µx
c in Eq. (16). The enthalpy is calculated

from hx
c |σ = µx

c + T sx
c |σ . Points in (s3) and (h3) are numerical derivatives of cubic spline fits to the excess chemical potentials in Fig. 6.

overall the gain in configurational freedom will be larger at
the higher temperature. However, this does not yet explain the
Jagla model behavior.

It is remarkable that the Jagla liquid, which contains
no orientational dependence in its interaction potential and
therefore no H-bonding, reproduces the qualitative behavior
of hydrophobic hydration thermodynamics. The underlying
physical origins for this behavior in the Jagla liquid may be
analogous to those of water, however. It has been shown in
computer simulations of SPC/E water that the energetics of
H-bonding are strongly correlated with local crowding ef-
fects. In particular, H-bonded pairs with a small number
of neighbors will on average have a stronger H-bond than
bonded pairs with a greater number of neighbors.52 Further-
more, the fraction of H-bonded pairs in interfacial regions
of apolar moieties is lower than in the bulk liquid, and the
bonded pairs that do exist in these regions tend to have fewer
neighbors and stronger bonds than the average H-bonded pair
in the bulk. The interpretation is that density fluctuations that
create cavities select against weak H-bonds, leaving only the

stronger bonds to survive. Thus, the interfacial region experi-
ences less H-bonding on the whole than equivalent volumes in
the bulk, but maintains on average stronger hydrogen bonds.

A plausible analogy in the Jagla liquid to H-bonding
in water is the interaction of particle pairs at the potential
minimum distance, r1. As temperature is lowered, the liquid
prefers to adopt configurations that maximize the number of
particle pairs near a separation of r1, which in the limit of
the crystal is a hcp lattice.33 This is analogous to water maxi-
mizing the number of H-bonded pairs at low temperatures by
adopting a tetrahedral network structure, and thus the Jagla
pair interactions near r1 become analogous to water’s H-bond.
Under this view, density fluctuations in the Jagla liquid disrupt
weakly interacting Jagla particles and leave a solvation shell
that consists of fewer pair interactions near r1. The fraction
of “broken” interactions at r1 in the solvation shell would in-
crease faster with temperature than the same quantity in the
bulk. Future work entailing a detailed analysis of solvation
shell structure will be needed to demonstrate if this hypothe-
sis is correct.
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The LJ liquid demonstrates enthalpic and entropic be-
haviors in sharp contrast to those of water and the Jagla liq-
uid. The entropy is strictly positive for all cavities of size
R > 0.5σ LJ in the LJ liquid, and the heat capacity increment
is negligible. This latter phenomenon is consistent with the
argument for the temperature dependence of the relative frac-
tion of broken H-bonds in solvation shell water compared to
bulk water—i.e., the absence of a second energy scale in the
LJ liquid precludes a temperature-dependent enthalpy of cav-
ity formation analogous to that of water. This implies that the
fundamental commonality between water and Jagla fluids is
the presence of two energy scales, each coupled to a different
length scale, so that low density, open structures are increas-
ingly favored for decreasing temperature, the feature absent
in simple liquids. In the Jagla model, the second energy and
length scale is set by the ratios describing the soft ramp, ε1/ε2

and r1/r0, while in water, these are determined by characteris-
tics of the H-bonded and non-H-bonded states.

D. The length scale crossover

As seen in Fig. 6, the chemical potential decreases with
temperature along the coexistence curve for all cavity sizes
considered in the LJ liquid. However, in water and the Jagla
liquid, the chemical potential increases with increasing tem-
perature for solvent-sized cavities and decreases with temper-
ature for larger cavities. Qualitatively, the temperature depen-
dence of the solvation free energy is identical in the Jagla
liquid and water.

An important consequence of the similarities between the
temperature-dependence of the solvation free energies in the
Jagla liquid and water is that the water-like characteristic of
negative solvation entropy for small cavities is observed in
the Jagla liquid (Fig. 7). As the cavity size increases from
R = 0.5σ JG, the curves along each saturation state first de-
crease, then pass through a minimum before increasing mono-
tonically for larger cavities. For cavities large enough that
sx
c |σ > 0, the solvation shell is more disordered, and for suf-

ficiently large cavities a dewetting transition will occur. This
“entropic crossover” from negative to positive solvation en-
tropy may therefore be viewed as a measure of the length
scale at which interface formation begins to dominate the sol-
vation free energy. In this view, the crossover for the LJ liq-
uid occurs at cavity sizes less than σ LJ in diameter for all
saturation states, which is smaller than the smallest cavities
explicitly studied here. In water and the Jagla liquid how-
ever, the entropic crossover distance predicted by the C-EoS
grows many times larger than the solvent diameter as temper-
ature is decreased, as shown in Fig. 8. Also shown in Fig. 8
are predictions from Ashbaugh’s expression for the crossover
radius48

Rcross = 2δ + 2γ∞

(
∂δ

∂T

)

P

(
∂T

∂γ∞

)

P

. (17)

The temperature derivatives in Eq. (17) are obtained by fitting
the function

X = A + B(T − T0) + CT ln(T/T0) (18)

FIG. 8. Entropic sign crossover lengths (i.e., the cavity radius, in units of
solvent diameters, at which the solvation entropy changes sign from nega-
tive to positive) plotted as a function of temperature reduced by Tcrit, the
liquid-vapor critical temperature. The open circles and filled squares are C-
EoS predictions for the Jagla liquid and water, respectively. The solid and
dashed lines are predictions for the Jagla liquid and water, respectively, us-
ing Eq. (17). Entropic crossovers for cavities in the LJ liquid also occur, but
at cavity radii less than 0.5 solvent diameters for all states on the saturation
curve (not shown).

for X = γ ∞ and the combination of variables γ ∞δ. We note
that Eq. (17) requires constant pressure temperature deriva-
tives and we have used data along the saturation curve. How-
ever, the differences between the two paths are small at low
pressures. For low temperature states, the predictions from
Eq. (17) are qualitatively similar to those given by the C-EoS.
Although the entropic crossover is similar in the Jagla liquid
and water, the crossover in water is predicted by either scheme
to occur for radii larger than the solvent diameter at essentially
all liquid temperatures, in contrast to the Jagla liquid.

E. The thermodynamic stability of solvophobic
aggregates

To explore the implications of the interplay between tem-
perature and length scale dependence of solvation free ener-
gies, we examine a simple picture of solvophobic aggrega-
tion that combines ideas from classical homogeneous nucle-
ation theory53 and recent work from Chandler1 and Rajamani
et al.6 Consider a solvophobic aggregate composed of n iden-
tical hard sphere particles with cavity radius r such that the
total volume of the aggregate is V = nv/η, where v is the
volume of a single constituent hard sphere particle and η is
the packing fraction of the spheres. If the aggregate is treated
as a large spherical volume of radius R, then the aggregation
Gibbs energy may be modeled as

,G = µR − nµr, (19)

where µR is the aggregate’s chemical potential and µr is
the chemical potential of a single constituent solvophobe
at infinite dilution. The relationship between the number of
hard spheres comprising the aggregate and its radius, R, is
n = 4πηR3/3v. Combining the expressions for n and ,G and
dividing by the aggregate surface area, we have

,G(R)/4πR2 = µR(R)/4πR2 − µrηR/3v. (20)
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FIG. 9. Solvation free energy scaled by the surface area versus aggregate ra-
dius. The solid line corresponds to the solvation free energy per unit surface
area of a cavity of size R, which is used to model an aggregate of n smaller
hard spheres of size r (see text). The dashed line represents the solvation
free energy per unit surface area for n constituent spheres fully dispersed in
solution. Only aggregates larger than the aggregation radius, Ra, are thermo-
dynamically stable.

For increasing R, the first term on the RHS of Eq. (20) be-
comes approximately constant and equal to the interfacial free
energy per unit area.3 The second term is a linear function of
the aggregate radius. The radius at which the RHS vanishes is
the aggregation radius, Ra—aggregates of size larger than Ra

are thermodynamically stable within this model free energy.
These concepts are shown pictorially in Fig. 9.

FIG. 10. Qualitative depiction of solvation free energy per surface area of
large solvophobic aggregates and dispersed small solutes in (a) typical and
(b) water-like solvents. Red and blue correspond to warm (TH) and cold tem-
peratures (TL), respectively. The shaded region highlights the aggregate size
range where cooling from TH to TL destabilizes the aggregate. The sloped line
which here depicts the rise from very small solute to large radius behavior is
used to emphasize that the shape of this molecular scale transition region is
represented only generically in this figure.

FIG. 11. The specific case of Fig. 10 for the temperature dependence of
solvophobic solvation free energies in (a) the LJ liquid for T = 0.65 (blue)
and T = 0.95 [εLJ/kB] (red), and (b) the Jagla liquid for T = 0.4 (blue) and T
= 1.0 [ε2/kB] (red). The constituent solvophobes are equivalent in size to the
solvent diameter and the aggregate packing fraction is taken equivalent to the
solvent packing fraction. Both liquids have a range of cavity sizes (shaded
region) where cooling from the warm temperature (red lines) to the cool tem-
perature (blue lines) destabilizes the aggregate (solid lines) relative to the dis-
persed spheres (dashed lines). The size range in the Jagla liquid is far more
pronounced, however (note the order of magnitude difference in the abscissa
scales).

We now consider the process of cooling the aggregate
from a warm temperature, TH, to a lower temperature, TL,
and in particular, the effect that this process has on the ther-
modynamic stability of the aggregate. A qualitative picture
of the dependence of the aggregation radius, Ra, on tempera-
ture for a water-like and a reference LJ-like fluid is shown in
Fig. 10. The differences in crossover behavior arise due to the
fact that for small solutes in water-like solvents, increasing
the temperature decreases the solubility. This has two effects:
the first is that the crossover length scale is more sensitive to
temperature, and the second is that the slope of the dispersed
solvophobes line for high temperature is greater than the cor-
responding line at low temperature. These effects combine to
produce a range of aggregate sizes that are thermodynami-
cally stable at TH but become unstable upon cooling to TL.
It is interesting that such a region also appears in a typical
LJ-like liquid. However, the crossover length scale in LJ-like
liquids is less sensitive to temperature and the slope of the
dispersed solvophobes line is greater at lower temperatures,
causing the region of destabilization to dramatically shrink or
altogether disappear. Figure 11 shows quantitative measures
of the dissociation size range in the LJ and Jagla liquids for
cavities equivalent to the solvent size and aggregate packing
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fractions equivalent to the solvent packing fraction. The disso-
ciation region in the Jagla liquid is orders of magnitude larger
than that in the LJ liquid.

In general, the range of the destabilization region is ex-
tended by cooling to lower temperatures or by composing ag-
gregates of smaller constituent particles. A prediction made
by this model is the possibility of cold-induced dissociation of
solvophobic aggregates in LJ-like solvents. Aggregates com-
posed of sufficiently small cavity solutes will in fact, in this
model, have a range of sizes for which cooling will desta-
bilize the aggregate and induce its decomposition. It would
indeed be striking if such a limit were faithfully captured by
this thought experiment in spite of its overall simplicity.

V. CONCLUSIONS

The results of exhaustive MC simulations of cavity for-
mation along the saturation curves of the LJ liquid and the
Jagla liquid were presented. The temperature-dependence of
the solvation thermodynamics of cavities ranging from one-
half to six times the solvent particle size were compared be-
tween the two simple liquids and to predictions for cavity for-
mation in water given by a C-EoS. The comparisons between
the Jagla liquid, water, and the simple liquid (LJ) serve to illu-
minate the features of hydrophobic hydration that are unique
to water.

The Jagla liquid demonstrates water-like behavior in its
resistance to dewetting of large cavity surfaces. In the pres-
ence of the largest cavity sizes considered (six solvent diam-
eters), the LJ liquid showed a dewetting transition at all ther-
modynamic states on the saturation curve, whereas the Jagla
liquid resists dewetting at low temperature saturation states.

The Jagla liquid is also water-like in its enthalpic and en-
tropic behavior in the sense that the solvation entropy of small
cavities is negative and the heat capacity increment is positive.
The LJ liquid on the other hand manifests a strictly positive
entropy for all cavities larger than half the solvent size and
shows a negligible heat capacity increment.

From our analysis, we infer the important result that it is
the existence of a second energy scale in the Jagla liquid and
in water, compared to a simple liquid, that energetically favors
the creation of void space at low temperatures, that gives rise
to the anomalous liquid state properties as well as solvation
behavior. Of course, the ability of the fluid to access the low
energy structures with only modest expansion implies that the
particular length scales involved are closely coupled to this
observation.9

We have demonstrated that the scaling and temperature
dependence of the solvation free energies of cavity solutes
in Jagla liquid is qualitatively similar to that of water. Both
liquids have negative solvation entropies for small cavities
that cross over to positive with increasing cavity size. These
crossovers for the Jagla liquid occur at a shorter length scale
relative to the solvent size than those of water.

Combining ideas from Chandler1 and Rajamani et al.,6

a simple model for aggregate dissociation was introduced by
modeling an aggregate as a single large hard sphere with a
volume equal to the sum of the volumes of the constituent
spheres divided by a packing fraction. The consequences of

the differing size scaling and temperature dependence of sol-
vation free energy for the aggregate compared to the dispersed
constituent spheres is clearly demonstrated in the context of
this simple model for aggregation. In particular, it was shown
that cold-induced dissociation will occur for aggregates com-
posed of sufficiently small spheres in water-like liquids. The
degree to which such behavior is accurately described by the
simple model is of interest for further investigations, as is
the detailed examination of other two-scale liquids contain-
ing both a hard and soft core component.
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Noting that (∂µx
c /∂P )T = vx

c , where vx
c is the excess partial molar volume,

we may write
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c |σ = −
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The fundamental differences between the liquids considered here are seen
in both the saturation and constant pressure quantities.
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