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ABSTRACT
We present a spin-1, three-state Ising model for the unusual thermodynamics of fluid water. Thus, besides vacant cells, we consider singly
occupied cells with two accessible volumes in such a way that the local structures of low density, energy, and entropy associated with water’s
low-temperature “icelike” order are characterized. The model has two order parameters that drive two phase transitions akin to the standard
gas-liquid transition and water’s hypothesized liquid-liquid transition. Its mean-field equation of state enables a satisfactory description of
results from experiments and simulations for the ST2 and TIP4P/2005 force fields, from the phase diagram, the density maximum, or the
deeply “stretched” states to the behavior of thermodynamic response functions at low temperatures at which water exists as a supercooled
liquid. It is concluded that the model may be regarded as a most basic prototype of the so-called “two-critical-point scenario.”

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096890

I. INTRODUCTION

Water exhibits an unusual pattern of thermodynamic behavior
both at ambient conditions and in the low-temperature region where
it exists as a supercooled liquid.1 Underlying this phenomenology
are the specific features of hydrogen bonding, which are known
to lead to transient “icelike” molecular arrangements in the liquid
state.2,3 Such icelike structural order propagates to longer distances
as temperature is lowered. In fact, recent experimental work on
deeply supercooled water reports4 a growing correlation length con-
sistent with the sharp increase in thermodynamic response functions
observed long ago at ∼240 K.5–7

It has been conjectured8 that this behavior reflects that super-
cooled water should undergo a liquid-liquid phase transition termi-
nating at a critical point at which, as usual, the correlation length and
the response functions diverge. This physical picture, often referred
to as “two-critical-point scenario,” has gained significant support
over the last years from experimental, computational, and theoret-
ical studies (see for review Refs. 9–12). A strong implication is that

a (one-component) substance can exist as a liquid in two distinct
forms. This has been proved by careful computational analyses13–15
of the ST2 force field of water16 as well as for tetrahedral patchy
colloids17 and model fluids of particles interacting via a variety of
core-softened pair potentials.18

Incorporating water’s unusual thermodynamics into a tractable
equation of state is a challenging task. Early approaches to this prob-
lem successfully reproduced the two-critical-point scenario from a
model free energy composed of a van der Waals part and an addi-
tional contribution accounting for the effect of hydrogen bonding in
water.19,20 On the other hand, regarding liquid water, a regular mix-
ture of two species of distinct local structure yields an expression for
the Gibbs free energy that describes satisfactorily experimental data
as well as results from simulations of water models.21,22

All this theoretical work exploits the fact that water’s icelike
order is characterized by local structures of low energy, entropy,
and density. Using the concept of “fluctuating cell volumes in lat-
tice models” introduced by Fisher and co-workers,23,24 such fea-
tures have been implemented in a spin- 1

2 Ising-like model in which,
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instead of employing occupied and vacant cells for describing the
dense states of liquid water, singly occupied cells with two accessible
volumes and an appropriate energy-entropy-volume coupling are
used.25 It was concluded that such a compressible cell model may
serve as an Ising prototype of the hypothesized liquid-liquid phase
transition, while its mean-field solutions were shown to provide
hints on the analytical form of the equation of state of water.

Here, we further elaborate upon this by analyzing a spin-1 (or
three-state) Ising-like model in which, in addition to occupied cells
with two distinct volumes, vacant cells are considered. Its mean-field
solutions lead to an equation of state which reproduces the two-
critical-point scenario, ranging from the unusual thermodynamics
at supercooling and ambient conditions to standard-fluid behavior
at high enough temperatures. Results are found to be consistent with
evidence available from experiments and simulations for the ST2
and TIP4P/200526 water force fields. Furthermore, to deepen on the
comparison with TIP4P/2005 water, we augment the database of this
model by performing simulations for the thermodynamic response
functions at low temperatures.

Spin-1 Ising models have been used to study a great variety
of problems, from magnetic phase transitions27 to the interplay
between superfluid ordering and phase separation in 3He–4He mix-
tures28 or the phase behavior and criticality in three-component
solutions.29,30 The idea of employing a variant of the class for
describing water’s unusual thermodynamics goes back to the work
by Ciach et al.31 which, indeed, inspired our present approach.

The manuscript is organized as follows. The model is described
in Sec. II. Its performance is analyzed in Sec. III: this includes com-
parison with available information on the phase behavior and the
thermodynamic response functions as well as a theoretical analy-
sis of certain model’s specific features. Section IV contains some
concluding remarks. Technical details and results of simulations are
placed as the supplementary material.

II. MODEL
Let us consider a three-dimensional regular lattice of coordina-

tion number c. At each of itsN sites, there is a cell that can be empty
or accommodate one classical particle of fixed size and shape. But,
occupied cells are labeled as (+) or (−) as done in Ref. 25. Thus, we
set v+ = v0 + δv and v− = v0, with δv > 0, the volume of a vacant
cell being v0 (see Fig. 1). As a next step, we interpret our three-state
scheme as a continuum model.23–25 Thus, a particle in a (−) cell is
allowed to move freely throughout the entire cell volume so that it
explores a free volume v̇− ≤ v0, with the equality holding for the
marginal case of point particles. On the other hand, we consider that
the motion of a particle in a (+) cell is restricted to a narrow volume
centered at the cell site so as to have the constraint v̇+ < v̇−. Finally,
particles only interact when they are in nearest-neighbor cells, with
interaction energies being ε−− = ε+− = −ε0 and ε++ = −ε0 − δε (ε0, δε> 0).

Note that a particle in a (+) cell has a surrounding volume
devoid of other particles while, at the same time, its reduced free
volume introduces a geometrical selectivity. Thus, (++) configura-
tions have lower energy, entropy, and density than (+−) or (−) ones.
As a result, assemblies of adjacent (+) cells mimic the local icelike
structures characteristic of liquid water at low temperatures.

FIG. 1. Single-cell (+), (−), and “vacant” states of our waterlike spin-1 Ising model
(see text). Pictures are two-dimensional for the sake of simplicity. The shaded
(blue) areas are the free volumes a particle can explore in its cell.

The state of each cell is specified by a spin-1 Ising variable
si = −1, 0, 1, with si = 1 for the (+) state, si = −1 for the (−) state, and
si = 0 for a vacant cell. Then, the number of (+) and (−) cells,N+ and
N−, the number of particlesN, the volumeV, and the configurational
energy Uconf fulfill

N+ = N�
i=1

1
2(1 + si)si, N− = N�

i=1
1
2(si − 1)si, (1)

N = N+ +N− = N�
i=1 s

2
i , (2)

V = Nv0 +N+δv = Nv0 + δv
N�
i=1

1
2(1 + si)si, (3)

Uconf = −�<ij>[ε0s
2
i s2j + 1

4δε(1 + si)(1 + sj)sisj]. (4)

An exact statistical mechanical treatment entails summing
e−(U+pV−µN)�kBT factors, with p the pressure, T the temperature, µ
the chemical potential, and kB the Boltzmann constant. But, we will
confine ourselves to the solutions in the Bragg-Williams, mean-field
approximation.

Thus, we start from

µ = u − Ts + pv, (5)

where u ≡U/N, s ≡ S/N, and v ≡V/N denote the energy, the entropy,
and the volume per particle,32 and define the averages

n ≡ �N
N
� and n+ ≡ �N+

N
�. (6)

The energy per particle splits into kinetic and configurational con-
tributions,

u = ukin + uconf. (7)

For classical particles without internal structure,

ukin = 3
2kBT, (8)

while according to standard mean-field arguments,

uconf = − c
2(ε0n + δεn2+n−1). (9)
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Now, the entropy has a configurational term accounting for the dis-
tinct ways in which objects (or cells) of three distinct types can
be randomly placed at the lattice. There is also a “free volume”
contribution arising from integrations over momenta and over the
volumes accessible to the center of each particle in its cell. Hence,

s = sconf + sfv, (10)

sconf
kB
= −n−1[n+ lnn+ + (n − n+) ln(n − n+)
+(1 − n) ln(1 − n)], (11)

sfv
kB
= 1

2 [ln(v̇+v̇−Λ−6T ) + n−1(2n+ − n) ln λ], (12)

where λ = v̇+�v̇− < 1 and ΛT = h��2πmkBT, with h the Planck
constant andm the mass of a particle. Finally, from (2), (3), and (6),
one finds

v = n−1v0 + n+n−1δv, (13)

its inverse yielding the number density ρ.
The parameters n and n+ attain the values that minimize µ for

given T and p. Necessary conditions are

�@µ
@n�T,p,n+ = 0 and � @µ

@n+
�
T,p,n
= 0, (14)

which lead to the following two expressions relating p, T, n, and n+:

p(v0 + δvn+) = kBT{n+ ln[λ(n − n+)n−1+ ] − ln(1 − n)}
− c

2 ε0n
2 + c

2δεn
2
+, (15)

pδv = kBT ln[λ(n − n+)n−1+ ] + cδεn+. (16)

These two equations can be rearranged to get

pv0 = −kBT ln(1 − n) − c
2 ε0n

2 − c
2δεn

2
+, (17)

kBT = c
2δv[v0 ln�]−1[ε0n2 + δεn+(n+ + 2v0δv−1)], (18)

� = n+[λ(n − n+)(1 − n) δv
v0 ]−1, (19)

which together with (13) yield the model’s pvT relation.

III. RESULTS AND DISCUSSION

A. Phase behavior
To get explicit results, we adopted a single set of values of the

model parameters, which is shown in Table I. There is more to be
said about this choice but, for now, we note that the physical picture
it leads to remains for varied sets of parameter values.

Given T and v (or, equivalently, ρ), (13), (17), and (18) were
solved numerically for p, n, and n+. This way, isotherms in the
p–v plane are generated. Figure 2 shows a variety of such isotherms.
Starting at very low densities (not shown) at which ideal-gas behav-
ior holds, the pressure increases monotonically as v is decreased.
For the isotherm corresponding to the highest temperature, this
behavior remains throughout the whole v range. At lower temper-
atures, a “van der Waals loop” is found, with Maxwell equal-area

TABLE I. Model parameters.a

c ε0 δε v0 δv λ

6 3400 900 1.68× 10−5 0.632× 10−5 0.3

aEnergies in J mol−1 and volumes in m3 mol−1. For calculation of the entropy,
v̇− = 5.983 10−9 m3 mol−1 was used.

construction yielding v values for the coexisting phases that are typ-
ical of gas and liquid. In addition, a second loop with v values for the
coexisting phases characteristic of liquid appears at sufficiently low
temperatures. It transpires that the model exhibits two first-order
phase transitions, each of which associated with the coexistence of
two phases of distinct density and terminating at an upper critical
point. They can be reasonably identified as the standard gas-liquid
transition and water’s hypothesized liquid-liquid transition. Using
standard terminology in water thermodynamics, we will henceforth
refer to the coexisting liquid phases as the high-density liquid (HDL)
and the low-density liquid (LDL).

The corresponding phase diagram in the p–T and T–ρ planes
is shown in Fig. 3. The densities along the binodal, ρ′ and ρ′′, and
the pressure and chemical potential at coexistence were obtained at
each prescribed T by imposing µ′ = µ′′ and p′ = p′′, with algebraic
expressions for µ, p, and T given by (5), (17), and (18). (This entails
calculating n′, n′′, n′+, and n′′+ .) The spinodal curves were computed
by locating the points at which isotherms in the p–v plane display
extrema (see Fig. 2).

Numerical results may be summarized as follows. The gas-
liquid critical temperature and pressure are TGL

c ≈ 624 K and
pGLc ≈ 60 MPa, respectively, their liquid-liquid counterparts being
TLL
c ≈ 162 K and pLLc ≈ 170 MPa. We have observed that the coordi-

nates of the gas-liquid critical point do not deviate substantially from
the ones obtained from a standard lattice gas with the same values of
ε0 and v0. On the other hand, it comes out from Fig. 2 that n ≈ 1 (i.e.,
almost no vacant cells) along liquid-liquid coexistence, implying that
the model reduces to the spin- 1

2 compressible cell model presented
in Ref. 25, with δε, δv, and λ as parameters. Since in the standard
lattice gas TGL

c ∝ ε0 (see, e.g., Ref. 24) and in the compressible cell
model TLL

c ∝ δε,25 we chose the ε0 and δε values in Table I so as to
get a TGL

c value around the experimental one and a TLL
c value around

200 K. On the other hand, v0, δv, and λ were fixed so as to get a
reasonable description of the temperature dependence of the den-
sity and the pLLc ≈ 170 MPa value reported by Biddle et al.22 in their
analysis of simulation data of TIP4P/2005 water.

As Fig. 3 shows, the gas-liquid binodal in the p–T plane has a
positive slope which, according to the Clapeyron equation, indicates
that the denser phase (that is, liquid) is the one with lower entropy.
Following the same reasoning, the negative slope of the liquid-liquid
binodal indicates that the LDL has lower entropy. Remarkably, the
region of the phase diagram in the p–T plane associated with the
liquid-liquid transition agrees qualitatively with that for ST2 water
(cf. Fig. 2 of Ref. 11).

It also comes out from Fig. 3 that the liquid branches of the gas-
liquid binodal and spinodal in theT–ρplane exhibit a temperature of
maximum density (TMD). The existence of a TMD in water’s liquid
binodal was experimentally observed long ago.36 Its spinodal coun-
terpart has been shown to be consistent with the low-temperature
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FIG. 2. Isotherms in the pressure-volume
p–v plane for T = 100 K (green),
T = 200 K (blue), T = 300 K (orange), and
T = 600 K (gray). Also shown are the
model’s order parameters n and n+ as
a function of v along each isotherm.
The thin dashed lines correspond to
v = v− = v0 and v = v+ = v0 + δv.

behavior of thermodynamic response functions along isochores in
TIP4P/2005 water.37 Both maxima were already found in early the-
oretical work19,20 and obviously associated with them is the TMD of
liquid water along isobars, which is central in water’s unusual ther-
modynamics and defines a TMD line in the p–T plane that is plotted
in Fig. 3. [Such a TMD line has been calculated from (13) upon fixing
T and p and solving (17) and (18) for n and n+.]

The absence of a TMD in the gas branches of the binodal and
spinodal embodies an evident gas-liquid asymmetry far from crit-
icality. Such an asymmetry is known to be also reflected near the
gas-liquid critical point by the temperature dependence of the bin-
odal diameter.23,24,38–40 Despite an exact analysis of this issue being
prevented by the mean-field nature of our approach, it is important
tomention that our spin-1model contemplates the local free volume
fluctuations that were shown in Refs. 23 and 24 to underlie the sin-
gular behavior of the binodal diameter and the related Yang-Yang
asymmetries in gas-liquid criticality.

B. Order parameters and low-T behavior
Theoretical work and simulations evidence that two order

parameters are relevant for understanding water’s unusual ther-
modynamics.21,41–43 In this connection, one remarkable feature of
spin-1 Ising models is that they are characterized by two order
parameters.28 In our present approach, they are n and n+, which, as
found, lead to two phase transitions, each of which terminating at a

critical point. This is how the two-critical-point scenario appears in
the Ising paradigm.44,45

As noted in Sec. II, n quantifies lattice cell occupancy, while n+
is a measure of icelike structural order. It is important to recall from
Fig. 2 that n ≈ 1 along liquid-liquid coexistence. Hence, n is only
relevant to the gas-liquid transition, while the liquid-liquid transi-
tion is solely driven by n+. Implications of this result regarding the
nature of the liquid-liquid phase transition are described as follows.
First, the LDL and HDL coexisting phases are fully characterized by
n+, with the LDL being the one with greater n+ (cf. Fig. 1). Second,
one readily finds from (13) that along liquid-liquid coexistence, n+
is directly related to the volume per particle via n+ ≈ (v − v0)δv−1,
implying that the model’s pvT relation reduces to

pδv = kBT ln�λ v0 + δv − v
v − v0 � + cδε v − v0δv , (20)

where we have used Eq. (16). Third, the cell volumes v+ = v0 + δv
and v− = v0 set upper and lower bounds for the v of the coexist-
ing phases (cf. Fig. 2). Certainly, they define the two length scales
that have been shown to be relevant to one-component liquid-liquid
transitions.2,18

Figure 4 shows ρ(T), n(T), and n+(T) at p = 0.1 MPa. As can
be seen, both n and n+ increase as T is decreased, but in the low-
temperature region, n+ does it at a significantly faster rate than n.
Then, Eq. (13) straightforwardly allows us to understand how n(T)

FIG. 3. Binodal (bold solid, black) and spinodal (solid, orange) curves in the pressure-temperature p − T and temperature-density T–ρ planes. Also shown are the line of
temperature of maximum densities (TMDs) along isobars (solid, blue), the lines of isobaric extrema of Cp (solid, green), αp (solid, violet), and κT (solid, gray) emanating from
each critical point, and the lines of isobaric minima of the density (dashed, blue) and κT (dashed, gray). Some loci have been deliberately cut off for the sake of clarity, while
both the high-pressure termination of the TMD line and the intersection between the line of isobaric κT minima and the TMD line satisfy thermodynamic constraints.33–35
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FIG. 4. Model’s order parameters n and n+ at p = 0.1 MPa as a function of tem-
perature T. The inset shows the resulting temperature dependence of the density
ρ according to Eq. (13). Note that a 30% fraction of icelike cells at a temperature
as high as 400 K seems unreasonably large (see comments in Sec. IV).

and n+(T) combine to produce the ρ(T) maximum. Thus, at high
temperatures, the temperature dependence of ρ is mainly governed
by n(T), whereas at low temperatures, it is n+(T) which dominates.
Indeed, both icelike order and lattice vacancies make the density to
decrease, with the former effect dominating at low temperatures and
the latter at high temperatures so that, inevitably, a ρ(T) maximum
occurs. The ρ(T) maxima of the liquid branches of the binodal and
spinodal are rationalized exactly in the same way.

Back to Fig. 2, we note that low-temperature isotherms display
a quasivertical portion in between the two van der Waals loops at
v ≈ v+. Thus, around v+, the compressibility is so small that a wide
pressure range is spanned. More specifically, negative pressures that
are large in magnitude can be attained for v close to (but lower than)
v+, while for v close to (but higher than) v+, the pressure can be
large and positive until liquid-liquid coexistence is reached. Since at
low temperatures v ≈ v+ corresponds to n+ ≈ 1, ρopt = v−1+ may be
regarded an “optimal density for full icelike order.”46 Certainly, ice-
like order and its concomitant large cohesive energy allow the liquid
to be able to sustain large tensions, but it also demands large pres-
sures for the LDL to be converted into the HDL. Accordingly, the
fact that water can bear unusually large tensions (see, e.g., Ref. 37) is
consistent with the two-critical-point scenario. Indeed, the connec-
tion between the “stretched water” and the liquid-liquid transition
has stimulated recent experimental work.47

C. Response functions
The temperature dependence of thermodynamic response

functions for the (one-phase) liquid along isobars has been exten-
sively studied in connection with water’s unusual thermodynam-
ics.4–7,48,49 To make progress, we shall examine what the model
predicts about it. Specifically, our attention will be focused on the
isothermal and isentropic compressibilities, κT ≡ −v−1(@v/@p)T
and κS ≡ −v−1(@v/@p)S, the isobaric thermal expansivity,
αp ≡ v−1(@v/@T)p, and the isobaric and isochoric heat capacities,
Cp ≡ T(@s/@T)p and CV ≡ T(@s/@T)V . To calculate them, given T
and p, (17) and (18) were solved for n and n+ so that v and s

were obtained from (10) to (13). Then, via numerical differentia-
tion, κT , αp, and Cp were determined. These led to κS and CV with
the aid of the exact thermodynamic relations κS = κT −Tvα2

pC−1p and
CV = Cp − Tvα2

pκ−1T .
Figure 5 shows the results over a wide temperature range at

p = 50 MPa, that is, at a pressure which is lower than both pGLc≈ 60 MPa and pLLc ≈ 170 MPa. The condition p < pGLc implies that
the liquid branch of the gas-liquid spinodal is approached as T is
increased. On the other hand, p < pLLc implies that the Widom line
associated with the liquid-liquid critical point52–54 is approached as
T is lowered. This latter statement may be understood as follows.
As Fig. 3 shows, the negatively sloped liquid-liquid coexistence line
in the p–T plane implies that starting at criticality, lines of isobaric
extrema of each response function (as a function of temperature)
develop toward temperatures higher than TLL

c and pressures lower
than pLLc . Asymptotically close to criticality, all such lines converge
into a single line, the so-called Widom line, which serves to measure
the proximity to the critical region for p < pLLc . (Also shown in Fig. 3
is the gas-liquid Widom line, useful to quantify the proximity to the
gas-liquid critical region for p > pGLc .)

Accordingly, the high-temperature increases in Cp, αp, and κT
in Fig. 5 merely reflect the diverging behavior of these properties
at the spinodal limit.55 Since at a one-component liquid-liquid crit-
ical point with a negatively sloped p–T binodal line Cp, κT → + ∞
and αp→−∞ (see, e.g., Ref. 25), at intermediate temperatures,Cp(T)

FIG. 5. Isobaric thermal expansivity αp (in 10−3 K−1), isothermal compressibility
κT (in 10−12 Pa−1), isentropic compressibility κS (in 10−12 Pa−1), isobaric heat
capacity Cp (in J mol−1 K−1), and isochoric heat capacity CV (in J mol−1 K−1)
as a function of temperature T. Left: spin-1 Ising model values at p = 50 MPa
obtained using the parameters shown in Table I; right: literature experimental data
at atmospheric pressure.5–7,50,51
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and κT(T) must inevitably exhibit a minimum and αp(T) an inflec-
tion point. On the other hand, CV and κS remain finite at the liquid
spinodal55 but also, in mean-field approximation, at liquid-liquid
criticality. However, in contrast to CV , κS noticeably increases at
both extremes of the temperature range, implying that κS(T) also
exhibits a minimum at intermediate temperatures.

Figure 5 also illustrates that the model’s behavior is in accord
with experimental data. However, using the values for the model
parameters of Table I, such a consistency has been achieved by
shifting the pressure up 50 MPa. While this situation could be
improved by changing the parameter setting, we have concluded that
an accurate approach to water’s experimental data demands a careful
analysis that is beyond the scope of the present work.

Certainly, assuming that one-component liquid-liquid critical-
ity belongs to the Ising universality class,56 it must be recognized
that our approach suffers from the limitations inherent to the mean-
field approximation. One such limitation was mentioned above and
has to do with the so-called weakly diverging properties such as κS
and CV ,57 which are otherwise nondiverging in mean-field theory.
Accordingly, it is to be expected that the low-temperature increase in
these properties is underestimated by the model, as it can be inferred
from Fig. 5 for κS. On the other hand, the model does not consider
either vibrational and rotational degrees of freedomor nuclear quan-
tum effects,58 while it also lacks from any detailed account of the
contribution of dispersion forces to the heat capacities.59

FIG. 6. Isobaric thermal expansivity αp (in 10−3 K−1), isothermal compressibility
κT (in 10−12 Pa−1), and isentropic compressibility κS (in 10−12 Pa−1) as a function
of temperature T. Left: spin-1 Ising model values at p = −50 MPa (blue lines),
p = 0.1 MPa (green lines), and p = 50 MPa (orange lines) obtained using the
parameters shown in Table I; right: TIP4P/2005 water at p = −50 MPa (circles),
p = 0.1 MPa (squares), and p = 50 MPa (triangles). The lines joining points in
TIP4P/2005 plots are only intended to guide the eye.

To further test the model’s capabilities, we focus on the behav-
ior at lower temperatures than those experimentally accessible. This
naturally entails comparison with results from water force fields,
which has led us to perform simulations of TIP4P/2005 water for
temperatures ranging from 200 to 350 K at p = −50, 0.1, and 50
MPa isobars. The results are shown in Fig. 6 together with model
values within the same temperature and pressure ranges. Because
of the just-mentioned model’s limitations for a quantitative descrip-
tion of Cp and CV , we have restricted ourselves to αp, κT , and κS. For
these, the consistency between our model and TIP4P/2005 water is
remarkably good. It has been achieved with the only expediency of
choosing the spin-1 Ising model parameters so as to get values of TLL

c
and pLLc similar to those reported by Biddle et al.22 in their mean-
field “two-structure thermodynamics” analysis of simulation data of
TIP4P/2005.

IV. CONCLUSIONS
It was already realized at early stages60–62 that in its distinct

versions, the Isingmodel contemplates the essential microscopic fea-
tures underlying quite diverse phenomena such as ferromagnetism,
antiferromagnetism, gas condensation, or demixing in binary solu-
tions or alloys. But the status of the “Ising paradigm” goes even
beyond this. Indeed, the confidence levels it has gained over the
years are so great that sometimes newly revealed phase behaviors
(by experiment, etc.) encourage looking for Ising models describ-
ing them, whereas the mere existence of Ising prototypes displaying
uncovered physical phenomena constitutes a strong suggestion that
such phenomenamay be observed in nature. It is on this footing that
consistently placing water’s two-critical-point scenario in the Ising
framework—as we have done in the present work—proves certainly
meaningful.

Our approach consists of a spin-1 Ising variant—mathematically
equivalent to the Blume-Capel,27 Blume-Emery-Griffiths,28 and
“three-component”29,30 models—in which we have taken advantage
of the concept of fluctuating cell volumes introduced recently23,24 to
characterize the energetic, entropic, and volumetric effects of water’s
icelike order. As such, it stresses the value of rather “crude” mod-
els and, in particular, of the relations among different models in the
theory of condensed matter.63

A natural extension should be a comparative study between
our spin-1 model and the spin- 1

2 variant by Sastry et al.
35 account-

ing for the so-called “singularity-free scenario”—in which water’s
unusual thermodynamics are not associated with a liquid-liquid
critical point. Unambiguously elucidating which of these two Ising
approaches describing mutually exclusive scenarios proves better
is of obvious relevance. On the other hand, preliminary calcula-
tions have shown that upon lowering the λ value, the model is
able to reproduce the “critical-point-free scenario.”10 But, whatever
the situation regarding these competing physical pictures may be,
we stress that our present approach relies on the explicit distinc-
tion between icelike and disordered local arrangements in water,
which, as long recognized, is essential for describing its unusual
thermodynamics.

Before a detailed analysis along those lines can be undertaken,
refining our model with a view to attain a more accurate descrip-
tion of experimental data than the one actually provided by Fig. 5
is in order. For that purpose, recent work64 suggests that a spin- 3

2 ,
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four-statemodel should be promising. Such a variant would eventu-
ally correct the unreasonably large fraction of water molecules in the
icelike configuration indicated in Fig. 4.

Future work should also address one-component liquid-liquid
criticality as well as water’s analytical tractability. The former prob-
lem may be readily attacked by simply recalling that at low tem-
peratures, our spin-1 model reduces to the spin- 1

2 compressible cell
model presented in Ref. 25, for which one can straightforwardly
explore its “exact” solutions. As for the latter subject, the simplic-
ity of the mean-field equation of state given by Eqs. (13), (17), and
(18) suggests that studying water’s unusual thermodynamics within
the theory of liquids may not be regarded a hopeless task. Concrete
progress on all these topics pertaining to the advancing field ofwater
physics is highly desirable.

SUPPLEMENTARY MATERIAL

See supplementary material for technical details of simulations
and numerical results in tabulated form.
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