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We analyze the network structure of lagged correlations among daily financial news
sentiments and returns of financial market indices of 40 countries from 2002 to 2012.
Using a spectral method, we decompose the network into bipartite sub-structures, and
show that these sub-structures are relevant to the performance of prediction models,
bridging concepts from network theory and time series analysis. Our results suggest that,
at the daily level, endogenous influences among financial markets overwhelm exogenous
influences of news outlets, and that changes in financial news sentiments respond to
market movements more substantially than they drive them.
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1. Introduction

Recent history has revealed the degrees to which the well-being of individuals and
entire economies are tied to the state of the financial sector, directing much scientific
attention at the drivers of financial market fluctuations. Fama (1970) developed
the efficient market hypothesis, which suggests that all available information is
reflected in the current price of financial assets, and it is therefore not possible to
predict future values of an asset using only past records. When considering the
assets comprising major global stock indices, relevant information may be encoded
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in a variety of forms, including news and analyst reports. Weak forms of the efficient
market hypothesis may additionally allow that the returns of other major indices
or assets offer relevant information.

The latter phenomenon has been documented for several decades. Becker et al.
(1990) observed that daily returns of the S&P 500 explain 7%–25% of fluctuations in
the Nikkei Index returns the next day. Using simple trading strategies, the authors
were able to correctly predict upward movements of the Nikkei with accuracies
ranging from 72% to 81%, and downward movements with accuracies ranging from
59% to 75%. The author’s simulations conclude that accounting for transaction
costs, however, is sufficient to eliminate any excess profits potentially obtained from
such strategies. So although predictive information might be encoded among the
returns of markets with different operating hours, this information is typically not
actionable, in the sense that one could consistently translate the information into
a profit. A variety of studies have found similar international return and volatility
spillover effects (see, in particular, Brailsford 1996, Ghosh et al. 1999, Hamao et al.
1990, Sandoval 2014, Vandewalle et al. 2000). Diebold & Yilmaz (2009) report that
certain measures of return spillover effects have been increasing steadily since the
early 1990s.

While the returns of global indices may be readily calculated and incorporated
into statistical models, the impact of exogenous news is more difficult to quan-
tify. Some have approached the problem by quantifying “news” as the difference
between announced national macroeconomic fundamentals and surveyed expec-
tations (Anderson et al. 2003, Anderson et al. 2007, Balduzzi et al. 2001). This
approach has been central to the studies of economic efficiency. At the level of indi-
vidual firms, for example, researchers have identified persistent anomalous drifts
in stock prices for months following announcements of unexpectedly high earnings
(see, in particular, Ball & Brown 1968, Chordia et al. 2009). To capture relevant
news items beyond the announced financial and macroeconomic figures, however,
usually requires the quantification of information from text-based sources. In recent
decades, the automated forecasting of financial markets using relevant text-based
information has advanced tremendously, following the growing abundance of online
text data in the form of news and social media outlets. Pǐskorec et al. (2014) quan-
tify the cohesiveness of financial news according to the co-occurrence of keywords
in online news streams, and find that this cohesiveness largely responds to fluctu-
ations in market volatility. A more common approach is sentiment analysis (see,
in particular, Godbole et al. 2007, Zhang & Skiena 2010), in which documents
are distilled to numbers that characterize the author’s opinion with respect to an
asset, market, or other item or event of interest. Developments in this area have
enabled the statements of analysts, reporters, and individuals in online investment
communities to be parsed and interpreted by forecasting algorithms at increasing
speeds.

The information encoded in such sentiment analyses both reflects and influ-
ences the decisions of investors, which collectively may shape the gains and losses of
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financial markets worldwide. To disentangle the directionality of these relationships,
here we investigate the interactions among financial markets and news sentiment
data for 40 countries for the period from 2002 through 2012. Through the consid-
eration of lagged correlation-based networks, we explore the extent to which news
leads financial market movements, and to which markets lead news. Using tools
from linear algebra, we abstract away from the level of individual countries in order
to identify large-scale flows of information among geographic regions. We find that,
at a time resolution of one day, and both at the level of individual nodes and when
considering the network’s larger-scale structure, financial markets anticipate news
much more substantially than news items anticipate market movements. Finally, we
use logistic regression models to show that the structures in the lagged networks are
indicative of some degree of predictability, and demonstrate how consideration of
the network’s community structure can be useful in building more robust predictive
models. Our results bolster previous studies of international return spillover effects
among markets, and offer a novel picture of the interactions among market returns
and financial news sentiments.

In Sec. 2, we introduce the data sources, provide summary statistics, and explain
our procedure for de-trending the data to guard against spurious results due to serial
correlation. In Sec. 3, we describe our methodology for constructing networks of
lagged correlations among news sentiment signals and market returns, interpret the
results of our method, and summarize the community structures embedded in the
directed network. In Sec. 4, we show how consideration of these community struc-
tures can be useful in building more robust predictive models. We offer concluding
remarks and propose extensions of the work in Sec. 5.

2. Data and Summary Statistics

We obtain daily news signals for each country from the Thomson Reuters Mar-
ketPsych indices (MarketPsych 2013). The MarketPsych signals are computed using
textual news from Reuters as well as various third-party sources. Text is also sourced
from blogs, microblogs, and other social media. The indices are constructed using a
proprietary language framework to quantify finance-specific emotions and forecasts,
in addition to opinions on more specific topics (regarding inflation, fiscal policy, risk
of default, etc.). These indices are used by Thomson Reuters and its clients for a
variety of purposes, including the development of quantitative trading strategies,
risk analysis, and volatility forecasting. For the purposes of this study, we make use
of the general “sentiment” indices, which measure “overall positive references, net
of negative references” (MarketPsych 2013) in financial news for a given country
and takes a value in the range [−1, 1].

First, we clean the data for missing values, replacing them by the sentiment value
at one day prior. We discard any country with more than 1% missing values from
the analysis. We thus obtain news sentiment signals Si,t, for 40 countries indexed
i = 1, . . . , 40. The full list of 40 countries studied here is provided in Table 1.
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Table 1. Summary statistics, including sample means and standard deviations, for the (detrended)
returns r̃i,t and news sentiment signals s̃i,t in the period January 8, 2002 to December 31, 2012.

Country Index 〈r̃i,t〉 σr̃ 〈s̃i,t〉 σs̃

Argentina MERVAL 7.33× 10−5 1.91× 10−2 −3.10× 10−5 9.43× 10−2

Australia AS51 2.01× 10−5 1.09× 10−2 2.10× 10−5 6.55× 10−2

Austria ATX 1.43× 10−5 1.61× 10−2 −7.95× 10−5 1.61× 10−1

Belgium BEL20 3.16× 10−5 1.40× 10−2 −1.20× 10−4 1.17× 10−1

Brazil IBOV 4.44× 10−5 1.85× 10−2 −5.34× 10−5 8.18× 10−2

Chile IPSA 8.21× 10−5 1.06× 10−2 9.34× 10−5 1.72× 10−1

China SHSZ300 4.99× 10−5 1.72× 10−2 1.42× 10−5 4.85× 10−2

Colombia IGBC 5.94× 10−5 1.37× 10−2 −1.24× 10−4 1.26× 10−1

Denmark KFX 3.15× 10−5 1.36× 10−2 1.24× 10−4 1.75× 10−1

Finland HEX25 4.83× 10−5 1.51× 10−2 −1.70× 10−4 2.06× 10−1

France CAC 3.99× 10−5 1.59× 10−2 −2.37× 10−5 5.66× 10−2

Germany DAX 5.12× 10−5 1.62× 10−2 −2.23× 10−5 6.34× 10−2

Greece ASE 7.44× 10−5 1.76× 10−2 −1.09× 10−4 1.20× 10−1

Hong Kong HSI 4.87× 10−5 1.57× 10−2 4.58× 10−5 1.41× 10−1

Hungary BUX −1.47× 10−5 1.67× 10−2 −1.81× 10−4 1.84× 10−1

Indonesia JCI 1.24× 10−5 1.45× 10−2 −6.33× 10−5 1.03× 10−1

Ireland ISEQ 6.21× 10−6 1.54× 10−2 −3.62× 10−5 9.14× 10−2

Israel TA-25 2.58× 10−5 1.26× 10−2 −3.17× 10−5 4.47× 10−2

Italy FTSEMIB 4.34× 10−5 1.58× 10−2 −8.96× 10−5 6.99× 10−2

Japan NKY 4.43× 10−5 1.54× 10−2 1.32× 10−5 7.28× 10−2

Malaysia FBMKLCI 1.89× 10−5 7.81× 10−3 −2.73× 10−5 1.38× 10−1

Mexico MEXBOL 1.41× 10−5 1.33× 10−2 −9.46× 10−6 8.03× 10−2

Netherlands AEX 3.95× 10−5 1.61× 10−2 −1.08× 10−4 1.61× 10−1

New Zealand NZSE50FG 1.81× 10−5 7.13× 10−3 1.05× 10−5 1.26× 10−1

Norway OBX 3.21× 10−6 1.75× 10−2 −6.08× 10−5 1.36× 10−1

Pakistan KSE100 1.22× 10−5 1.38× 10−2 −3.32× 10−5 6.70× 10−2

Peru IGBVL 3.58× 10−5 1.57× 10−2 −3.54× 10−5 1.74× 10−1

Philippines PCOMP 2.12× 10−5 1.29× 10−2 −1.01× 10−4 1.18× 10−1

Poland WIG 1.90× 10−6 1.31× 10−2 −9.02× 10−5 1.47× 10−1

Portugal PSI20 1.74× 10−5 1.18× 10−2 −2.22× 10−4 1.72× 10−1

Russia INDEXCF −5.58× 10−5 2.28× 10−2 −2.37× 10−5 5.88× 10−2

Saudi Arabia SASEIDX 6.59× 10−5 1.71× 10−2 −4.32× 10−5 9.95× 10−2

South Africa TOP40 2.02× 10−5 1.41× 10−2 −1.06× 10−4 8.09× 10−2

Spain IBEX 5.01× 10−5 1.57× 10−2 −6.63× 10−5 8.27× 10−2

Sweden OMX 8.51× 10−5 1.56× 10−2 −1.27× 10−4 1.42× 10−1

Switzerland SMI −9.55× 10−6 1.27× 10−2 −1.16× 10−4 1.14× 10−1

Thailand SET 5.56× 10−5 1.39× 10−2 2.55× 10−5 1.17× 10−1

United Kingdom UKX 2.06× 10−5 1.31× 10−2 −1.14× 10−5 4.14× 10−2

United States SPX 2.96× 10−5 1.33× 10−2 −1.71× 10−5 3.05× 10−2

Venezuela IBVC 7.62× 10−5 1.38× 10−2 −1.90× 10−4 1.24× 10−1

In addition to the news sentiment data, we simultaneously study the returns of
major stock indices in each country. We obtain closing prices Pi,t for major stock
indices of each country i on each trading day t from Bloomberg. We then transform
the prices Pi,t to logarithmic returns

ri,t ≡ log(Pi,t) − log(Pi,t−1). (2.1)

We provide the full list of stock indices considered in Table 1.

1550043-4



2nd Reading

October 26, 2015 15:34 WSPC/S0219-0249 104-IJTAF SPI-J071
1550043

Predictability of Financial Market Returns and News Sentiments

We aim to measure one-day lagged relationships among the news sentiment sig-
nals and index returns. Many of the news sentiment signals exhibit a large degree
of autocorrelation. In addition, the return signals from the markets of certain devel-
oping countries exhibit a non-negligible degree of autocorrelation at a lag of one
day. To isolate the influences of exogenous factors from the endogenous structure
of each time series, we first difference the news sentiment time series to obtain 40
time series si,t ≡ Si,t −Si,t−1. We then apply an AR(1) filter to the signals si,t and
ri,t. This is equivalent to applying an ARIMA(1, 1, 0) filter to the original news sen-
timent signals Si,t and to the logarithmic prices log(Pi,t). We find that alternative
procedures, such as incorporating moving average terms instead of autoregressive
terms, or not differencing the news sentiment signals, fail to adequately remove the
effects of autocorrelation from the data.

Specifically, we subtract the influences of such autocorrelation features from our
signals using one-step rolling forecasts. For each point si,t in each news sentiment
time series, for example, we fit a local regression (Shumway & Stoffer 2011)

si,t = β0 + β1si,t−1, (2.2)

using the previous 100 days of data — i.e. using the values of
{st−1, st−2, st−3, . . . , st−100} on the left-hand side of the equation. We then sub-
tract the out-of-sample sentiment predicted from the regression from the observed
sentiment at week t to obtain our fully detrended time series

s̃i,t ≡ si,t − (β0 + β1si,t−1), (2.3)

which are the residuals from one-step rolling forecasts of our autoregressive model.
This method of de-trending, in which we make use of data only from days t′ < t in
order to adjust the value of the time series at time t, is preferred in this case over
other local regression methods, many of which use a symmetric window around
t. Because we will be making predictions, we explicitly avoid contaminating our
processed data at time t with data from times t′ > t.

We implement the exact same procedure on the returns ri,t in order to construct
the detrended time series r̃i,t. The signals s̃i,t and r̃i,t were obtained for a total of
40 countries over a period ranging from January 8, 2002 to December 31, 2012.
Summary statistics, including the first two moments of r̃i,t and s̃i,t for each country
and index considered, are provided in Table 1.

3. Analysis of Lagged Correlations

3.1. Methodology

We study Pearson correlations among all signals at a lag of one day. Although the
market return data only exists at most between Monday and Friday of each week, the
news sentiment data is available seven days per week. We adopt a lagging scheme
that maintains a constant time series length T for all relationships studied, but
ensures that each term in the Pearson product-moment sum includes signals that
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are separated by the minimum possible nonzero time lag at a resolution of one day.
Our procedure is given in detail in Appendix A. In Appendix C, we also consider
synchronous correlations among news sentiment signals and market returns, and
examine the topological structure of the synchronous correlation matrix.

For each of the four possible categories of relationships — market–market, news–
news, news-market, and market-news — we assemble the time series as columns in
a matrix X(t). We then shift the time series by one day, as detailed in Appendix
A, and assemble them as columns in a matrix X(t+1). We construct the lagged
correlation matrix, the entries of which are given by

Li,j =
1

T − 1

T∑

k=1

(X(t)
i,k − 〈X(t)

i 〉)(X(t+1)
j,k − 〈X(t+1)

j 〉)
σiσj

. (3.1)

To study the structure of this matrix, we aim to filter its elements into a network
of directed relationships. A common approach to constructing correlation-based
networks is to filter edges according to a topological constraint, as in the minimal
spanning tree (MST) (Mantegna 1999). This approach generally relies on a sym-
metric correlation between any two nodes. It therefore does not readily extend to
the study of lagged correlation networks, in which the correlations are asymmet-
ric: in general, Li,j %= Lj,i. More generally, such topological methods of filtering a
correlation matrix into a network, which depend heavily on the ranking of the mea-
sured correlation coefficients, are less robust to statistical uncertainty than other
methods, such as applying a threshold to the matrix (Curme et al. 2015). This
is especially important when studying lagged correlations, which tend to be much
lower in magnitude than synchronous correlations.

We could apply a simple thresholding procedure, choosing a static threshold
based on statistical confidence — i.e. a correlation coefficient that has a probability
less than p of being generated by uncorrelated variables. But this threshold will vary
with the distribution of the signals under consideration, many of which are known to
be non-normal (Mantegna & Stanley 2000). To this end, we apply a bootstrapping
procedure (Curme et al. 2015 in which the rows of the matrix X(t) are shuffled
repeatedly in order to construct a distribution for the sample correlation coefficient
as measured using uncorrelated signals of the same distribution as the data. We
then apply a uniform statistical threshold of p = 0.01, with false discovery rate
(FDR) correction for multiple comparisons (Benjamini & Hochberg 1995), to obtain
thresholds of measured correlation coefficients that vary for each time series pair.
Thus, we construct the four different X(t) and X(t+1) matrices described above,
perform 100 × N2 = 100 × (80)2 = 640000 independent shufflings of the data,
construct the distribution for the measured correlation coefficient under the null
hypothesis of uncorrelated variables, and accept into our directed network any pair
that has a probability p < 0.01 of being generated by uncorrelated variables after
FDR correction. Further details of this procedure, including the implementation of
the FDR correction, are given in Appendix B.

1550043-6



2nd Reading

October 26, 2015 15:34 WSPC/S0219-0249 104-IJTAF SPI-J071
1550043

Predictability of Financial Market Returns and News Sentiments

This procedure yields four networks of statistically-validated directed links. In
the subsequent portions of the paper, we will both analyze the structure of these
networks, and explore their utility as a feature-selection tool in developing prediction
models.

We note that special care must be taken when interpreting the lagged rela-
tionships described above. A validated link from the United States to Japan, for
example, suggests that market movements or changes in sentiments in the U.S. may
impact those in Japan on the following day. Due to the location of the international
dateline, this timescale may be shorter than the timescale represented by a validated
link from Japan to the U.S. We adopt this approach due to its simplicity, although
more nuanced approaches are certainly possible, particularly with intra-day data.

3.2. Results

In Fig. 1, we display histograms of measured lagged correlation coefficients sepa-
rately for relationships among news sentiment signals, among market returns, and
between news and markets. The histograms are shaded according to the number of
links that are validated according to the statistical validation procedure described
above. The corresponding subgraphs of the validated lead-lag relationships are dis-
played in Fig. 2, where we preserve the geographical location of each node. We
distinguish positive and negative correlations by the colors of the links.

We find that the greatest number of validated links are between financial mar-
kets, with 534 links of positive correlation and 4 links of negative correlation. There
is also a substantial number of links leading from markets to news sentiments, as
we validate 118 links of positive correlation and 56 links of negative correlation.
By contrast, we find far fewer entities, among both news sentiments and market
returns, that are lead by news. In this sense, we find that the system is primarily
driven by market movements, which complements our study of synchronous corre-
lations where we find that the markets compose the base of the MST (see Appendix
C). A comparison of the distributions of correlation coefficients in which news leads
markets to those in which markets lead news, as displayed in Fig. 1, again sug-
gests that the stronger relationships are those in which the markets anticipate news
sentiment.

At the level of individual lead-lag relationships, then, we find that the strongest
correlations are those that are driven by market movements. To analyze the higher-
level structure of the networks, we make use of a well-known clustering algorithm
involving a spectral decomposition of the adjacency matrix A, where Ai,j = 1 if a
link exists from i to j, and 0 otherwise. Here, we consider the full N ×N = 80× 80
adjacency matrix that is the union of the graphs displayed in Fig. 2.

Clustering in networks is commonly studied using a spectral decomposition of
the underlying adjacency matrix. In the case of a symmetric matrix with undirected
links, as in a network defined by synchronous correlations, an eigendecomposition
of the matrix A or its Laplacian can reveal groups of nodes that cluster together, in
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(a) News → News (b) News → Markets

(c) Markets → News (d) Markets → Markets

Fig. 1. (Color online) Histograms of lagged correlation coefficients (a) among news sentiment sig-
nals, (b) in which news anticipate market movements, (c) in which market movements anticipate
news, and (d) among market movements. Shading indicates positive (blue) and negative (red) coef-
ficients of pairs that are filtered into the statistically validated network. Note that the distributions
are presented on a semi-logarithmic scale, exaggerating the positive and negative tails.

the sense of sharing many links (Chung 1997). The interpretation of the eigenvectors
and eigenvalues is less straightforward in directed networks, as the adjacency matrix
A is asymmetric and we will generally obtain complex eigenvalues and eigenvectors.
The singular value decomposition (SVD), however, has been shown to be a simple
method to reveal clustering in even directed graphs (Drineas et al. 2004). The SVD
is a matrix factorization of the form

A = UΣV †, (3.2)

where in the special case of an N × N matrix A, U is an N × N unitary matrix
composed of the eigenvectors of AAT , and V † is the conjugate transpose of an
N ×N unitary matrix V , whose columns are composed of the eigenvectors of AT A.
Σ is an N × N diagonal matrix with entries σn that are the real square roots of
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(a) News → News (b) News → Markets

(c) Markets → News (d) Markets → Markets

Fig. 2. (Color online) Plots of each subgraph of the statistically validated network. (a) Shows lagged
relationships among news sentiment signals; (b) shows lagged relationships from news signals
to market returns; (c) shows lagged relationships from market returns to news signals, and (d)
shows lagged relationships among market returns. Blue color indicates validated links of positive
correlation; red color indicates validated links of negative correlation. Network visualizations are
prepared with the Cytoscape software framework (Shannon et al. 2003).

the eigenvalues of U or V . The columns of U and V are known as the left- and
right-singular vectors of A, respectively, and the diagonal entries σn of Σ are known
as the singular values of A.

In the case of directed networks, it has been shown that the SVD of the adja-
cency matrix A can reveal bipartite subgraphs of the network (Taylor et al. 2011).
Informally, each entry (i, j) of AAT is the number of nodes k to which there is
an edge from both i and j, i.e. the number of common successor nodes between i
and j. The eigenvectors of this matrix then represent groups of nodes that share
common successors. Similarly, each entry (i, j) of AT A is the number of nodes k
from which there is an edge to both i and j, i.e. the number of common predecessor
nodes between i and j. The eigenvectors of this matrix then represent groups of
nodes that share common predecessors.

Taylor et al. (2011) prove, in idealized cases of networks composed entirely
of fully-connected nonoverlapping bipartite structures, that each pair of left- and
right-singular vectors corresponds to a bipartite subgraph: the nonzero entries of
the left-singular vector are nodes in one layer of the bipartite structure; the nonzero
entries of the right-singular vector are nodes in the second layer of the structure,
and edges are drawn from the nodes in the left-singular vector to the nodes in the
right-singular vector. Furthermore, each singular value gives the geometric mean
of the number of nodes represented in the corresponding left- and right-singular

1550043-9
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Table 2. Largest five components of the first three left- and
right-singular vector pairs. Entries refer to market indices,
unless otherwise specified as news.

σ1 U1 V 1

21.9 United States New Zealand
Mexico Philippines
Brazil Australia
Chile Japan
Argentina Malaysia

σ2 U2 V 2

9.74 United States France
Mexico United Kingdom
Brazil Sweden
Chile Finland
Saudi Arabia Belgium

σ3 U3 V 3

6.86 Japan China News
Australia United States News
Philippines United Kingdom News
Hong Kong Hong Kong News
Malaysia Japan News

vectors. This holds exactly for the highly-idealized situation described above, but is
fairly robust in the presence of noise, such as missing edges or overlapping bipartite
structures (Taylor et al. 2011).

To describe the large-scale flows in the statistically-validated lagged correlation
network, we study the SVD of the full adjacency matrix A. In Table 2, we display
the largest five components in magnitude of selected left- and right-singular vectors
Un and V n of A. Included are the top three singular vector pairs in terms of their
corresponding singular value σn. Plots of all entries of the first three pairs of left-
and right-singular vectors are included in Fig. 3. In Fig. 3, we also plot the full
directed network, arranging the positions of nodes according to their entries in the
first three singular vector pairs.

We find several approximately bipartite substructures that are embedded in the
network. The most prominent consists of financial markets in the Western world —
the U.S., Brazil, and Mexico for example — that anticipate the next-day returns of
east Asian indices. This is consistent with previous findings (Sandoval 2014), and
undoubtedly has much to do with the location of the international dateline. The
second singular vector pair indicates that these western markets also have a degree
of influence on the next-day returns of European markets.

The third singular vector pair supports our observation that the relation between
financial markets and news is asymmetric, as financial markets anticipate news
sentiments much more substantially than news sentiments lead market returns. We
find that the largest entries in the left-singular vector are entirely composed of
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Fig. 3. (Color online) (a) Display of the complete directed network, showing all links among
markets (red) and news sentiment signals (blue). Nodes are arranged according to their entries in
the first three left- and right-singular vectors. Specifically, we associate a vector in the plane R2 to
each of the singular vectors U1, U2, U3, V 1, V 2, and V 3 (inset). Each node position in the plane
is then a weighted sum of these six 2-vectors, where the weight of each 2-vector is equal to the
magnitude of the node’s entry in the corresponding singular vector. Edges are bundled according
to the algorithm in Holten and van Wijk (2009) to highlight the larger scale flows among groups of
nodes. In (b)–(d), we plot the sorted components of the first three pairs of left- and right-singular
vectors. For each vector, the largest entries in magnitude tend to be of the same sign. Network
visualizations are prepared with the Cytoscape software framework (Shannon et al. 2003).

financial markets, largely from Asia, and the largest entries of the right-singular
vector are entirely composed of news sentiment signals.

4. Relation Between the Structure of the Statistically-Validated
Network and Prediction Model Performance

We further investigate the predictability of node signals within the statistically-
validated lead-lag network. We first divide our data into a training set from 2002 to
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the end of 2010, and a testing set from 2011 to the end of 2012. We construct the
statistically-validated network, using the methodology described above, with only
the training subset of the data.

We then employ the networks as a feature-selection step in the training of a
classifier. We aim to predict the sign (+1 or −1) of the signals r̃i,t and s̃i,t, using
both the most recent previous index returns and news sentiment data. For each
node, we exclude days of sign zero from the training and test sets, allowing us to
train a genuinely binary classifier.

When modeling a given node i, we use all nodes j as inputs for which there
is an edge from j to i in the statistically-validated network constructed from the
training data. The number of inputs to each logistic regression, therefore, is equal
to the in-degree of the desired node. For each node, we assemble the lagged input
signals r̃i,t and s̃i,t as columns in a matrix X . Signals are lagged as in Sec. 3.1,
and standardized to Z-scores by subtracting the mean and scaling by the standard
deviation of the training set of each column. We then fit a logistic regression using
the training data from 2002 through 2010, and test on data from 2011–2012. For
a row vector x of X , the logistic regression models the probability for an upward
movement in r̃t+1 for a desired market as

Pr(r̃t+1 > 0 |x) =
eβ0+β·x

1 + eβ0+β·x , (4.1)

where β is a vector of coefficients to be fit with maximum likelihood estimation.
If this probability is greater than some threshold, the model predicts an upward
movement; otherwise the model predicts a downward movement. We predict news
sentiment signals s̃i,t in exactly the same way. No regularization is used when fit-
ting β.

We evaluate the performance of each model on the test data by constructing its
receiver operating characteristic (ROC) curve, which is generated by varying the
threshold probability for an upward movement and computing the corresponding
rates of true and false positives. The ROC curve is widely used in measuring the
ability of a classifier to discriminate between two classes of events — in this case,
upward and downward movements of the signals r̃i,t and s̃i,t. The performance
of each model can be quantified using the area under the curve (AUC) of the
corresponding ROC curve. The AUC exhibits a number of desirable properties,
including its invariance to the proportions of positive and negative events in the
data (Bradley 1997).

In Fig. 4, we plot some sample ROC curves for 15 of the logistic regression
models. In particular, we repeat the SVD on the adjacency matrix for the network
constructed from the training data, and plot the ROC curves for the largest five
entries of the right singular vectors |V 1|, |V 2|, and |V 3| (note the large overlap of
these entries with those from Table 2, which was constructed from the full data
set). The notation |V i| indicates the vector of absolute values of the entries of V i.
We find that these models perform reasonably well on the test data.
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(a) Largest five entries in V 1 (b) Largest five entries in V 2

(c) Largest five entries in V 3

Fig. 4. ROC curves for the performance of the logistic regression model in predicting (a) daily
returns r̃i,t of the stock indices in the top five entries of |V 1| and (b) |V 2|, and (c) sentiment scores
s̃i,t for the news signals in the top five entries of |V 3|. Each ROC curve is generated by varying
the threshold probability for the prediction of a positive return. We provide the area under each
curve in the legend.

We compare the performance of all logistic regressions, using only the inputs as
defined by the validated network, with the performance of models that use all 80
nodes as inputs in the vector x. In Fig. 5, we show the distributions of differences
in AUCs between these two sets of models, finding that in nearly all cases the
feature selection step represented by constraining inputs according to the validated
network provides for significant gains in accuracy in the test data. The network is
thus highlighting persistent relationships among nodes and excluding noisy inputs
that may confound predictive models.

Finally, we explore the extent to which information on the predictive relation-
ships among nodes is encoded in the wiring diagram of the validated network’s
adjacency matrix. In Fig. 6, we plot the AUC for all markets against the magnitude
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( )

Fig. 5. Pairwise differences in AUCs between models with inputs defined by the validated network,
AUCNetwork, and those using all possible inputs, AUCAll. The distribution of AUC differences is
shown for all news sentiment and market return signals, and is represented using a Gaussian kernel
density estimate, with a bandwidth calculated using Silverman’s rule of thumb. The median of this
distribution differs significantly from zero according to a nonparametric Wilcox test (V = 2407,
p < 0.001), suggesting that the networks constructed using the training data uncover persistent
lead-lag relationships, and that restricting model inputs to the nodes defined by these networks
offer improved model performance.

of the entry of each market in the right-singular vectors V 1 and V 2. Similarly, we
plot the AUC for all news sentiments against the magnitude of the entry of each
node in the right-singular vector V 3. We find that the majority of market indices
cannot be reliably predicted using data at a time horizon of one day, in accor-
dance with the efficient market hypothesis (Fama 1970). However, there does exist
a group of nodes that exhibits a considerable degree of predictability, and these are
precisely the nodes identified in the first right-singular vector V 1 of the adjacency
matrix of the full network. Similarly, the most predictable signals among news senti-
ments are those with the highest entries (in magnitude) in the right-singular vector
V 3, as shown in Fig. 6(c). These numerical demonstrations suggest that the SVD
of the lagged correlation network’s adjacency matrix may be a plausible method
for identifying predictable subsets of nodes in networks built according to lagged
correlations.

We also investigate the extent of the information encoded in the left-singular
vectors. To this end, for the top five entries in each right-singular vector, we add
inputs sequentially to each model, and compute the out-of-sample AUC. We com-
pare the effect of two schemes: in the first scheme, when modeling node i, we choose
each additional input at random from all nodes j for which there is an edge from j
to i in the validated network. In the second scheme, we choose each additional input
in the order of their ranking in the corresponding left-singular vector. In Fig. 7, we
plot the mean AUC for the top five entries of each right-singular vector against the
number of inputs in each model. We find that, when modeling the signals of nodes
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(a) Markets (b) Markets

(c) News

Fig. 6. (Color online) AUC for all markets against (a) the magnitude of the entry of the corre-
sponding element of V 1, and (b) the magnitude of the entry of the corresponding element of V 2.
Points are shaded blue according to the magnitude of the entry in V 1, and green according to the
magnitude of the entry in V 2. In (c) we plot the AUC for all news against the magnitude of the
corresponding entry in V 3 (additionally shaded in red). We observe that the right-singular vectors
of the adjacency matrix identify subsets of predictable nodes.

highlighted in the right-singular vectors, the corresponding nodes highlighted in the
left-singular vectors tend to represent the most important inputs to the model. In
the case of the nodes in V 1 and V 2, for a node of in-degree kin, the largest kin

components of U1 or U2 using as inputs will, on average, result in better model
performance than using the inputs selected by the network. The effect is weaker
for the nodes in V 3, although choosing nodes from the largest components of the
left-singular vector U3 still yields comparable model performance to choosing them
from the underlying network, up to the singular value corresponding to this singu-
lar vector pair (which, as in Taylor et al. 2011 approximates the geometric mean of
the number of nodes involved in the large-scale flow). Whereas the right-singular
vectors identify subsets of predictable nodes, then, the corresponding left-singular
vectors seem to identify the most important inputs to these nodes, with respect
to the performance of our prediction models. We therefore find that the network’s
adjacency matrix alone can offer nontrivial insights into global flows of information.
In Appendix D, we verify that this finding holds on synthetic data with the same
correlation structure as the empirical data.
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(a) Elements of V 1 (b) Elements of V 2

(c) Elements of V 3

Fig. 7. (Color online) AUC, as averaged among the top five nodes in |V 1| (markets), |V 2| (markets),
and |V 3| (news), for each additional model input. When the number of model inputs exceeds the
in-degree of a node, we cease adding inputs. In blue, we plot the mean AUC when randomly
adding input nodes from the validated network, as averaged over 50 iterations. In red, we plot the
mean AUC when input nodes are added in order of their magnitudes in the corresponding left-
singular vectors, regardless of the presence or absence of a link in the validated network. Dashed
vertical lines mark the singular value associated with each singular vector pair, approximating
the number of nodes involved in the large-scale flow. We find that the most important inputs to
nodes with large weight in the first three right-singular vectors are nodes with large weights in the
corresponding left-singular vectors.

5. Conclusions

In summary, we have studied the structure of lagged correlation-based networks
that are derived from a collection of index returns and news sentiment data of
40 countries. Although the methods used to build the networks have no a priori
information about whether a time series describes news sentiment or market returns,
we find that these two classes of nodes play vastly different roles in the structure of
the networks. In particular, the dynamics of the system seem to be most strongly
driven by the financial markets, as these nodes are the sources of the strongest
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correlations in the system. We find that, at a time resolution of one day, market
movements seem to anticipate news sentiments much more substantially than news
sentiments anticipate market movements.

The networks considered here not only reveal information about the structure of
the system; they also serve to identify nodes that exhibit some degree of predictabil-
ity, as quantified with the out-of-sample performance of simple logistic regression
models. We note that the most predictable markets, in East Asia, naturally follow
market movements in the Western World due to the location of the international
dateline. In addition, although these lagged relationships are persistent, they may
not be actionable, as the trading hours of different markets do not necessarily over-
lap.

The SVD of the adjacency matrix of the lagged correlation network reveals pairs
of group of nodes, and associates a directionality to the pair, in the sense that the
group of nodes identified in the left-singular vector tends to lead the group of nodes
identified in the right-singular vector. This simple transformation can be useful
in large directed networks, where we may abstract away from individual nodes in
order to identify larger-scale flows. In the context of correlation-based networks, we
have found some evidence that the large-scale structures identified with this method
correspond to groups of predictable nodes and their important inputs, as quantified
using out-of-sample tests. Although we do not suggest that these methods could
outperform conventional feature-selection algorithms, such as regularization, the
results support the idea that the structures we find are representative of genuine
flows of information among global markets and news outlets. According to this
analysis at a daily granularity, we find that the directionality is decidedly from
markets to news, and not the reverse.

A possible application of similar analyses in the context of lagged-correlation
networks would be a “recommender system” for exogenous inputs in time series
models. A preliminary feature-selection, such as the construction of a statistically-
validated network, is always subject to false negatives or false positives. A simple
SVD allows one to “recommend” inputs for a model according to the inputs of other
nodes — other time series — that otherwise share similar inputs. As demonstrated
here, incorporating such inputs can potentially improve performance, though the
limitations of this approach are evident in Fig. 7(c). This approach could also be
refined with more sophisticated recommender systems, although we make no claims
about the statistical basis for the functioning of these systems.

The use of Pearson correlation is certainly a limitation of this work, as we can
provide no evidence for “predictive causality”, in the sense of Granger (1969). We
note that in our approach, we detrend all time series for autocorrelation in order
to control for the endogenous structure of each time series. This work could be
extended through the incorporation of more nuanced time series analyses. We could
additionally control for other exogenous factors, such as fluctuations in exchange
rates; our preliminary analyses suggest, however, that the influence of daily fluctu-
ations in exchange rates would only minimally impact our conclusions.
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This work could also be expanded to analyses of intra-day data. One could
construct a different statistically-validated network for every pair of consecutive
hours or minutes in the day, for instance (Curme et al., unpublished results). This
would allow one to trace the flows of information during each 24 h period. Finer
levels of time horizon could also reveal more detailed interactions between world
news and the returns of major financial markets, and could perhaps better capture
the influences of news on market movements.
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Appendix A. Lagging Procedure

In this work, we study Pearson correlations among news sentiment signals and
market returns at one-day lag. While the news sentiment data is available seven
days per week, the market return data only exists at most between Monday and
Friday of each week. To account for this difference, we adopt the following scheme,
which is shown in Fig. A.1.

• For correlations between financial markets, we include products between returns
on Friday and those on the following Monday in the Pearson product-moment
sum, using all available data.

• For correlations between news data and subsequent market movements, we relate
news sentiment data between Sunday and Thursday of each week with market
data from Monday to Friday.

• For correlations between market movements and subsequent news data, we relate
market data from Monday to Friday with news sentiment data between Tuesday
and Saturday of each week.

• For correlations between news sentiment data, we relate news sentiments between
Monday and Friday of each week with those from Tuesday to Saturday of each
week. This method allows for a comparison between the effects of market returns
and news sentiment signals on subsequent news sentiments.

This scheme maintains a five day week, and therefore a constant time series length
T , for all relationships studied. We also use all available market data. An alternative
scheme is to simply synchronize all time series, removing data from Saturdays and
Sundays, as is done in Appendix C. We would then simply correlate each time series
against time series that have been shifted by one day. We have checked to confirm
that this change only weakly impacts the results. We find no systematic differences
between the distributions of the signals s̃i,t during the week and on the weekends.
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Fri. Mon. Thurs. 

Fri. Thurs. Sat. Fri. Mon. Thurs. 

Wed. Tues. Thurs. 

(a) News → News (b) News → Markets

Fri. Mon. Thurs. 

Fri. Thurs. Sat. 

Fri. Mon. Thurs. 

Fri. Thurs. Mon. 

(c) Markets → News (d) Markets → Markets

Fig. A.1. Diagram of lagging procedure for measuring lagged correlations. We maintain a five
day week, and therefore a constant time series length T , for all four classes of relationships. This
scheme uses all available market data, but only includes terms that are spaced exactly one day
apart when possible.

Appendix B. Statistical Validation of Directed Links

We aim to filter the lagged correlation coefficients in L according to a thresh-
old of statistical significance. In this high dimensional setting, composed of signals
that are by no means normally distributed, it can be difficult to infer the joint
probability distribution of the data (Tumminello et al. 2007). We will thus apply
a bootstrapping procedure (Efron & Tibshirani 1993) in order to determine the
statistical significance of each entry of L separately, and filter L according to a
statistical threshold. Although this threshold is uniform among all measured lagged
correlations, the lagged correlation coefficient corresponding to this threshold will
vary with the distributions of each pair of signals under consideration. See Curme
et al. (2014) for an analysis of this method when applied to intraday stock returns.

According to this procedure, the rows of the matrix X(t) are shuffled repeatedly
in order to construct a distribution for the sample correlation coefficient as measured
using uncorrelated signals of the same distribution as the data. Upon each shuffling,
we create 40 surrogated time series, recalculate the lagged correlation matrix, and
compare this “surrogate” lagged correlation matrix L̃ to the empirical matrix L.
This is done separately for each scenario under consideration (e.g. news time series
in X(t) and market returns in X(t+1), or market returns in X(t) and news time
series in X(t+1), etc.). We then construct the matrices U and D, where Um,n is the
number of shufflings for which L̃m,n ≥ Lm,n, and Dm,n is the number of shufflings
for which L̃m,n ≤ Lm,n.

From matrix U , we associate a one-tailed p-value with all positive correlations
as the probability of observing a correlation that is equal to or higher than the
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empirically-measured correlation, under the null hypothesis of uncorrelated signals.
From D we may similarly associate a one-tailed p-value for all negative correlations.
We choose our statistical threshold to be p = 0.01. Because we are performing
many statistical inferences simultaneously, however, we must correct our p-values
to account for multiple comparisons. We use the FDR (Benjamini & Hochberg 1995)
protocol to correct all N2 p-values. According to this correction, the p-values from
each individual test are arranged in increasing order (p1 < p2 < · · · < pN2), and
the threshold is defined as the largest k such that pk < k 0.01/N2. In this case, for
N = 80 nodes, we must construct 100N2 = 640000 independently shuffled surrogate
time series. We may then interpret Um,n/(100N2) as the p-value for the positive
one-tailed test, and Dm,n/(100N2) as the p-value for the negative one-tailed test.
Directly from the matrices U , and D, then, our threshold is the largest integer k
such that U or D has exactly k entries fewer than or equal to k. From this threshold,
we can filter the links in L to construct the FDR network (Tumminello et al. 2011).

Appendix C. Analysis of Synchronous Correlations

C.1. Methodology

In this section, we analyze the synchronous (same-day) relationships among the
market returns and news sentiment signals. For this purpose, we synchronize the
signals and assemble them as N = 80 columns in a matrix X . We then construct
the correlation matrix C of the columns of X . Each element of C is given by the
Pearson correlation

Ci,j =
1

T − 1

T∑

t=1

(Xi,t − 〈Xi〉)(Xj,t − 〈Xj〉)
σiσj

, (C.1)

where Xi is the ith column of X , Xi,t is row t of column i of X , T is the number
of rows of X , and 〈Xi〉 and σi are the mean and sample standard deviation of Xi,
respectively.

To study the structure of the correlation matrix C, we next construct the “dis-
tance” matrix D (Mantegna & Stanley 2000). Each element of D is given by

Di,j =
√

2(1 − Ci,j) (C.2)

and can be understood as a distance in the following sense. Each column Xi can be
normalized to X̃i ≡ (Xi − 〈Xi〉)/(

√
T − 1σi), so that X̃i is a unit vector. It is then

readily seen that Ci,j is the dot-product X̃i ·X̃j, and Di,j is the distance ‖X̃i− X̃j‖.
The hierarchical structure and clustering represented in the matrix D can be

visualized using the MST (Mantegna & Stanley 2000). If each time series Xi of our
data is considered a node in a graph, and an edge between any two Xi and Xj

is weighted by the distance Di,j , then the MST is the tree structure that links all
of the nodes and minimizes the sum of the edge weights. The MST is commonly
constructed using Kruskal’s algorithm (Kruskal 1956). Alternative specifications of
the distance Di,j invoke the absolute value or square of the correlation Ci,j , so
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that perfectly anti-correlated series will have a small distance (Mantegna 1999). We
choose the function Di,j as we do because (i) it fulfills the three axioms of a metric
distance (Mantegna 1999), and (ii) a large majority of the correlations studied are
positive, so we verify that the resulting MST is unaffected by this choice.

C.2. Results

We plot the MST of the data X in Fig. C.1(a), and observe a structure in which
the “backbone,” or highest-level organization is defined by the financial markets.
The lowest-level of the hierarchy, or “leafs” of the tree, are commonly the news
sentiment signals. This is corroborated by Fig. C.1(b), which displays histograms of
the betweenness centrality for the financial market nodes and news sentiment nodes
separately. The betweenness centrality of a node n is given by (Freeman 1977)

g(n) =
∑

m #=n#=p

σmp(n)
σmp

, (C.3)

where σmp is the total number of shortest paths from node m to node p, and σmp(n)
is the number of those paths that pass through node n.

Furthermore, the news sentiment signal nodes are in most cases linked to their
corresponding market. We thus find that the strongest correlations are among finan-
cial markets, which compose the highest-level of the hierarchy, with weaker correla-
tions between news sentiments and the corresponding market. This may be because
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Fig. C.1. (Color online) (a) Plot of the MST of the synchronous correlations. Financial markets are
colored red; news sentiment signals are colored blue. (b) Histogram of the betweenness centrality
of financial markets and news sentiment separately. We find that the strongest correlations in
the system are among financial markets, and between the news sentiment signals of a country
and the same country’s market returns. The notable exception is the node corresponding to news
sentiment signals from the United States, which is strongly correlated with news from a host of
other countries and so represents a hub in the network.
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traders around the world observe other market movements and often take actions
based on the dynamics of these markets. This may represent a signature of quasi-
technical analysis, making trading decisions based on other market patterns. More-
over, we find that US news sentiments are strongly correlated with news sentiments
in countries around the world. Our results are consistent with the idea that traders
turn to local news for market information, while their actions (market movements)
are reported in both local and international news.

Appendix D. Tests with Synthetic Data

In this section, we test the efficacy of the “recommender system” for time series
model features using synthetic data. There are two broad purposes to such a study.
First, we verify that our conclusions are not strictly dependent on the particular
real-world dataset that we choose, and that our findings extend to other datasets
satisfying a particular set of properties. Second, the use of synthetic data allows us
to determine what that set of properties is, so that we may understand the scope
and limitations of our methodology.

To this end we generate many simulated time series with the same underlying
correlation network as the real-world data. By varying the strength of the cor-
relations, we examine the range over which our method — selecting model inputs
according to their ranking in the corresponding left-singular vector of the adjacency
matrix — outperforms the “null” model of simply choosing inputs according to the
adjacency matrix alone.

We generate N simulated time series of length T in an iterative fashion. The
state of the system at time t can be described by an N -dimensional vector xt, which
is updated according to the state at time t − 1 as a vector-autoregressive process

xt = Bxt−1 + εt. (D.1)

Here, B is a matrix of fixed coefficients and εt is an N -vector of error terms. We
specify B and the distribution of εt so that the resulting time series have a lagged
correlation matrix L and synchronous correlation matrix Σ that is in agreement
with empirical data. In particular, through the matrix B, we will embed the same
underlying lagged correlation network as was recovered from the empirical data.
Scaling these correlations by a factor α allows us to test how a varying signal-to-
noise ratio influences our results.

We use as our estimate of B the ordinary least squares (OLS) result

B = (XT X)−1XT Y. (D.2)

Here, X is a T ×N matrix, entry (t, i) of which gives the value of the time series of
node i at time t. Similarly, Y is a T ×N matrix, entry (t, i) of which gives the value
of the time series of node i at time t+1. If these time series have zero mean and unit
variance, we recognize the quantity XT X as TΣ, proportional to the synchronous
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correlation matrix. Further, we recognize the quantity XT Y as TL, proportional to
the lagged correlation matrix. We therefore fix

B = αΣ−1L. (D.3)

We take Σ to be the empirical synchronous correlation matrix of the system, and L
to be the weighted adjacency matrix for the validated lagged correlation network:
that is, each entry (i, j) of this matrix has a value equal to the lagged correlation
between nodes i and j, if a link was validated from node i to node j, and zero
otherwise. Further, we set the distribution of the error terms εt to be multivariate
normal with correlation matrix Σ. The factor α allows us to control the strength of
the lagged correlations in the underlying network.

In this way, we may construct N time series of length T , and find its associated
lagged correlation network as before, using FDR correction for multiple compar-
isons. Because our signals are homogeneously and normally distributed, we filter our
network according to a Gaussian threshold correlation corresponding to p < 0.01.
This simplification allows us to generate large numbers of these systems in a rea-
sonable amount of time. We find that, for α = 1, the properties of the resulting
system — namely, its synchronous correlation matrix, lagged correlation matrix,
and validated adjacency matrix — match closely our empirical results.

For a given value of α, we generate 500 of these systems, each of which has
N = 80 nodes and T = 400. We compute the SVD of the resulting adjacency
matrix, and train logistic regression models in which we attempt to classify the sign
(+1 or −1) of the signal a given node at each time t. For these nodes we again
choose the largest five entries of the first right-singular vector. We will compare the
success of these models (measured by the AUC of the corresponding ROC curve)
in two cases, just as before. In case (i), when predicting the sign of node j at time
t, we use as model features all nodes i at time t − 1 for which there is a link from
i to j in the validated network. In case (ii), we use the s largest entries of the first
left-singular vector as our nodes i, where s is the first singular value of the adjacency
matrix.

We then continue our time series for another T = 100 time-steps, and measure
the AUC of each model in each of cases (i) and (ii) on this held-out data set. In
Fig. D.1, we show differences in the measured AUCs for varying values of α. We find
that for low values of α, there is no difference between cases (i) and (ii). That is, the
lagged correlations in the system are so weak that both methods perform equally
poorly. For values of α in the range from roughly 0.5 to 1.5, case (ii) outperforms
case (i) by 1%–2%. In this regime, we find that consideration of the network’s
bipartite community structure can increase the accuracy of our predictions. Note
that, if we characterize the strengths of the lagged correlations by what we find
in the empirical data (corresponding to α = 1), we achieve a near-optimum gain
in accuracy. For α larger than 1.5, however, one is much better-off choosing model
inputs from the adjacency matrix alone. In this regime, the signal-to-noise ratio is
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Fig. D.1. (Color online) Pairwise differences in AUCs between logistic regression models with
inputs given by case (ii), AUCSVD, and inputs given by case (i), AUCNet, for varying α. In grey,
we show characteristic trajectories of each of the five largest entries of the first right-singular
vector. In blue, we show results as averaged over each of these entries.

sufficiently strong that we find a low rate of false positives and negatives in the
validated links, so that our recommender system has little to offer.
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